NONLINEAR CONTROLLER DESIGN FOR A SHELL AND TUBE HEAT EXCHANGER AN EXPERIMENTATION APPROACH

Size: px
Start display at page:

Download "NONLINEAR CONTROLLER DESIGN FOR A SHELL AND TUBE HEAT EXCHANGER AN EXPERIMENTATION APPROACH"

Transcription

1 International Journal of Electrical, Electronic and Data Communication, ISSN: Volume-3, Iue-8, Aug.-25 NONLINEAR CONTROLLER DESIGN FOR A SHELL AND TUBE HEAT EXCHANGER AN EXPERIMENTATION APPROACH MITHUN.P, 2 SATHEESHBABU.R, 3 I.THIRUNAVUKKARASU, 4 V.I.GEORGE, 5 SHREESHA.C PG Student, M.Tech (Control Sytem), 2 Reearch Scholar, 3 Aociate Profeor, 4,5 Profeor, Department of Intrumentation and Control Engineering, MIT, Manipal Univerity, India. 3 it.arau@manipal.edu Abtract- In thi paper the outlet water temperature control of the hell and tube heat exchanger wa implemented in real time ytem with the Generic Model Control (GMC) and adaptive control technique in imulation. The teady tate model of the heat exchanger i ued for the GMC and the dynamic model of the hell and tube heat exchanger i ued for the adaptive control technique. MATLAB-2-Simulink wa ued a a tool to implement the control algorithm in hardware loop. I. INTRODUCTION Heat exchanger are device that facilitate the exchange of heat between two fluid that are different temperature while keeping them from mixing with each other. Heat exchanger are mainly ued in chemical proceing and power production plant. Since they are relatively eay to ue experimentally and they how nonlinear and non-tationary propertie, the heat exchanger are frequently ued a a demontration of control. Thi paper deal with two type of controller. Generic model controller (GMC) baed on the teady tate model of the STHE [6] and Adaptive controller [,2] baed on the dynamic model of STHE. The generic model control ue the invere of the teady tate model of the STHE to control the nonlinear proce. The model may contain empirical feature or may be purely empirical. GMC integrate the proce model with proportional and integral error term imilar to PI controller to adjut the control input to achieve a deired cloed loop trajectory. In adaptive control, the controller i divided into two part. Non-linear tatic part (NSP) and linear dynamic part(ldp). The non-linear part of the controller i developed uing imulated or meaured teady tate characteritic of the STHE, it inverion, exponential approximationand ubequently it differentiation. Then NSP and non-linear model of STHE i approximated by a continuou time external model (CT-ELM).The parameter of the CT-ELM i obtained by the application of an external delta model with ame tructure a the CT-ELM model. Then in dynamic linear part of the controller, an adaptive controller i developed uing polynomial approach and pole placement method. II. PHYSICAL SYSTEM: SHELL AND TUBE HEAT EXCHANGER Fig.. Heat Exchanger Phyical Experimentation Experimental Setup Table..Technical Specification of the Heat Exchanger Setup The hell and tube heat exchanger ha hot water in the tube ide and cold water in the hell ide. The outlet temperature of the hot water i controlled by varying the cold water flow rate. So that outlet hot water temperature i the controlled variable and inlet cold water temperature i the manipulated variable. III. CONTROL METHODOLOGY Nonlinear Controller Deign For A Shell And Tube Heat Exchanger An Experimentation Approach 38

2 International Journal of Electrical, Electronic and Data Communication, ISSN: A dicued in the abtract in thi paper two control algorithm were deigned, imulated and implemented for a hell and tube heat exchanger proce namely i) Generic Model Control ii) Adaptive Control. 3.. Generic Model Control (GMC) The teady tate model for GMC i developed baed on the energy balance equation of the hell and tube heat exchanger decribed a follow. The heat tranfer rate i The heat rate gained by the cold water i WhereU: overallheattranfer coefficient, A: urfacearea T: water outlet temperature, Tin: waterinlettemperature, F: cold waterinlet flow rate, : denityofwater, Cp: waterheatcapacity,ubcript denoted h for hot water and c denoted for cold water. The teady-tate equation for hot water outlet temperature can be derived by combining Eq ()&(2). Volume-3, Iue-8, Aug.-25 The model i not exactly true to the proce. There for the manipulated variable calculated for invere model will not make the proce be exactly at the et point. So, the output will contain an offet error. In GMC, thi offet i eliminated by integrating the actuating error. The output target can be et by a PI output added to the meaurement: Where K i the proportional gain, varie between K.and.2. AndK2i integral gain. i The target value can be written a Thi equation how the PI action in the GMC. Hence the target i The target value given by Eq. (9) i ubtituted into the teady-tate model invere of Eq. (5) to generate the control action. The cold water inlet valve ha equal percentage characteritic. There for the flow rate and control ignal can be related a Where u i the control ignal. m and are contant and empirically determined from the intalled valve characteritic. In GMC-SS, the teady-tate model i inverted to get the control action By ubtituting equation(4) in (3) and rearranging, the control action, i.e., valve percentage i given by Block Diagram Of The Gmci Shown In Fig Adaptive control Adaptive control ue the dynamic model of the proce for developing the controller. The dynamic model of a counter flow cooling hell and tube heat exchanger can be decribed by three partial differential equation. The parameter in equation ()-(2) are Fig.2 GMC Controller block diagram The concept of GMC control action i to aimfora y- value (CV)targetabout%or2%beyondtheetpoint.The logic i that a target value lightly beyond make the controller puh the proce a bit fat erininitial tage. Then, inlater tage a the proce approache thee tpoint,the target relaxe to the et point. The out puttargeti Where ttand for the time, z for the axialpace variable, T for temperature, q for flow of fluid, v for fluid flow velocitie, d for inner diameter of the tube, d2for outer diameter of the tube, d3 for diameter of thehell, for denitie, cp for pecific heat capacitie, αfor heat tranfer coefficient, n i the number of tubeand Li the length of tube. Subcript denoted rdecribe the hot water, w the metal wall oftube, c cold water and the upercript teady-tate value. A from ref. [3] the parameter and teady ate input ued are given in Table 2. Nonlinear Controller Deign For A Shell And Tube Heat Exchanger An Experimentation Approach 39

