Risk Elicitation in Complex Systems: Application to Spacecraft Re-entry

Size: px
Start display at page:

Download "Risk Elicitation in Complex Systems: Application to Spacecraft Re-entry"

Transcription

1 Risk Elicitation in Complex Systems: Application to Spacecraft Re-entry Simon Wilson 1 Cristina De Persis 1 Irene Huertas 2 Guillermo Ortega 2 1 School of Computer Science and Statistics Trinity College Dublin 2 European Space Research and Technology Center ESA-Noordwijk 20th May 2016

2 The motivation

3 The motivation 5400 tonnes over the last 40 years estimated to have survived re-entry from orbit; No reported casualties; More than 50 debris objects recovered and documented.

4 The motivation Surviving fragments pose risk to people and property; Greatest risk is probably the regulatory effect on the industry if there were a fatality; Sophisticated deterministic models of re-entry exist, based on finite element approaches: No attempt to discuss uncertainties; Models fail in cases of a highly energetic break-up event; Number of re-entries, controlled and not controlled, is increasing: Seen as a way to control the space junk problem.

5 The general research question Implement and evaluate a statistical risk assessment model that can: Derive the probability for the top event (explosion); This will be based on a combination of expert opinion and (sparse) data; There is (and will only be) limited data; Diverse expert opinion (no one is an expert on everything); Access to experts is time-limited; May be large variations in conditions surrounding the event;

6 Stage 1: Model Explosion OR Chemical reaction propellant+air Chemical reaction between hypergolic propellants burst of a battery cells OR Slow release of propellant Simultaneous release of hypergolic propellants Sudden release of propellant OR OR Burst of a pressure vessels Valve leakage Tank destruction Pipe rupture Exothermal chemical reactions overpressure short-circuit overcharge overdischarge corrosion

7 Probabilistic fault tree Build a fault tree of events that lead to failure Assign a probability θ 1j to elementary events j = 1,..., N; Under assumption of independence, implies probability of intermediate and top events e.g. Prob(Solve release of propellant) [ = 1 (1 Prob(Valve leakage))(1 Prob(Tank destruction)) ] (1 Prob(Pipe rupture)) ; Model parameterised by the elementary event θ 1j probabilities only.

8 Stage 2: Elicitation Need a prior on the probability of each elementary event θ 1j ; Group these events by expert (or group of events); We discuss everything with respect to a nominal conditions; Time consuming and difficult process so: Ask experts to specify a probability distribution for one of the elementary events in their group.

9 The beta distribution Prob(THETA opinions) p(θ) = Γ(α + β) Γ(α) Γ(β) θα 1 (1 θ) β 1, Elicit values of α and β. 0 θ 1. THETA

10 Pairwise comparisons of event probabilities We use an idea from analytic hierarchy process to rank the θ 1j ; Experts are asked to specify based on their knowledge and experience if the occurrence of an event is: equally (=1), or moderately more (=3), or strongly more (=5), or very strongly (=7), or absolutely more (=9) probable than another; Can use AHP to map these to a weight for each event w j : Better than just using the raw comparison as a weight?

11 Mapping AHP weights to prior distributions We have one beta prior, say for event j p(θ 1j ); We have a weight for each event w j ; w j > w j event j more likely that event j so θ 1j > st θ 1j ; We take a high prior probability interval for θ 1j, say (θ L, θ U ) with P(θ L < θ 1j < θ U ) = 0.95; Create the equivalent interval for each θ 1j : w j w j { θ L < θ 1j < min 1, w } j θ U. w j Identify a beta distribution with these 95% probability limits.

12 Stage 3: Prediction A prior for each elementary event is assessed; Logic of fault tree gives P(top event) or any intermediate event as function of θ 1j ; Prior distribution of top event derived by simulation: Simulate sets of θ 1j from prior; For each set, derive P(top event) from fault tree logic.

13 Stage 4: Updating with Data From a particular re-entry: If the top event occurred, did not occur or was unobserved; Similarly for any intermediate event; Similarly for any elementary event; Likelihood is then probability of observing all of what we observed in terms of the θ i : Likelihood = Likelihood of observation of event Two cases: observed events 1 Data are observed under nominal conditions; 2 Date are observed under other (non-nominal) conditions. Principle: we always do inference for θ 1j s on the nominal conditions:

14 Nominal Likelihood Fault tree gives a causal relationship between events; Likelihood of an event is conditional on its parent events; We have a two stage procedure for determining the likelihood: 1 Work up the fault tree to the top event and logically deduce if any unobserved events must have occurred or not: e.g. if an unobserved event is an OR, and one parent is observed, then it must have occurred; 2 Work up the fault tree to the top event and evaluate the likelihood term for each observed node in the tree: e.g. if an observed event is an OR, and one parent is also observed, then it does not contribute to the likelihood;

