Closed-Loop Disturbance Identification and Controller Tuning for Discrete Manufacturing Processes. Overview

Size: px
Start display at page:

Download "Closed-Loop Disturbance Identification and Controller Tuning for Discrete Manufacturing Processes. Overview"

Transcription

1 Closed-Loop Disturbance Identification and Controller Tuning for Discrete Manufacturing Processes Enrique del Castillo Department of Industrial & Manufacturing Engineering The Pennsylvania State University FTC 2002 Overview 1 Open-loop vs. closed-loop operation 2 Transfer function ID in open loop 3 Problems under closed-loop operation 4 Closed-loop ID approach 5 Re-tuning the controller 6 Examples 7 References

2 1. Open Loop vs. closed-loop operation One input {U t } and one output {Y t } ( SISO ). Open loop operation: U t not a function of e t, e t 1,... Closed loop operation: U t = f(e t, e t 1,...). A feedback controller.

3 2. Transfer Function ID in Open Loop (Box, Jenkins, and Reinsel, 1994, Ch. 11). U t = m U t, e t = m e t stationary. Assume Box-Jenkins model form: e t = B r(b) A s (B) Bk U t + N t = H(B)U t + Ψ(B)ε t where N t is ARIMA(p,d,q). H(B) = v 0 +v 1 B+v 2 B is the impulse response function Identification goal: find (r,s,k) and (p,d,q) Problem: ID under closed-loop conditions Benefit: ad-hoc controller can at least avoid large scrap during ID keeping a stable process.

4 2. Transfer Function ID in Open Loop (cont.) Use cross-correlation between prewhitened input (α t ) and the filtered output (w t ). Prewhiten input and filter output: A α (B) B α (B) U t = α t ( white) A α (B) B α (B) e t = w t (not necessarely white) Transfer function is: or A α (B) B α (B) e t = H(B) Aα (B) B α (B) U t + Aα (B) B α (B) N t w t = H(B)α t + ε t Get impulse response weights from covariance: E[α t j w t ] = E[α t j v j B j α t ] + E[α t j ε t ] }{{} =0 = γ αw (j) = v j σ 2 α v j = γ αw(j) σ 2 α = ρ αw (j) σ w σ α

5 3. Problems under closed-loop operation Suppose U t = C(B)e t. From e t = H(B)U t + N t get U t = C(B) 1 H(B)C(B) N t U t strongly depends on N t Furthermore, α t = C(B)w t, or and w t = 1 C(B) α t = (c 0 + c 1 B + c 2 B2 +...)α t γ αw (j) = E[α t j w t ] = E[α t j c 0 α t] + + E[α t j c 1 α t 1] +... = c j σ2 α ρ αw (j) = c j σ α σ w (ρ αw (0) 0 implies feedback). We get the inverse of the controller TF, not the process TF. Estimation problems also occur.

6 4. Closed loop ID approach Use a dither signal (Box and MacGregor, 1974): U t = C(B)e t + d t {d t } uncorrelated with {ε t } Look at ρ de (j). How large Var(d t )? An alternative: look at the autocorrelation function of e t. If nothing whatever were known about H(B) or about Ψ(B), then unambiguous id would not in general be possible (Box and MacGregor, 1974).

7 Assumed process and disturbance models Consider a discrete-part manufacturing process Assumed process is: e t = βu t 1 + N t a responsive process, no process dynamics, noise dynamics assumed given by N t = δ + N t 1 θε t 1 + ε t, θ 1 (a possible non-invertible, IMA(1,1) with drift process) Particular cases: δ = 0 δ 0 θ = 0 Random walk (RW) RW with drift, (RWD) 0 < θ < 1 IMA(1,1) IMA(1,1) with drift θ = 1 White noise Deterministic trend plus noise (DT)

8 Assumed feedback adjustment method U t = c 1 e t + c 2 e t 1, ( PI controller) If c 1 = λ/b = λ/ˆβ, c 2 = 0 get an EWMA controller: U t = a t b a t = λ(e t bu t 1 ) + (1 λ)a t 1, 0 λ 1 (an integral ( I ) controller).