3 International Journal of Electrical, Electronic and Data Communication, ISSN: Table 2.Parameter and Steady-State Input IV. CONTROLLER DESIGN Volume-3, Iue-8, Aug.-25 A previouly introduced, the controller conit of a nonlinear tatic part and a linear dynamic part a hown in Fig.4. Finite difference method i employed for the computation of teady tate and dynamic characteritic. For thi the pace interval z, L i divided into a et of dicrete node point { z i } for i= to n. Uing finite difference method PDE are approximated by a et of ODE in the form Fori=..., n, j=n-i+, and, with initial condition T ( i,) T ( i), T ( i,) T ( i), r r w Tc ( i,) Tc ( i).h=l/n i the dicretization tep. The Steady State Characteritic Of The Heat Exchanger Are Shown In Fig.3. w Fig.4 Controller Scheme. The LDP create a linear dynamic relation which repreent a difference of the hot water outlet temperature adequate to it deired value. Then, the NSP generate atatic nonlinear relation between and a correpondingincrement (decrement) of the coolant flow rate. 4. Non Linear Static Part of the Controller The normalized value of flow rate and temperature are obtained by In practice, the error will be preent in meaured data. So that the imulated teady tate characteritic in reality i hown in Fig.5. u Fig 5. Steady-tate characteritic in preence of diturbance Fig. 3 teady tate characteritic of the heat exchanger From thi the operating point around which the change take place during the controli choen a =.9 and T rout q c = The upper and lower limit of the operating point i q U c =.8 3 L m /, q c =.5 m 3 / 3.2. The control input and controlled output are conidered in the form The invere characteritic i approximated by econd order exponential function a hown in Fig.6 Fig 6 Approximation of the invere characteritic Nonlinear Controller Deign For A Shell And Tube Heat Exchanger An Experimentation Approach 4

4 International Journal of Electrical, Electronic and Data Communication, ISSN: The approximation ha done uing leat quare method and ha the form T Now for each rout the difference of the coolant flow rate in the output of NSP can be computed a Volume-3, Iue-8, Aug.-25 In thi w i the reference ignal and v i the diturbance, y i the controlled output and u i the control input.the tranfer function G i given by (22). Both the reference w and the diturbance v are conidered to be tep function. The controller ha the tranfer function in the form 4.2CT and Delta External Linear Model Fig7. Non-Linear component of the cloed loop The non-linear component of the cloed loop coniting of NSP and the STHE model. The tep repone of the non-linearcomponent imulated around above defined operating point i hown in Fig.8. Where q and p are polynomial in that fulfil the condition degq degp. The controller i deigned uing polynomial approach.a controller which atifie tability, internalproperne, aymptotic tracking of tep referenceand tep diturbance attenuation i given by a olution of the polynomial equation With a table polynomial d( ) on the right ide. For tep input ignal w and v, the polynomial p i in the form y Then, the controller tranfer function take form In thi paper, the polynomial d with root determining the cloed-loop pole i choen a Where n i a table polynomial obtained by pectral factorization Fig 8. Step Repone Of The Nonlinear Component From the above tep repone the econd order CT- ELM habeen choen in the form of the econd order lineardifferential equation Or, in the tranfer function repreentation a 4.3 Parameter etimation The parameter a, a, b i obtained by delta model parameter identification method [5]. The delta model correponding to the CT-ELM model ha the form ' Where i the forward hift operator. t i the dicrete time. A the ampling period i too mall, the delta operator become the derivative operator and ' ' ' delta model parameter a, a, b reache the a, a, b of the CT model 4.4 Linear Dynamic Part of the Controller The feedback control loop i hown in Fig.9. Fig 9. Control Sytem Structure i a tuneable parameter that can be elected by imulation experiment. The polynomial n ha the form With coefficient Then, the controller parameter can be obtained fromolution of the matrix equation Where RESULTS AND CONCLUSION GMC controller i implemented in real time ytem and the reult are hown in Fig. with variou etpoint and the adaptive controller i imulated uing MATLAB-2 SIMULINK and it cloed loop repone i hown in Fig.and Fig.2 with variou etpoint. In both cae cold water flow rate i ued a the manipulated variable. Satifactory reult were obtained in imulation and real time experimentation and the controller effort taken by the nonlinear controller i comparatively le compared to the conventional controller deigned for thi particular experimentation etup [4] Nonlinear Controller Deign For A Shell And Tube Heat Exchanger An Experimentation Approach 4

5 International Journal of Electrical, Electronic and Data Communication, ISSN: Volume-3, Iue-8, Aug.-25 Fig 2.Cold Water Flow Rate For Variou Α Value. REFERENCES Fig. Cloed Loop Repone Of The GMC Controller With The Real Time Experimental Setup For The Setpoint 5 C And 48 C. Fig. Controlled Output Reponeof The Adaptive Controller With The Variou Α Value. [] Dotál, P. J. Vojtěšek, and V. Bobál. 2a. "Simulation of the 2DOF nonlinear adaptive control of a chemical reactor". In: Proceeding of 25th European Conference on Modelling and Simulation, Krakow, Poland, [2] Dotál, P. J. Vojtěšek, and V. Bobál. 24a. "Non linear control of hell and tube heat exchanger". In: Proceeding of 28th European Conference on Modelling and Simulation, [3] Bobál, V., J. Böhm, J. Fel, and J. Macháček. 25. Digital elf-tuning controller, Springer Verlag, Berlin, 25. [4] Satheehbabu.R, Dr.I.Thirunavukkarau et al., Temperature control of a hell and tube heat exchanger uing PID algorithm, International Journal of Advancement in Electronic and Electrical Engineering IJAEE, Vol.3, Iue.3, Sep.24. [5] N. K. Sinha. Identification of continuou-time ytem from ample of input-output data uing the δ-operator. Control Theory and Advanced Technology, vol. 9, pp. 3 25, 993, [6] R. Ruell Rhinehartet al Comparion of model-baed and conventional controller on a pilot-cale heat exchanger ISA Tranaction 52 (23) Nonlinear Controller Deign For A Shell And Tube Heat Exchanger An Experimentation Approach 42

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL 98 CHAPTER DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL INTRODUCTION The deign of ytem uing tate pace model for the deign i called a modern control deign and it i

More information

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.1 INTRODUCTION 8.2 REDUCED ORDER MODEL DESIGN FOR LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.3