15 Nominal Likelihood Relationship to parent events OR AND At least one parent observed to have occurred? All parents observed and all occurred? Likelihood (1) P(event occurs) = 1 NO YES YES NO All parents observed and all did not occur? Likelihood (1) At least one parent observed not to have occurred? Likelihood (2) P(event occurs) = 0 NO YES YES NO Likelihood (3) Likelihood (2) Likelihood (4)

16 Nominal Likelihood OR At least one parent observed to have occurred? Relationship to parent events AND All parents observed and all occurred? Likelihood (3) P(event occurs) = 1 (1 P(event j occurs)). j: unobserved or not deduced parent NO YES YES NO All parents observed and all did not occur? NO Likelihood (3) YES Likelihood (1) Likelihood (2) YES At least one parent observed not to have occurred? NO Likelihood (4) = Likelihood (4) P(event occurs) P(event j occurs). j: unobserved or not deduced parent

17 Non-nominal Likelihood We map data from non-nominal cases to a likelihood under the nominal case; We elicit relative risk for each elementary event probability in this case with the nominal case. θ 1j are weighted in the likelihood accordingly; Example: Expert weights the chance of elementary event j as moderately more likely in nominal case than the case in question; Each θ 1j in likelihood is replaced by θ 3 1j ; Intuition: seeing this happen once is like it happening 3 times under nominal conditions; This also permits a prediction of P(top event).

18 Posterior Not a binomial likelihood so beta prior not conjugate; We use importance sampling to generate samples from posterior of the θ 1j ; For high dimensional situations can use MCMC; Can obtain samples of posterior of P(top event) from samples of the θ 1j as before.

19 The entire procedure Construct fault tree INITIALISE MODEL Prior elicitation of elementary event probabilities in nominal case FOR EACH OCCURENCE Next event under nominal conditions? Elicit relative risk of elementary events Update posterior distribution of elementary event probabilities Prediction for Prob(top event) Observe data

20 Worked example fault tree

21 Worked example data AHP to get initial priors; Then data on 3 re-entries: 1 Nominal conditions, explosion not observed; 2 Nominal conditions, observe explosion, A 3 and A 4 ; 3 Non-nominal conditions, observe explosion and B 2. Relative risk for all C j is 1/5; Likelihoods are: 1 (1 θ 1j ), θ 1,A3 1 (1 θ 1,Dj ), 1 (1 θ1,c 5 j ). j j j

22 Worked example prior and posteriors for probabilities of elementary events

23 Worked example prior and posterior for probability of top event

24 Conclusion A procedure for producing a risk probability in a reasonably complex system; Tackled the challenges of doing this when: Data are sparse; Many experts and/or too much expert elicitation would be needed for the prior; Limited access to experts time; Conditions around event are important. Issues: All the usual ones to do with AHP (recall Fabrizio s tutorial); Sensitivity analysis; Fully probabilistic fault trees.

Domino Effect Modeling using Bayesian Network

Domino Effect Modeling using Bayesian Network Domino Effect Modeling using Bayesian Network Dr. Faisal Khan Associate Dean (Global Engagement) University of Tasmania, Australia Vale Research Chair Safety and Risk Engineering Memorial University, St.

More information

Beta statistics. Keywords. Bayes theorem. Bayes rule

Beta statistics. Keywords. Bayes theorem. Bayes rule Keywords Beta statistics Tommy Norberg tommy@chalmers.se Mathematical Sciences Chalmers University of Technology Gothenburg, SWEDEN Bayes s formula Prior density Likelihood Posterior density Conjugate

More information

A risk assessment tool for highly energetic break-up events during the atmospheric re-entry

A risk assessment tool for highly energetic break-up events during the atmospheric re-entry A risk assessment tool for highly energetic break-up events during the atmospheric re-entry A thesis submitted to the University of Dublin, Trinity College in partial fulfillment of the requirements for

More information

A BAYESIAN SOLUTION TO INCOMPLETENESS

A BAYESIAN SOLUTION TO INCOMPLETENESS A BAYESIAN SOLUTION TO INCOMPLETENESS IN PROBABILISTIC RISK ASSESSMENT 14th International Probabilistic Safety Assessment & Management Conference PSAM-14 September 17-21, 2018 Los Angeles, United States

More information

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio Estimation of reliability parameters from Experimental data (Parte 2) This lecture Life test (t 1,t 2,...,t n ) Estimate θ of f T t θ For example: λ of f T (t)= λe - λt Classical approach (frequentist

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University August 30, 2017 Today: Decision trees Overfitting The Big Picture Coming soon Probabilistic learning MLE,

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 4 Occam s Razor, Model Construction, and Directed Graphical Models https://people.orie.cornell.edu/andrew/orie6741 Cornell University September

More information

Introduction to Applied Bayesian Modeling. ICPSR Day 4

Introduction to Applied Bayesian Modeling. ICPSR Day 4 Introduction to Applied Bayesian Modeling ICPSR Day 4 Simple Priors Remember Bayes Law: Where P(A) is the prior probability of A Simple prior Recall the test for disease example where we specified the

More information

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017 Bayesian inference Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark April 10, 2017 1 / 22 Outline for today A genetic example Bayes theorem Examples Priors Posterior summaries

More information

Probabilistic Reasoning. (Mostly using Bayesian Networks)

Probabilistic Reasoning. (Mostly using Bayesian Networks) Probabilistic Reasoning (Mostly using Bayesian Networks) Introduction: Why probabilistic reasoning? The world is not deterministic. (Usually because information is limited.) Ways of coping with uncertainty

More information

Uncertainty of the Level 2 PSA for NPP Paks. Gábor Lajtha, VEIKI Institute for Electric Power Research, Budapest, Hungary

Uncertainty of the Level 2 PSA for NPP Paks. Gábor Lajtha, VEIKI Institute for Electric Power Research, Budapest, Hungary Uncertainty of the Level 2 PSA for NPP Paks Gábor Lajtha, VEIKI Institute for Electric Power Research, Budapest, Hungary Attila Bareith, Előd Holló, Zoltán Karsa, Péter Siklóssy, Zsolt Téchy VEIKI Institute

More information

Variability within multi-component systems. Bayesian inference in probabilistic risk assessment The current state of the art

Variability within multi-component systems. Bayesian inference in probabilistic risk assessment The current state of the art PhD seminar series Probabilistics in Engineering : g Bayesian networks and Bayesian hierarchical analysis in engeering g Conducted by Prof. Dr. Maes, Prof. Dr. Faber and Dr. Nishijima Variability within

More information

Bayes Nets. CS 188: Artificial Intelligence Fall Example: Alarm Network. Bayes Net Semantics. Building the (Entire) Joint. Size of a Bayes Net

Bayes Nets. CS 188: Artificial Intelligence Fall Example: Alarm Network. Bayes Net Semantics. Building the (Entire) Joint. Size of a Bayes Net CS 188: Artificial Intelligence Fall 2010 Lecture 15: ayes Nets II Independence 10/14/2010 an Klein UC erkeley A ayes net is an efficient encoding of a probabilistic model of a domain ayes Nets Questions

More information

Lecture 6: Graphical Models: Learning

Lecture 6: Graphical Models: Learning Lecture 6: Graphical Models: Learning 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering, University of Cambridge February 3rd, 2010 Ghahramani & Rasmussen (CUED)

More information

Treatment of Expert Opinion Diversity in Bayesian Belief Network Model for Nuclear Digital I&C Safety Software Reliability Assessment

Treatment of Expert Opinion Diversity in Bayesian Belief Network Model for Nuclear Digital I&C Safety Software Reliability Assessment Treatment of Expert Opinion Diversity in Bayesian Belief Network Model for Nuclear Digital I&C Safety Software Reliability Assessment 20 International Topical Meeting on Probabilistic Safety Assessment

More information

Non-Parametric Bayes

Non-Parametric Bayes Non-Parametric Bayes Mark Schmidt UBC Machine Learning Reading Group January 2016 Current Hot Topics in Machine Learning Bayesian learning includes: Gaussian processes. Approximate inference. Bayesian

More information

Lecture 10: Introduction to reasoning under uncertainty. Uncertainty

Lecture 10: Introduction to reasoning under uncertainty. Uncertainty Lecture 10: Introduction to reasoning under uncertainty Introduction to reasoning under uncertainty Review of probability Axioms and inference Conditional probability Probability distributions COMP-424,

More information

Machine Learning Summer School

Machine Learning Summer School Machine Learning Summer School Lecture 3: Learning parameters and structure Zoubin Ghahramani zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ Department of Engineering University of Cambridge,

More information

Bayesian Networks in Educational Assessment Tutorial

Bayesian Networks in Educational Assessment Tutorial Bayesian Networks in Educational Assessment Tutorial Session V: Refining Bayes Nets with Data Russell Almond, Bob Mislevy, David Williamson and Duanli Yan Unpublished work 2002-2014 ETS 1 Agenda SESSION

More information

estec ESA Space Debris Mitigation Compliance Verification Guidelines

estec ESA Space Debris Mitigation Compliance Verification Guidelines estec European Space Research and Technology Centre Keplerlaan 1 2201 AZ Noordwijk The Netherlands T +31 (0)71 565 6565 F +31 (0)71 565 6040 www.esa.int ESA Space Debris Mitigation Compliance Verification

More information

Causal & Frequency Analysis

Causal & Frequency Analysis Causal & Frequency Analysis Arshad Ahmad arshad@utm.my Fishbone Diagram 2 The Cause and Effect (CE) Diagram (Ishikawa Fishbone) Created in 1943 by Professor Kaoru Ishikawa of Tokyo University Used to investigate