More information

Massachusetts Institute of Technology Dynamics and Control II

Massachusetts Institute of Technology Dynamics and Control II I E Maachuett Intitute of Technology Department of Mechanical Engineering 2.004 Dynamic and Control II Laboratory Seion 5: Elimination of Steady-State Error Uing Integral Control Action 1 Laboratory Objective:

More information

Module 4: Time Response of discrete time systems Lecture Note 1

Module 4: Time Response of discrete time systems Lecture Note 1 Digital Control Module 4 Lecture Module 4: ime Repone of dicrete time ytem Lecture Note ime Repone of dicrete time ytem Abolute tability i a baic requirement of all control ytem. Apart from that, good

More information

Control of Delayed Integrating Processes Using Two Feedback Controllers R MS Approach

Control of Delayed Integrating Processes Using Two Feedback Controllers R MS Approach Proceeding of the 7th WSEAS International Conference on SYSTEM SCIENCE and SIMULATION in ENGINEERING (ICOSSSE '8) Control of Delayed Integrating Procee Uing Two Feedback Controller R MS Approach LIBOR

More information

State Space: Observer Design Lecture 11

State Space: Observer Design Lecture 11 State Space: Oberver Deign Lecture Advanced Control Sytem Dr Eyad Radwan Dr Eyad Radwan/ACS/ State Space-L Controller deign relie upon acce to the tate variable for feedback through adjutable gain. Thi

More information

A Simplified Methodology for the Synthesis of Adaptive Flight Control Systems

A Simplified Methodology for the Synthesis of Adaptive Flight Control Systems A Simplified Methodology for the Synthei of Adaptive Flight Control Sytem J.ROUSHANIAN, F.NADJAFI Department of Mechanical Engineering KNT Univerity of Technology 3Mirdamad St. Tehran IRAN Abtract- A implified

More information

Evolutionary Algorithms Based Fixed Order Robust Controller Design and Robustness Performance Analysis

Evolutionary Algorithms Based Fixed Order Robust Controller Design and Robustness Performance Analysis Proceeding of 01 4th International Conference on Machine Learning and Computing IPCSIT vol. 5 (01) (01) IACSIT Pre, Singapore Evolutionary Algorithm Baed Fixed Order Robut Controller Deign and Robutne

More information

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS by Michelle Gretzinger, Daniel Zyngier and Thoma Marlin INTRODUCTION One of the challenge to the engineer learning proce control i relating theoretical

More information

Effective Hybrid Adaptive Temperature Control inside Plug-flow Chemical Reactor

Effective Hybrid Adaptive Temperature Control inside Plug-flow Chemical Reactor INERNAIONAL JOURNAL OF MAHEMAICS AND COMPUERS IN SIMULAION Volume, 6 Effective Hybrid Adaptive emperature Control inide Plug-flow Chemical Reactor Jiri Vojteek, Petr Dotal Abtract he paper deal with two

More information

Adaptive Control of Level in Water Tank: Simulation Study

Adaptive Control of Level in Water Tank: Simulation Study Adaptive Control of Level in Water Tank: Simulation Study Jiri Vojteek and Petr Dotal Abtract An adaptive control i a popular, o called modern control method which could be ued for variou type of ytem

More information

Chapter 10. Closed-Loop Control Systems

Chapter 10. Closed-Loop Control Systems hapter 0 loed-loop ontrol Sytem ontrol Diagram of a Typical ontrol Loop Actuator Sytem F F 2 T T 2 ontroller T Senor Sytem T TT omponent and Signal of a Typical ontrol Loop F F 2 T Air 3-5 pig 4-20 ma

More information

CONTROL OF INTEGRATING PROCESS WITH DEAD TIME USING AUTO-TUNING APPROACH

CONTROL OF INTEGRATING PROCESS WITH DEAD TIME USING AUTO-TUNING APPROACH Brazilian Journal of Chemical Engineering ISSN 004-6632 Printed in Brazil www.abeq.org.br/bjche Vol. 26, No. 0, pp. 89-98, January - March, 2009 CONROL OF INEGRAING PROCESS WIH DEAD IME USING AUO-UNING

More information

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. VIII Decoupling Control - M. Fikar

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. VIII Decoupling Control - M. Fikar DECOUPLING CONTROL M. Fikar Department of Proce Control, Faculty of Chemical and Food Technology, Slovak Univerity of Technology in Bratilava, Radlinkého 9, SK-812 37 Bratilava, Slovakia Keyword: Decoupling:

More information

Digital Control System

Digital Control System Digital Control Sytem - A D D A Micro ADC DAC Proceor Correction Element Proce Clock Meaurement A: Analog D: Digital Continuou Controller and Digital Control Rt - c Plant yt Continuou Controller Digital

More information

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays Gain and Phae Margin Baed Delay Dependent Stability Analyi of Two- Area LFC Sytem with Communication Delay Şahin Sönmez and Saffet Ayaun Department of Electrical Engineering, Niğde Ömer Halidemir Univerity,

More information

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax: Control Sytem Engineering ( Chapter 7. Steady-State Error Prof. Kwang-Chun Ho kwangho@hanung.ac.kr Tel: 0-760-453 Fax:0-760-4435 Introduction In thi leon, you will learn the following : How to find the

More information

NONLINEAR ADAPTIVE CONTROL OF CSTR WITH SPIRAL COOLING IN THE JACKET

NONLINEAR ADAPTIVE CONTROL OF CSTR WITH SPIRAL COOLING IN THE JACKET NONLINEAR ADAPIVE CONROL OF CSR WIH SPIRAL COOLING IN HE JACKE Jiri Vojteek and Petr Dotal Faculty of Applied Informatic oma Bata Univerity in Zlin Nam. GM, 76 Zlin, Czech Republic E-mail: {vojteek,dotalp}@fai.utb.cz

More information

Advanced D-Partitioning Analysis and its Comparison with the Kharitonov s Theorem Assessment

Advanced D-Partitioning Analysis and its Comparison with the Kharitonov s Theorem Assessment Journal of Multidiciplinary Engineering Science and Technology (JMEST) ISSN: 59- Vol. Iue, January - 5 Advanced D-Partitioning Analyi and it Comparion with the haritonov Theorem Aement amen M. Yanev Profeor,

More information

EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Inverted Pendulum. (ECP Systems-Model: 505)

EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Inverted Pendulum. (ECP Systems-Model: 505) EE 4443/5329 LAB 3: Control of Indutrial Sytem Simulation and Hardware Control (PID Deign) The Inverted Pendulum (ECP Sytem-Model: 505) Compiled by: Nitin Swamy Email: nwamy@lakehore.uta.edu Email: okuljaca@lakehore.uta.edu

More information

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002 Correction for Simple Sytem Example and Note on Laplace Tranform / Deviation Variable ECHE 55 Fall 22 Conider a tank draining from an initial height of h o at time t =. With no flow into the tank (F in

More information

USING NONLINEAR CONTROL ALGORITHMS TO IMPROVE THE QUALITY OF SHAKING TABLE TESTS

USING NONLINEAR CONTROL ALGORITHMS TO IMPROVE THE QUALITY OF SHAKING TABLE TESTS October 12-17, 28, Beijing, China USING NONLINEAR CONTR ALGORITHMS TO IMPROVE THE QUALITY OF SHAKING TABLE TESTS T.Y. Yang 1 and A. Schellenberg 2 1 Pot Doctoral Scholar, Dept. of Civil and Env. Eng.,

More information

Analysis of Step Response, Impulse and Ramp Response in the Continuous Stirred Tank Reactor System

Analysis of Step Response, Impulse and Ramp Response in the Continuous Stirred Tank Reactor System ISSN: 454-50 Volume 0 - Iue 05 May 07 PP. 7-78 Analyi of Step Repone, Impule and Ramp Repone in the ontinuou Stirred Tank Reactor Sytem * Zohreh Khohraftar, Pirouz Derakhhi, (Department of hemitry, Science

More information

Mathematical modeling of control systems. Laith Batarseh. Mathematical modeling of control systems

Mathematical modeling of control systems. Laith Batarseh. Mathematical modeling of control systems Chapter two Laith Batareh Mathematical modeling The dynamic of many ytem, whether they are mechanical, electrical, thermal, economic, biological, and o on, may be decribed in term of differential equation

More information

FRTN10 Exercise 3. Specifications and Disturbance Models

FRTN10 Exercise 3. Specifications and Disturbance Models FRTN0 Exercie 3. Specification and Diturbance Model 3. A feedback ytem i hown in Figure 3., in which a firt-order proce if controlled by an I controller. d v r u 2 z C() P() y n Figure 3. Sytem in Problem

More information

Design of Robust PI Controller for Counter-Current Tubular Heat Exchangers

Design of Robust PI Controller for Counter-Current Tubular Heat Exchangers Deign of Robut PI Controller for Counter-Current Tubular Heat Excanger Jana Závacká Monika Bakošová Intitute of Information Engineering Automation Matematic Faculty of Cemical Food Tecnology STU in Bratilava

More information

Lecture 10 Filtering: Applied Concepts

Lecture 10 Filtering: Applied Concepts Lecture Filtering: Applied Concept In the previou two lecture, you have learned about finite-impule-repone (FIR) and infinite-impule-repone (IIR) filter. In thee lecture, we introduced the concept of filtering

More information

DYNAMIC MODELS FOR CONTROLLER DESIGN

DYNAMIC MODELS FOR CONTROLLER DESIGN DYNAMIC MODELS FOR CONTROLLER DESIGN M.T. Tham (996,999) Dept. of Chemical and Proce Engineering Newcatle upon Tyne, NE 7RU, UK.. INTRODUCTION The problem of deigning a good control ytem i baically that

More information

Stability. ME 344/144L Prof. R.G. Longoria Dynamic Systems and Controls/Lab. Department of Mechanical Engineering The University of Texas at Austin

Stability. ME 344/144L Prof. R.G. Longoria Dynamic Systems and Controls/Lab. Department of Mechanical Engineering The University of Texas at Austin Stability The tability of a ytem refer to it ability or tendency to eek a condition of tatic equilibrium after it ha been diturbed. If given a mall perturbation from the equilibrium, it i table if it return.

More information

An estimation approach for autotuning of event-based PI control systems

An estimation approach for autotuning of event-based PI control systems Acta de la XXXIX Jornada de Automática, Badajoz, 5-7 de Septiembre de 08 An etimation approach for autotuning of event-baed PI control ytem Joé Sánchez Moreno, María Guinaldo Loada, Sebatián Dormido Departamento

More information

CHEAP CONTROL PERFORMANCE LIMITATIONS OF INPUT CONSTRAINED LINEAR SYSTEMS

CHEAP CONTROL PERFORMANCE LIMITATIONS OF INPUT CONSTRAINED LINEAR SYSTEMS Copyright 22 IFAC 5th Triennial World Congre, Barcelona, Spain CHEAP CONTROL PERFORMANCE LIMITATIONS OF INPUT CONSTRAINED LINEAR SYSTEMS Tritan Pérez Graham C. Goodwin Maria M. Serón Department of Electrical

More information

THE EXPERIMENTAL PERFORMANCE OF A NONLINEAR DYNAMIC VIBRATION ABSORBER

THE EXPERIMENTAL PERFORMANCE OF A NONLINEAR DYNAMIC VIBRATION ABSORBER Proceeding of IMAC XXXI Conference & Expoition on Structural Dynamic February -4 Garden Grove CA USA THE EXPERIMENTAL PERFORMANCE OF A NONLINEAR DYNAMIC VIBRATION ABSORBER Yung-Sheng Hu Neil S Ferguon

More information

LOW ORDER MIMO CONTROLLER DESIGN FOR AN ENGINE DISTURBANCE REJECTION PROBLEM. P.Dickinson, A.T.Shenton

LOW ORDER MIMO CONTROLLER DESIGN FOR AN ENGINE DISTURBANCE REJECTION PROBLEM. P.Dickinson, A.T.Shenton LOW ORDER MIMO CONTROLLER DESIGN FOR AN ENGINE DISTURBANCE REJECTION PROBLEM P.Dickinon, A.T.Shenton Department of Engineering, The Univerity of Liverpool, Liverpool L69 3GH, UK Abtract: Thi paper compare

More information

Digital Control System

Digital Control System Digital Control Sytem Summary # he -tranform play an important role in digital control and dicrete ignal proceing. he -tranform i defined a F () f(k) k () A. Example Conider the following equence: f(k)