More information

Bayesian Networks Basic and simple graphs

Bayesian Networks Basic and simple graphs Bayesian Networks Basic and simple graphs Ullrika Sahlin, Centre of Environmental and Climate Research Lund University, Sweden Ullrika.Sahlin@cec.lu.se http://www.cec.lu.se/ullrika-sahlin Bayesian [Belief]

More information

Hierarchical Models & Bayesian Model Selection

Hierarchical Models & Bayesian Model Selection Hierarchical Models & Bayesian Model Selection Geoffrey Roeder Departments of Computer Science and Statistics University of British Columbia Jan. 20, 2016 Contact information Please report any typos or

More information

PHA, MOC and Incident Investigation in Partnership: A Catalyst for Process Safety Excellence

PHA, MOC and Incident Investigation in Partnership: A Catalyst for Process Safety Excellence PHA, MOC and Incident Investigation in Partnership: A Catalyst for Process Safety Excellence John Paul Gathright INVISTA S.à r.l. 4123 East 37 th St. N. Wichita, KS, 67220 U.S.A. Paul.gathright@invista.com

More information

Computational Perception. Bayesian Inference

Computational Perception. Bayesian Inference Computational Perception 15-485/785 January 24, 2008 Bayesian Inference The process of probabilistic inference 1. define model of problem 2. derive posterior distributions and estimators 3. estimate parameters

More information

Bayesian Inference. p(y)

Bayesian Inference. p(y) Bayesian Inference There are different ways to interpret a probability statement in a real world setting. Frequentist interpretations of probability apply to situations that can be repeated many times,

More information

ANALYSIS OF INDEPENDENT PROTECTION LAYERS AND SAFETY INSTRUMENTED SYSTEM FOR OIL GAS SEPARATOR USING BAYESIAN METHODS

ANALYSIS OF INDEPENDENT PROTECTION LAYERS AND SAFETY INSTRUMENTED SYSTEM FOR OIL GAS SEPARATOR USING BAYESIAN METHODS ANALYSIS OF INDEPENDENT PROTECTION LAYERS AND SAFETY INSTRUMENTED SYSTEM FOR OIL GAS SEPARATOR USING BAYESIAN METHODS G. Unnikrishnan 1 *, Shrihari 2, Nihal A. Siddiqui 3 1 Department of Health, Safety

More information

ECE521 W17 Tutorial 6. Min Bai and Yuhuai (Tony) Wu

ECE521 W17 Tutorial 6. Min Bai and Yuhuai (Tony) Wu ECE521 W17 Tutorial 6 Min Bai and Yuhuai (Tony) Wu Agenda knn and PCA Bayesian Inference k-means Technique for clustering Unsupervised pattern and grouping discovery Class prediction Outlier detection

More information

Announcements. CS 188: Artificial Intelligence Fall Example Bayes Net. Bayes Nets. Example: Traffic. Bayes Net Semantics

Announcements. CS 188: Artificial Intelligence Fall Example Bayes Net. Bayes Nets. Example: Traffic. Bayes Net Semantics CS 188: Artificial Intelligence Fall 2008 ecture 15: ayes Nets II 10/16/2008 Announcements Midterm 10/21: see prep page on web Split rooms! ast names A-J go to 141 McCone, K- to 145 winelle One page note

More information

Special Topic: Bayesian Finite Population Survey Sampling

Special Topic: Bayesian Finite Population Survey Sampling Special Topic: Bayesian Finite Population Survey Sampling Sudipto Banerjee Division of Biostatistics School of Public Health University of Minnesota April 2, 2008 1 Special Topic Overview Scientific survey

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 11 Maximum Likelihood as Bayesian Inference Maximum A Posteriori Bayesian Gaussian Estimation Why Maximum Likelihood? So far, assumed max (log) likelihood

More information

Simple Counter-terrorism Decision

Simple Counter-terrorism Decision A Comparative Analysis of PRA and Intelligent Adversary Methods for Counterterrorism Risk Management Greg Parnell US Military Academy Jason R. W. Merrick Virginia Commonwealth University Simple Counter-terrorism

More information

Intro to Bayesian Methods

Intro to Bayesian Methods Intro to Bayesian Methods Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601 Lecture 1 1 Course Webpage Syllabus LaTeX reference manual R markdown reference manual Please come to office

More information

A Probabilistic Framework for solving Inverse Problems. Lambros S. Katafygiotis, Ph.D.

A Probabilistic Framework for solving Inverse Problems. Lambros S. Katafygiotis, Ph.D. A Probabilistic Framework for solving Inverse Problems Lambros S. Katafygiotis, Ph.D. OUTLINE Introduction to basic concepts of Bayesian Statistics Inverse Problems in Civil Engineering Probabilistic Model

More information

Machine Learning

Machine Learning Machine Learning 10-701 Tom M. Mitchell Machine Learning Department Carnegie Mellon University January 13, 2011 Today: The Big Picture Overfitting Review: probability Readings: Decision trees, overfiting

More information

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 16, 6/1/2005 University of Washington, Department of Electrical Engineering Spring 2005 Instructor: Professor Jeff A. Bilmes Uncertainty & Bayesian Networks

More information

Bayesian Graphical Models

Bayesian Graphical Models Graphical Models and Inference, Lecture 16, Michaelmas Term 2009 December 4, 2009 Parameter θ, data X = x, likelihood L(θ x) p(x θ). Express knowledge about θ through prior distribution π on θ. Inference

More information

Reliability of Technical Systems

Reliability of Technical Systems Reliability of Technical Systems Main Topics 1. Short Introduction, Reliability Parameters: Failure Rate, Failure Probability, etc. 2. Some Important Reliability Distributions 3. Component Reliability

More information

Inference for a Population Proportion

Inference for a Population Proportion Al Nosedal. University of Toronto. November 11, 2015 Statistical inference is drawing conclusions about an entire population based on data in a sample drawn from that population. From both frequentist

More information

Case Studies for Uncertainty Quantification of a High-fidelity Spacecraft Oriented Break-up Tool. Bent Fritsche, HTG Stijn Lemmens, ESA

Case Studies for Uncertainty Quantification of a High-fidelity Spacecraft Oriented Break-up Tool. Bent Fritsche, HTG Stijn Lemmens, ESA Case Studies for Uncertainty Quantification of a High-fidelity Spacecraft Oriented Break-up Tool Bent Fritsche, HTG Stijn Lemmens, ESA 8th European Symposium on Aerothermodynamics for Space Vehicles Lisbon,

More information

Seminar on Case Studies in Operations Research (Mat )

Seminar on Case Studies in Operations Research (Mat ) Seminar on Case Studies in Operations Research (Mat-2.4177) Evidential Uncertainties in Reliability Assessment - Study of Non-Destructive Testing of Final Disposal Canisters VTT, Posiva Backlund, Ville-Pekka

More information

Readings: K&F: 16.3, 16.4, Graphical Models Carlos Guestrin Carnegie Mellon University October 6 th, 2008

Readings: K&F: 16.3, 16.4, Graphical Models Carlos Guestrin Carnegie Mellon University October 6 th, 2008 Readings: K&F: 16.3, 16.4, 17.3 Bayesian Param. Learning Bayesian Structure Learning Graphical Models 10708 Carlos Guestrin Carnegie Mellon University October 6 th, 2008 10-708 Carlos Guestrin 2006-2008

More information

Bayesian networks for multilevel system reliability

Bayesian networks for multilevel system reliability Reliability Engineering and System Safety 92 (2007) 1413 1420 www.elsevier.com/locate/ress Bayesian networks for multilevel system reliability Alyson G. Wilson a,,1, Aparna V. Huzurbazar b a Statistical

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

Recall from last time: Conditional probabilities. Lecture 2: Belief (Bayesian) networks. Bayes ball. Example (continued) Example: Inference problem

Recall from last time: Conditional probabilities. Lecture 2: Belief (Bayesian) networks. Bayes ball. Example (continued) Example: Inference problem Recall from last time: Conditional probabilities Our probabilistic models will compute and manipulate conditional probabilities. Given two random variables X, Y, we denote by Lecture 2: Belief (Bayesian)

More information

Bayesian statistics. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Bayesian statistics. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Bayesian statistics DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall15 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist statistics

More information

Lab 3 Parallel Circuits

Lab 3 Parallel Circuits Lab 3 Parallel Circuits!!! RED THIS PGE!!!! When a wire or light bulb is connected across a battery, we have evidence that something is happening in the circuit. The wire gets warm. The bulb glows. In

More information

Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models

Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models Matthew S. Johnson New York ASA Chapter Workshop CUNY Graduate Center New York, NY hspace1in December 17, 2009 December

More information

5.3 METABOLIC NETWORKS 193. P (x i P a (x i )) (5.30) i=1

5.3 METABOLIC NETWORKS 193. P (x i P a (x i )) (5.30) i=1 5.3 METABOLIC NETWORKS 193 5.3 Metabolic Networks 5.4 Bayesian Networks Let G = (V, E) be a directed acyclic graph. We assume that the vertices i V (1 i n) represent for example genes and correspond to

More information

Particle Filtering a brief introductory tutorial. Frank Wood Gatsby, August 2007

Particle Filtering a brief introductory tutorial. Frank Wood Gatsby, August 2007 Particle Filtering a brief introductory tutorial Frank Wood Gatsby, August 2007 Problem: Target Tracking A ballistic projectile has been launched in our direction and may or may not land near enough to