More information

Assessment of Performance for Single Loop Control Systems

Assessment of Performance for Single Loop Control Systems Aement of Performance for Single Loop Control Sytem Hiao-Ping Huang and Jyh-Cheng Jeng Department of Chemical Engineering National Taiwan Univerity Taipei 1617, Taiwan Abtract Aement of performance in

More information

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam BSc - Sample Examination Digital Control Sytem (5-588-) Prof. L. Guzzella Solution Exam Duration: Number of Quetion: Rating: Permitted aid: minute examination time + 5 minute reading time at the beginning

More information

Wolfgang Hofle. CERN CAS Darmstadt, October W. Hofle feedback systems

Wolfgang Hofle. CERN CAS Darmstadt, October W. Hofle feedback systems Wolfgang Hofle Wolfgang.Hofle@cern.ch CERN CAS Darmtadt, October 9 Feedback i a mechanim that influence a ytem by looping back an output to the input a concept which i found in abundance in nature and

More information

PIM Digital Redesign and Experiments of a Roll-Angle Controller for a VTOL-UAV

PIM Digital Redesign and Experiments of a Roll-Angle Controller for a VTOL-UAV 1 roceeding of the International Conference on Information and Automation, December 15-1, 5, Colombo, Sri Lanka. IM Digital Redeign and Experiment of a Roll-Angle Controller for a VTOL-UAV Takahi Kahimura*

More information

Design By Emulation (Indirect Method)

Design By Emulation (Indirect Method) Deign By Emulation (Indirect Method he baic trategy here i, that Given a continuou tranfer function, it i required to find the bet dicrete equivalent uch that the ignal produced by paing an input ignal

More information

Thermal Σ- Modulator: Anemometer Performance Analysis

Thermal Σ- Modulator: Anemometer Performance Analysis Intrumentation and Meaurement Technology Conference IMTC 007 Waraw, Poland, May 1-3, 007 Thermal Σ- Modulator: Anemometer Performance Analyi Will R. M. Almeida 1, Georgina M. Freita 1, Lígia S. Palma 3,

More information

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

EE Control Systems LECTURE 14

EE Control Systems LECTURE 14 Updated: Tueday, March 3, 999 EE 434 - Control Sytem LECTURE 4 Copyright FL Lewi 999 All right reerved ROOT LOCUS DESIGN TECHNIQUE Suppoe the cloed-loop tranfer function depend on a deign parameter k We

More information

EE Control Systems LECTURE 6

EE Control Systems LECTURE 6 Copyright FL Lewi 999 All right reerved EE - Control Sytem LECTURE 6 Updated: Sunday, February, 999 BLOCK DIAGRAM AND MASON'S FORMULA A linear time-invariant (LTI) ytem can be repreented in many way, including:

More information

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples Root Locu Content Root locu, ketching algorithm Root locu, example Root locu, proof Root locu, control example Root locu, influence of zero and pole Root locu, lead lag controller deign 9 Spring ME45 -

More information

A Comparative Study on Control Techniques of Non-square Matrix Distillation Column

A Comparative Study on Control Techniques of Non-square Matrix Distillation Column IJCTA, 8(3), 215, pp 1129-1136 International Science Pre A Comparative Study on Control Technique of Non-quare Matrix Ditillation Column 1 S Bhat Vinayambika, 2 S Shanmuga Priya, and 3 I Thirunavukkarau*

More information

Chapter 13. Root Locus Introduction

Chapter 13. Root Locus Introduction Chapter 13 Root Locu 13.1 Introduction In the previou chapter we had a glimpe of controller deign iue through ome imple example. Obviouly when we have higher order ytem, uch imple deign technique will

More information

Real-Time Identification of Sliding Friction Using LabVIEW FPGA

Real-Time Identification of Sliding Friction Using LabVIEW FPGA Real-Time Identification of Sliding Friction Uing LabVIEW FPGA M. Laine Mear, Jeannie S. Falcon, IEEE, and Thoma R. Kurfe, IEEE Abtract Friction i preent in all mechanical ytem, and can greatly affect

More information

ME 375 FINAL EXAM Wednesday, May 6, 2009

ME 375 FINAL EXAM Wednesday, May 6, 2009 ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingle-ided 8.5 crib heet. A calculator i NOT allowed.

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecture 1 Root Locu Emam Fathy Department of Electrical and Control Engineering email: emfmz@aat.edu http://www.aat.edu/cv.php?dip_unit=346&er=68525 1 Introduction What i root locu?

More information

OBSERVER-BASED REDUCED ORDER CONTROLLER DESIGN FOR THE STABILIZATION OF LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

OBSERVER-BASED REDUCED ORDER CONTROLLER DESIGN FOR THE STABILIZATION OF LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS International Journal o Computer Science, Engineering and Inormation Technology (IJCSEIT, Vol.1, No.5, December 2011 OBSERVER-BASED REDUCED ORDER CONTROLLER DESIGN FOR THE STABILIZATION OF LARGE SCALE

More information

Pole-placement and LQ Hybrid Adaptive Control Applied Isothermal Continuous Stirred Tank Reactor

Pole-placement and LQ Hybrid Adaptive Control Applied Isothermal Continuous Stirred Tank Reactor WSEAS RANSACIONS on SYSEMS and CONROL Pole-placement and LQ Hybrid Adaptie Control Applied Iothermal Continuou Stirred ank Reactor JIRI VOJESEK, PER DOSAL Department of Proce Control, Faculty of Applied

More information

1 Routh Array: 15 points

1 Routh Array: 15 points EE C28 / ME34 Problem Set 3 Solution Fall 2 Routh Array: 5 point Conider the ytem below, with D() k(+), w(t), G() +2, and H y() 2 ++2 2(+). Find the cloed loop tranfer function Y () R(), and range of k

More information

Quantifying And Specifying The Dynamic Response Of Flowmeters

Quantifying And Specifying The Dynamic Response Of Flowmeters White Paper Quantifying And Specifying The Dynamic Repone Of Flowmeter DP Flow ABSTRACT The dynamic repone characteritic of flowmeter are often incompletely or incorrectly pecified. Thi i often the reult

More information

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog Chapter Sampling and Quantization.1 Analog and Digital Signal In order to invetigate ampling and quantization, the difference between analog and digital ignal mut be undertood. Analog ignal conit of continuou

More information

MM1: Basic Concept (I): System and its Variables

MM1: Basic Concept (I): System and its Variables MM1: Baic Concept (I): Sytem and it Variable A ytem i a collection of component which are coordinated together to perform a function Sytem interact with their environment. The interaction i defined in

More information

THE PARAMETERIZATION OF ALL TWO-DEGREES-OF-FREEDOM SEMISTRONGLY STABILIZING CONTROLLERS. Tatsuya Hoshikawa, Kou Yamada and Yuko Tatsumi

THE PARAMETERIZATION OF ALL TWO-DEGREES-OF-FREEDOM SEMISTRONGLY STABILIZING CONTROLLERS. Tatsuya Hoshikawa, Kou Yamada and Yuko Tatsumi International Journal of Innovative Computing, Information Control ICIC International c 206 ISSN 349-498 Volume 2, Number 2, April 206 pp. 357 370 THE PARAMETERIZATION OF ALL TWO-DEGREES-OF-FREEDOM SEMISTRONGLY

More information

Real-time identification of sliding friction using LabVIEW FPGA

Real-time identification of sliding friction using LabVIEW FPGA Clemon Univerity TigerPrint Publication Automotive Engineering 6-26 Real-time identification of liding friction uing LabVIEW FPGA Laine Mear Clemon Univerity, mear@clemon.edu Jeannie S. Falcon IEEE Thoma

More information

Use of MATLAB Environment for Simulation and Control of CSTR

Use of MATLAB Environment for Simulation and Control of CSTR INERNAIONAL JOURNAL OF MAHEMAICS AND COMPUERS IN SIMULAION Ue of MALAB Environment for Simulation and Control of CSR Jiri Vojteek, Petr Dotal Abtract hi contribution preent the uability of the mathematical

More information

DYNAMIC REDESIGN OF A FLOW CONTROL SERVO-VALVE USING A PRESSURE CONTROL PILOT

DYNAMIC REDESIGN OF A FLOW CONTROL SERVO-VALVE USING A PRESSURE CONTROL PILOT Proceeding of IMECE ASME International Mechanical Engineering Congre & Exhibition November -6,, New York, New York, USA IMECE/DSC-B- DYNAMIC REDESIGN OF A FLOW CONTROL SERVO-VALVE USING A PRESSURE CONTROL

More information

EXTENDED STABILITY MARGINS ON CONTROLLER DESIGN FOR NONLINEAR INPUT DELAY SYSTEMS. Otto J. Roesch, Hubert Roth, Asif Iqbal

EXTENDED STABILITY MARGINS ON CONTROLLER DESIGN FOR NONLINEAR INPUT DELAY SYSTEMS. Otto J. Roesch, Hubert Roth, Asif Iqbal EXTENDED STABILITY MARGINS ON CONTROLLER DESIGN FOR NONLINEAR INPUT DELAY SYSTEMS Otto J. Roech, Hubert Roth, Aif Iqbal Intitute of Automatic Control Engineering Univerity Siegen, Germany {otto.roech,

More information

SMALL-SIGNAL STABILITY ASSESSMENT OF THE EUROPEAN POWER SYSTEM BASED ON ADVANCED NEURAL NETWORK METHOD

SMALL-SIGNAL STABILITY ASSESSMENT OF THE EUROPEAN POWER SYSTEM BASED ON ADVANCED NEURAL NETWORK METHOD SMALL-SIGNAL STABILITY ASSESSMENT OF THE EUROPEAN POWER SYSTEM BASED ON ADVANCED NEURAL NETWORK METHOD S.P. Teeuwen, I. Erlich U. Bachmann Univerity of Duiburg, Germany Department of Electrical Power Sytem

More information

Lecture Notes II. As the reactor is well-mixed, the outlet stream concentration and temperature are identical with those in the tank.

Lecture Notes II. As the reactor is well-mixed, the outlet stream concentration and temperature are identical with those in the tank. Lecture Note II Example 6 Continuou Stirred-Tank Reactor (CSTR) Chemical reactor together with ma tranfer procee contitute an important part of chemical technologie. From a control point of view, reactor

More information

The Root Locus Method

The Root Locus Method The Root Locu Method MEM 355 Performance Enhancement of Dynamical Sytem Harry G. Kwatny Department of Mechanical Engineering & Mechanic Drexel Univerity Outline The root locu method wa introduced by Evan

More information

Then C pid (s) S h -stabilizes G(s) if and only if Ĉpid(ŝ) S 0 - stabilizes Ĝ(ŝ). For any ρ R +, an RCF of Ĉ pid (ŝ) is given by

Then C pid (s) S h -stabilizes G(s) if and only if Ĉpid(ŝ) S 0 - stabilizes Ĝ(ŝ). For any ρ R +, an RCF of Ĉ pid (ŝ) is given by 9 American Control Conference Hyatt Regency Riverfront, St. Loui, MO, USA June -, 9 WeC5.5 PID Controller Synthei with Shifted Axi Pole Aignment for a Cla of MIMO Sytem A. N. Gündeş and T. S. Chang Abtract

More information

MEM 355 Performance Enhancement of Dynamical Systems Root Locus Analysis

MEM 355 Performance Enhancement of Dynamical Systems Root Locus Analysis MEM 355 Performance Enhancement of Dynamical Sytem Root Locu Analyi Harry G. Kwatny Department of Mechanical Engineering & Mechanic Drexel Univerity Outline The root locu method wa introduced by Evan in

More information

Longitudinal automatic control system for a light weight aircraft

Longitudinal automatic control system for a light weight aircraft Longitudinal automatic control ytem for a light eight aircraft Critian VIDAN*,, Silviu Ionut BADEA *Correponding author Military echnical Academy, Faculty of Mechatronic and Integrated Armament Sytem,

More information

MRAC + H Fault Tolerant Control for Linear Parameter Varying Systems

MRAC + H Fault Tolerant Control for Linear Parameter Varying Systems Conference on Control and Tolerant Sytem Nice, France, October 68, WeA4. MRAC + H Tolerant Control for Linear Parameter Varying Sytem Adriana VargaMartínez, Vicenç Puig, Lui E. GarzaCatañón and Ruben MoraleMenendez

More information

A Simple Approach to Synthesizing Naïve Quantized Control for Reference Tracking

A Simple Approach to Synthesizing Naïve Quantized Control for Reference Tracking A Simple Approach to Syntheizing Naïve Quantized Control for Reference Tracking SHIANG-HUA YU Department of Electrical Engineering National Sun Yat-Sen Univerity 70 Lien-Hai Road, Kaohiung 804 TAIAN Abtract:

More information

THE IDENTIFICATION OF THE OPERATING REGIMES OF THE CONTROLLERS BY THE HELP OF THE PHASE TRAJECTORY

THE IDENTIFICATION OF THE OPERATING REGIMES OF THE CONTROLLERS BY THE HELP OF THE PHASE TRAJECTORY Mariu M. B LA Aurel Vlaicu Univerity of Arad, Engineering Faculty Bd. Revolu iei nr. 77, 3030, Arad, Romania, E-mail: mariu.bala@ieee.org THE IDENTIFICATION OF THE OPERATING REGIMES OF THE CONTROLLERS

More information

Chapter #4 EEE8013. Linear Controller Design and State Space Analysis. Design of control system in state space using Matlab

Chapter #4 EEE8013. Linear Controller Design and State Space Analysis. Design of control system in state space using Matlab EEE83 hapter #4 EEE83 Linear ontroller Deign and State Space nalyi Deign of control ytem in tate pace uing Matlab. ontrollabilty and Obervability.... State Feedback ontrol... 5 3. Linear Quadratic Regulator

More information

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions Lecture 8. PID control. The role of P, I, and D action 2. PID tuning Indutrial proce control (92... today) Feedback control i ued to improve the proce performance: tatic performance: for contant reference,

More information

A PLC BASED MIMO PID CONTROLLER FOR MULTIVARIABLE INDUSTRIAL PROCESSES

A PLC BASED MIMO PID CONTROLLER FOR MULTIVARIABLE INDUSTRIAL PROCESSES ABCM Sympoium Serie in Mechatronic - Vol. 3 - pp.87-96 Copyright c 8 by ABCM A PLC BASE MIMO PI CONOLLE FO MULIVAIABLE INUSIAL POCESSES Joé Maria Galvez, jmgalvez@ufmg.br epartment of Mechanical Engineering

More information

ECE-320 Linear Control Systems. Spring 2014, Exam 1. No calculators or computers allowed, you may leave your answers as fractions.

ECE-320 Linear Control Systems. Spring 2014, Exam 1. No calculators or computers allowed, you may leave your answers as fractions. ECE-0 Linear Control Sytem Spring 04, Exam No calculator or computer allowed, you may leave your anwer a fraction. All problem are worth point unle noted otherwie. Total /00 Problem - refer to the unit

More information

Trajectory Planning and Feedforward Design for High Performance Motion Systems

Trajectory Planning and Feedforward Design for High Performance Motion Systems Trajectory Planning and Feedforward Deign for High Performance Motion Sytem Paul Lambrecht, Matthij Boerlage, Maarten Steinbuch Faculty of Mechanical Engineering, Control Sytem Technology Group Eindhoven

More information

5.5 Application of Frequency Response: Signal Filters

5.5 Application of Frequency Response: Signal Filters 44 Dynamic Sytem Second order lowpa filter having tranfer function H()=H ()H () u H () H () y Firt order lowpa filter Figure 5.5: Contruction of a econd order low-pa filter by combining two firt order

More information

Control Systems Analysis and Design by the Root-Locus Method

Control Systems Analysis and Design by the Root-Locus Method 6 Control Sytem Analyi and Deign by the Root-Locu Method 6 1 INTRODUCTION The baic characteritic of the tranient repone of a cloed-loop ytem i cloely related to the location of the cloed-loop pole. If

More information

Loss Less Image firmness comparision by DPCM and DPCM with LMS Algorithm

Loss Less Image firmness comparision by DPCM and DPCM with LMS Algorithm Lo Le Image firmne compariion by DPCM and DPCM with LMS Algorithm Pramod Kumar Rajput 1 and Brijendra Mihra 2 1,2 Department of Electronic & Communication, Nagaji Intitute of Technology and Management

More information

Modelling and Simulation Study on Fractional and Integer Order PI Controller for a SISO Process

Modelling and Simulation Study on Fractional and Integer Order PI Controller for a SISO Process International Journal of Science, Engineering and Technology Reearch (IJSETR), Volume 3, Iue 3, March 2014 Modelling and Simulation Study on Fractional and Integer Order PI Controller for a SISO Proce

More information

HOMEWORK ASSIGNMENT #2

HOMEWORK ASSIGNMENT #2 Texa A&M Univerity Electrical Engineering Department ELEN Integrated Active Filter Deign Methodologie Alberto Valde-Garcia TAMU ID# 000 17 September 0, 001 HOMEWORK ASSIGNMENT # PROBLEM 1 Obtain at leat

More information

Jan Purczyński, Kamila Bednarz-Okrzyńska Estimation of the shape parameter of GED distribution for a small sample size

Jan Purczyński, Kamila Bednarz-Okrzyńska Estimation of the shape parameter of GED distribution for a small sample size Jan Purczyńki, Kamila Bednarz-Okrzyńka Etimation of the hape parameter of GED ditribution for a mall ample ize Folia Oeconomica Stetinenia 4()/, 35-46 04 Folia Oeconomica Stetinenia DOI: 0.478/foli-04-003

More information

An Approach to Design MIMO FO Controllers for Unstable Nonlinear Plants

An Approach to Design MIMO FO Controllers for Unstable Nonlinear Plants 338 IEEE/CAA JOURAL OF AUTOMATICA SIICA VOL. 3 O. 3 JULY 26 An Approach to Deign MIMO FO Controller for Untable onlinear Plant Arturo Roja-Moreno Senior Member IEEE Abtract Thi paper develop an approach

More information

Sliding Mode Control of a Dual-Fuel System Internal Combustion Engine

Sliding Mode Control of a Dual-Fuel System Internal Combustion Engine Proceeding of the ASME 9 Dynamic Sytem and Control Conference DSCC9 October -4, 9, Hollywood, California, USA DSCC9-59 Control of a Dual-Fuel Sytem Internal Combution Engine Stephen Pace Department of

More information

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004 ME 375 FINAL EXAM SOLUTIONS Friday December 7, 004 Diviion Adam 0:30 / Yao :30 (circle one) Name Intruction () Thi i a cloed book eamination, but you are allowed three 8.5 crib heet. () You have two hour

More information

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine?