More information

Robotics 2 Data Association. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard

Robotics 2 Data Association. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard Robotics 2 Data Association Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard Data Association Data association is the process of associating uncertain measurements to known tracks. Problem

More information

Announcements. CS 188: Artificial Intelligence Fall Causality? Example: Traffic. Topology Limits Distributions. Example: Reverse Traffic

Announcements. CS 188: Artificial Intelligence Fall Causality? Example: Traffic. Topology Limits Distributions. Example: Reverse Traffic CS 188: Artificial Intelligence Fall 2008 Lecture 16: Bayes Nets III 10/23/2008 Announcements Midterms graded, up on glookup, back Tuesday W4 also graded, back in sections / box Past homeworks in return

More information

STAT J535: Introduction

STAT J535: Introduction David B. Hitchcock E-Mail: hitchcock@stat.sc.edu Spring 2012 Chapter 1: Introduction to Bayesian Data Analysis Bayesian statistical inference uses Bayes Law (Bayes Theorem) to combine prior information

More information

Sequential Monte Carlo and Particle Filtering. Frank Wood Gatsby, November 2007

Sequential Monte Carlo and Particle Filtering. Frank Wood Gatsby, November 2007 Sequential Monte Carlo and Particle Filtering Frank Wood Gatsby, November 2007 Importance Sampling Recall: Let s say that we want to compute some expectation (integral) E p [f] = p(x)f(x)dx and we remember

More information

Space Debris Re-entries and Aviation Safety

Space Debris Re-entries and Aviation Safety IAASS Space Debris Re-entries and Aviation Safety By Tommaso Sgobba IAASS President (iaass.president@gmail.com) International Association for the Advancement of Space Safety 1 Space debris as re-entry

More information

Contents. Decision Making under Uncertainty 1. Meanings of uncertainty. Classical interpretation

Contents. Decision Making under Uncertainty 1. Meanings of uncertainty. Classical interpretation Contents Decision Making under Uncertainty 1 elearning resources Prof. Ahti Salo Helsinki University of Technology http://www.dm.hut.fi Meanings of uncertainty Interpretations of probability Biases in

More information

Bayesian (conditionally) conjugate inference for discrete data models. Jon Forster (University of Southampton)

Bayesian (conditionally) conjugate inference for discrete data models. Jon Forster (University of Southampton) Bayesian (conditionally) conjugate inference for discrete data models Jon Forster (University of Southampton) with Mark Grigsby (Procter and Gamble?) Emily Webb (Institute of Cancer Research) Table 1:

More information

Bayes theorem and its application to nuclear power plant safety

Bayes theorem and its application to nuclear power plant safety Bayes theorem and its application to nuclear power plant safety MATSUOKA Takeshi 1, 1 Collage of Nuclear Science and Technology, Harbin Engineering University No145-1, Nantong Street, Nangang District,

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Bayes Nets: Independence Instructor: Alan Ritter Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

More information

Click Prediction and Preference Ranking of RSS Feeds

Click Prediction and Preference Ranking of RSS Feeds Click Prediction and Preference Ranking of RSS Feeds 1 Introduction December 11, 2009 Steven Wu RSS (Really Simple Syndication) is a family of data formats used to publish frequently updated works. RSS

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Parameter Estimation December 14, 2015 Overview 1 Motivation 2 3 4 What did we have so far? 1 Representations: how do we model the problem? (directed/undirected). 2 Inference: given a model and partially

More information

ebay/google short course: Problem set 2

ebay/google short course: Problem set 2 18 Jan 013 ebay/google short course: Problem set 1. (the Echange Parado) You are playing the following game against an opponent, with a referee also taking part. The referee has two envelopes (numbered

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics March 14, 2018 CS 361: Probability & Statistics Inference The prior From Bayes rule, we know that we can express our function of interest as Likelihood Prior Posterior The right hand side contains the

More information

Using Probability to do Statistics.

Using Probability to do Statistics. Al Nosedal. University of Toronto. November 5, 2015 Milk and honey and hemoglobin Animal experiments suggested that honey in a diet might raise hemoglobin level. A researcher designed a study involving

More information

Bayesian network modeling. 1

Bayesian network modeling.  1 Bayesian network modeling http://springuniversity.bc3research.org/ 1 Probabilistic vs. deterministic modeling approaches Probabilistic Explanatory power (e.g., r 2 ) Explanation why Based on inductive

More information

Other Noninformative Priors

Other Noninformative Priors Other Noninformative Priors Other methods for noninformative priors include Bernardo s reference prior, which seeks a prior that will maximize the discrepancy between the prior and the posterior and minimize

More information

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 Nasser Sadeghkhani a.sadeghkhani@queensu.ca There are two main schools to statistical inference: 1-frequentist

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Introduction to Probabilistic Machine Learning

Introduction to Probabilistic Machine Learning Introduction to Probabilistic Machine Learning Piyush Rai Dept. of CSE, IIT Kanpur (Mini-course 1) Nov 03, 2015 Piyush Rai (IIT Kanpur) Introduction to Probabilistic Machine Learning 1 Machine Learning

More information

Introduction to Bayesian Statistics. James Swain University of Alabama in Huntsville ISEEM Department

Introduction to Bayesian Statistics. James Swain University of Alabama in Huntsville ISEEM Department Introduction to Bayesian Statistics James Swain University of Alabama in Huntsville ISEEM Department Author Introduction James J. Swain is Professor of Industrial and Systems Engineering Management at

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

Homework 6: Image Completion using Mixture of Bernoullis

Homework 6: Image Completion using Mixture of Bernoullis Homework 6: Image Completion using Mixture of Bernoullis Deadline: Wednesday, Nov. 21, at 11:59pm Submission: You must submit two files through MarkUs 1 : 1. a PDF file containing your writeup, titled

More information

Part I. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS

Part I. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Part I C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Probabilistic Graphical Models Graphical representation of a probabilistic model Each variable corresponds to a

More information

Learning Energy-Based Models of High-Dimensional Data

Learning Energy-Based Models of High-Dimensional Data Learning Energy-Based Models of High-Dimensional Data Geoffrey Hinton Max Welling Yee-Whye Teh Simon Osindero www.cs.toronto.edu/~hinton/energybasedmodelsweb.htm Discovering causal structure as a goal

More information

Modeling Environment

Modeling Environment Topic Model Modeling Environment What does it mean to understand/ your environment? Ability to predict Two approaches to ing environment of words and text Latent Semantic Analysis (LSA) Topic Model LSA

More information

Clustering bi-partite networks using collapsed latent block models

Clustering bi-partite networks using collapsed latent block models Clustering bi-partite networks using collapsed latent block models Jason Wyse, Nial Friel & Pierre Latouche Insight at UCD Laboratoire SAMM, Université Paris 1 Mail: jason.wyse@ucd.ie Insight Latent Space

More information

CS540 Machine learning L9 Bayesian statistics

CS540 Machine learning L9 Bayesian statistics CS540 Machine learning L9 Bayesian statistics 1 Last time Naïve Bayes Beta-Bernoulli 2 Outline Bayesian concept learning Beta-Bernoulli model (review) Dirichlet-multinomial model Credible intervals 3 Bayesian

More information

Related Concepts: Lecture 9 SEM, Statistical Modeling, AI, and Data Mining. I. Terminology of SEM

Related Concepts: Lecture 9 SEM, Statistical Modeling, AI, and Data Mining. I. Terminology of SEM Lecture 9 SEM, Statistical Modeling, AI, and Data Mining I. Terminology of SEM Related Concepts: Causal Modeling Path Analysis Structural Equation Modeling Latent variables (Factors measurable, but thru

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Infinite Feature Models: The Indian Buffet Process Eric Xing Lecture 21, April 2, 214 Acknowledgement: slides first drafted by Sinead Williamson

More information

PHASES OF STATISTICAL ANALYSIS 1. Initial Data Manipulation Assembling data Checks of data quality - graphical and numeric

PHASES OF STATISTICAL ANALYSIS 1. Initial Data Manipulation Assembling data Checks of data quality - graphical and numeric PHASES OF STATISTICAL ANALYSIS 1. Initial Data Manipulation Assembling data Checks of data quality - graphical and numeric 2. Preliminary Analysis: Clarify Directions for Analysis Identifying Data Structure:

More information

Introduction into Bayesian statistics

Introduction into Bayesian statistics Introduction into Bayesian statistics Maxim Kochurov EF MSU November 15, 2016 Maxim Kochurov Introduction into Bayesian statistics EF MSU 1 / 7 Content 1 Framework Notations 2 Difference Bayesians vs Frequentists

More information

Bayesian GLMs and Metropolis-Hastings Algorithm

Bayesian GLMs and Metropolis-Hastings Algorithm Bayesian GLMs and Metropolis-Hastings Algorithm We have seen that with conjugate or semi-conjugate prior distributions the Gibbs sampler can be used to sample from the posterior distribution. In situations,

More information

Introduction to Bayesian inference

Introduction to Bayesian inference Introduction to Bayesian inference Thomas Alexander Brouwer University of Cambridge tab43@cam.ac.uk 17 November 2015 Probabilistic models Describe how data was generated using probability distributions

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

The Monte Carlo Method: Bayesian Networks

The Monte Carlo Method: Bayesian Networks The Method: Bayesian Networks Dieter W. Heermann Methods 2009 Dieter W. Heermann ( Methods)The Method: Bayesian Networks 2009 1 / 18 Outline 1 Bayesian Networks 2 Gene Expression Data 3 Bayesian Networks