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine? A 2.0 Introduction In the lat et of note, we developed a model of the peed governing mechanim, which i given below: xˆ K ( Pˆ ˆ) E () In thee note, we want to extend thi model o that it relate the actual

More information

A VIBRATION ISOLATION SYSTEM USING STIFFNESS VARIATION CAPABILITY OF ZERO-POWER CONTROL

A VIBRATION ISOLATION SYSTEM USING STIFFNESS VARIATION CAPABILITY OF ZERO-POWER CONTROL Proceeding of the International Conference on Mechanical Engineering 009 (ICME009) 6-8 December 009, Dhaka, Bangladeh ICME09-AM-0 A VIBRATION ISOLATION SYSTEM USING STIFFNESS VARIATION CAPABILITY OF ZERO-POWER

More information

The Hassenpflug Matrix Tensor Notation

The Hassenpflug Matrix Tensor Notation The Haenpflug Matrix Tenor Notation D.N.J. El Dept of Mech Mechatron Eng Univ of Stellenboch, South Africa e-mail: dnjel@un.ac.za 2009/09/01 Abtract Thi i a ample document to illutrate the typeetting of

More information

J. Electrical Systems 8-1 (2012): Regular paper

J. Electrical Systems 8-1 (2012): Regular paper K.R.M. Vijaya Chandrakala S. Balamurugan K. Sankaranarayanan J. Electrical Sytem 8- (22): 85-94 Regular paper Damping of Tie-Line Power Ocillation in Interconnected Power Sytem uing Variable Structure

More information

Hybrid Projective Dislocated Synchronization of Liu Chaotic System Based on Parameters Identification

Hybrid Projective Dislocated Synchronization of Liu Chaotic System Based on Parameters Identification www.ccenet.org/ma Modern Applied Science Vol. 6, No. ; February Hybrid Projective Dilocated Synchronization of Liu Chaotic Sytem Baed on Parameter Identification Yanfei Chen College of Science, Guilin

More information

ABSTRACT- In this paper, a Shunt active power filter (SAPF) is developed without considering any harmonic detection

ABSTRACT- In this paper, a Shunt active power filter (SAPF) is developed without considering any harmonic detection Special Iue of International Journal of Advance in Applied Science and Engineering (IJAEAS) ISSN (P): 2348-1811; ISSN (E): 2348-182X Vol. 4, Iue 1,2, March 2017, 34-39 IIST SHUNT ACTIVE POWER FILTER PERFORMANCE

More information

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances ECE 350 Root Locu Deign Example Recall the imple crude ervo from lab G( ) 0 6.64 53.78 σ = = 3 23.473 PI To eliminate teady-tate error (for contant input) & perfect reection of contant diturbance Note:

More information

Exercises for lectures 19 Polynomial methods

Exercises for lectures 19 Polynomial methods Exercie for lecture 19 Polynomial method Michael Šebek Automatic control 016 15-4-17 Diviion of polynomial with and without remainder Polynomial form a circle, but not a body. (Circle alo form integer,

More information

Fractional-Order PI Speed Control of a Two-Mass Drive System with Elastic Coupling

Fractional-Order PI Speed Control of a Two-Mass Drive System with Elastic Coupling Fractional-Order PI Speed Control of a Two-Ma Drive Sytem with Elatic Coupling Mohammad Amin Rahimian, Mohammad Saleh Tavazoei, and Farzad Tahami Electrical Engineering Department, Sharif Univerity of

More information

Chapter 7. Root Locus Analysis

Chapter 7. Root Locus Analysis Chapter 7 Root Locu Analyi jw + KGH ( ) GH ( ) - K 0 z O 4 p 2 p 3 p Root Locu Analyi The root of the cloed-loop characteritic equation define the ytem characteritic repone. Their location in the complex

More information

SKEE 3143 CONTROL SYSTEM DESIGN. CHAPTER 3 Compensator Design Using the Bode Plot

SKEE 3143 CONTROL SYSTEM DESIGN. CHAPTER 3 Compensator Design Using the Bode Plot SKEE 3143 CONTROL SYSTEM DESIGN CHAPTER 3 Compenator Deign Uing the Bode Plot 1 Chapter Outline 3.1 Introduc4on Re- viit to Frequency Repone, ploang frequency repone, bode plot tability analyi. 3.2 Gain

More information

Feedback Control Systems (FCS)

Feedback Control Systems (FCS) Feedback Control Sytem (FCS) Lecture19-20 Routh-Herwitz Stability Criterion Dr. Imtiaz Huain email: imtiaz.huain@faculty.muet.edu.pk URL :http://imtiazhuainkalwar.weebly.com/ Stability of Higher Order

More information

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis EE/ME/AE34: Dynamical Sytem Chapter 8: Tranfer Function Analyi The Sytem Tranfer Function Conider the ytem decribed by the nth-order I/O eqn.: ( n) ( n 1) ( m) y + a y + + a y = b u + + bu n 1 0 m 0 Taking

More information

Reduced Order Model based Optimally Tuned Fractional Order PID controller for Pressurized Water Nuclear Reactor

Reduced Order Model based Optimally Tuned Fractional Order PID controller for Pressurized Water Nuclear Reactor Preprint of the rd IFAC Conference on Advance in Proportional- Integral-Derivative Control, Ghent, Belgium, May 9-11, 18 FrIS.1 Reduced Order Model baed Optimally Tuned Fractional Order PID controller

More information

Robust Mould Level Control

Robust Mould Level Control 5 American Control Conference June 8-1, 5. Portland, OR, USA ThA9.4 Robut Mould Level Control J. Schuurman, A. Kamperman, B. Middel, P.F.A van den Boch Abtract In the firt year of production ince, the

More information

Sensorless speed control including zero speed of non salient PM synchronous drives

Sensorless speed control including zero speed of non salient PM synchronous drives BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 54, No. 3, 2006 Senorle peed control including zero peed of non alient PM ynchronou drive H. RASMUSSEN Aalborg Univerity, Fredrik Bajer

More information

Lecture 8 - SISO Loop Design

Lecture 8 - SISO Loop Design Lecture 8 - SISO Loop Deign Deign approache, given pec Loophaping: in-band and out-of-band pec Fundamental deign limitation for the loop Gorinevky Control Engineering 8-1 Modern Control Theory Appy reult

More information