More information

Bayes Nets III: Inference

Bayes Nets III: Inference 1 Hal Daumé III (me@hal3.name) Bayes Nets III: Inference Hal Daumé III Computer Science University of Maryland me@hal3.name CS 421: Introduction to Artificial Intelligence 10 Apr 2012 Many slides courtesy

More information

Classical and Bayesian inference

Classical and Bayesian inference Classical and Bayesian inference AMS 132 January 18, 2018 Claudia Wehrhahn (UCSC) Classical and Bayesian inference January 18, 2018 1 / 9 Sampling from a Bernoulli Distribution Theorem (Beta-Bernoulli

More information

Beyond Uniform Priors in Bayesian Network Structure Learning

Beyond Uniform Priors in Bayesian Network Structure Learning Beyond Uniform Priors in Bayesian Network Structure Learning (for Discrete Bayesian Networks) scutari@stats.ox.ac.uk Department of Statistics April 5, 2017 Bayesian Network Structure Learning Learning

More information

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4 ECE52 Tutorial Topic Review ECE52 Winter 206 Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides ECE52 Tutorial ECE52 Winter 206 Credits to Alireza / 4 Outline K-means, PCA 2 Bayesian

More information

Lecture 3a: Dirichlet processes

Lecture 3a: Dirichlet processes Lecture 3a: Dirichlet processes Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London c.archambeau@cs.ucl.ac.uk Advanced Topics

More information

An Empirical-Bayes Score for Discrete Bayesian Networks

An Empirical-Bayes Score for Discrete Bayesian Networks An Empirical-Bayes Score for Discrete Bayesian Networks scutari@stats.ox.ac.uk Department of Statistics September 8, 2016 Bayesian Network Structure Learning Learning a BN B = (G, Θ) from a data set D

More information

Bayesian Analysis for Natural Language Processing Lecture 2

Bayesian Analysis for Natural Language Processing Lecture 2 Bayesian Analysis for Natural Language Processing Lecture 2 Shay Cohen February 4, 2013 Administrativia The class has a mailing list: coms-e6998-11@cs.columbia.edu Need two volunteers for leading a discussion

More information

L applicazione dei metodi Bayesiani nella Farmacoeconomia

L applicazione dei metodi Bayesiani nella Farmacoeconomia L applicazione dei metodi Bayesiani nella Farmacoeconomia Gianluca Baio Department of Statistical Science, University College London (UK) Department of Statistics, University of Milano Bicocca (Italy)

More information

CS540 Machine learning L8

CS540 Machine learning L8 CS540 Machine learning L8 Announcements Linear algebra tutorial by Mark Schmidt, 5:30 to 6:30 pm today, in the CS X-wing 8th floor lounge (X836). Move midterm from Tue Oct 14 to Thu Oct 16? Hw3sol handed

More information

How to predict the probability of a major nuclear accident after Fukushima Da

How to predict the probability of a major nuclear accident after Fukushima Da How to predict the probability of a major nuclear accident after Fukushima Dai-ichi? CERNA Mines ParisTech March 14, 2012 1 2 Frequentist approach Bayesian approach Issues 3 Allowing safety progress Dealing

More information

Overview of Course. Nevin L. Zhang (HKUST) Bayesian Networks Fall / 58

Overview of Course. Nevin L. Zhang (HKUST) Bayesian Networks Fall / 58 Overview of Course So far, we have studied The concept of Bayesian network Independence and Separation in Bayesian networks Inference in Bayesian networks The rest of the course: Data analysis using Bayesian

More information

PMR Learning as Inference

PMR Learning as Inference Outline PMR Learning as Inference Probabilistic Modelling and Reasoning Amos Storkey Modelling 2 The Exponential Family 3 Bayesian Sets School of Informatics, University of Edinburgh Amos Storkey PMR Learning

More information

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 4: Data Analysis and Uncertainty Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Why uncertainty? Why should data mining care about uncertainty? We

More information

Programming Assignment 4: Image Completion using Mixture of Bernoullis

Programming Assignment 4: Image Completion using Mixture of Bernoullis Programming Assignment 4: Image Completion using Mixture of Bernoullis Deadline: Tuesday, April 4, at 11:59pm TA: Renie Liao (csc321ta@cs.toronto.edu) Submission: You must submit two files through MarkUs

More information

Formal Handling of the Level 2 Uncertainty Sources and Their Combination with the Level 1 PSA Uncertainties

Formal Handling of the Level 2 Uncertainty Sources and Their Combination with the Level 1 PSA Uncertainties OECD/NEA/CSNI Workshop on Evaluation of Uncertainties in Relation to Severe Accidents and Level 2 Probabilistic Safety Analysis 7-9 November 2005, Aix-en-Provence, France Formal Handling of the Level 2

More information