9 Closed loop output description under PI adjustments Under the assumed process and controller, closed loop output follows an ARMA(2,1): (1 (1 + βc 1 )B βc 2 B 2 )(e t µ e ) = (1 θb)ε t where the mean or offset of the deviations from target is given by µ e = δ 1 (1 + βc 1 ) βc 2. Reduces to an ARMA(1,1) process if an EWMA (I) controller is used instead (c 2 = 0). Unambiguous ID from: Disturbance θ Asymp. Offset=µ e White noise 1 0 DT 1 δ/(1 φ 1 φ 2 ) RW 0 0 RWD 0 δ/(1 φ 1 φ 2 ) IMA(1,1) 0 < θ < 1 0 IMA(1,1) with drift 0 < θ < 1 δ/(1 φ 1 φ 2 )) In all cases, φ 1 = 1 + βc 1, φ 2 = βc 2.

10 4. Proposed closed loop ID approach 1. Use (non-optimal) PI controller with known c 1, c Fit ARMA(2,1) process and use Table 2 to ID process; watch out for θ = 1 case (cancellation of polynomials). 3. Re-tune PI controller; balance MSD of the output and variance of the input.

11 Solve: 5. Re-tuning the PI controller min J = MSD(e c 1,c t )/σε 2 + π Var( u t )/σε 2 (1) 2 subject to βc 2 < 1 β(c 2 c 1 ) < 2 β(c 2 + c 1 ) < 2. where MSD(e t ) =Var(e t ) + µ 2 e and Var( U t ) = (c c2 2 )Var(e t) + 2c 1 c 2 cov(e t.e t 1 ) (Box and Luceño, 1995). Spreadsheet in:

12 6. Examples 1. A Simulated Machining Process. True noise: δ = 1, σ 2 ε = 1, θ = 0.5 True Process: β = 1 Controller: c 1 = 0.3, c 2 = 0. Closed loop output has φ 1 = 1 + βc 1 = 0.7, φ 2 = βc 2 = 0, θ = 0.5 (ARMA(1,1)). From first 75 parts get: ˆφ 1 = (0.3229); ˆβ = 1.31; ˆθ = (0.3750); try IMA(1,1) ˆµ e = 4.42(0.769); ˆδ = significant drift (IMA(1,1) with drift). Optimization:

13 π Var( u t )/σε 2 MSD(e t )/σε 2 c 1 c Suppose we adopt the solution for π = 5. MSD thanks to better centering. Reduced

14 6. Examples (cont.) 2. A semiconductor manufacturing process. Application of EWMA (I) control to a CMP process by Sematech (Hurwitz, 1996). Response: removal rate (target= 1900Å/min)); known to drift Controllable factor: platen speed (rpm s) Initial control with an EWMA with λ = 0.1. From first 50 wafers: ˆβ = 145.6, ˆθ = (0.1755) ˆφ 1 = (0.0921); ˆσ ε = ˆθ < 1 so we infer IMA(1,1) µ e 41.8(5.8) implies significant drift; ˆδ = Optimize:

15 π 10 3 λ Var( u t ) σ 2 ε 10 4 MSD(e t ) σ 2 ε Current setting (λ = 0.1) implied too severe limitation in the variance of the adjustments; process severely off-target; drift not compensated for.

16 What about if there are process dynamics? Continuous-type manufacturing Same controller and disturbance as before If H(B) = B s(b) A r (B) Bk then for r = 1, 2, s = 1, 2, and k = 1, 2, unambiguous ID possible from autocorrelation of the output and stability conditions (Pan and Del Castillo, 2001). Second part of this (Technometrics) paper.

17 7. References Box, G.E.P., and MacGregor, J.F., (1974), The Analysis of Closed-loop Dynamic-Stochastic Systems, Technometrics, 16,3, pp Box, G.E.P., and Luceño, A. (1995), Discrete Proportional Integral Adjustment with Constrained Adjustment, The Statistician, 44, 4, pp Del Castillo, E., (2002), Closed Loop Disturbance Identification and Controller Tuning for Discrete Manufacturing Processes, Technometrics, 44, 2. Pan, R., and Del Castillo, E. (2001), Identification and fine tuning of closed loop processed under discrete EWMA and PI adjustments, Quality & Reliability Engineering International, 17, pp Questions?

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M.

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M. TIME SERIES ANALYSIS Forecasting and Control Fifth Edition GEORGE E. P. BOX GWILYM M. JENKINS GREGORY C. REINSEL GRETA M. LJUNG Wiley CONTENTS PREFACE TO THE FIFTH EDITION PREFACE TO THE FOURTH EDITION

More information

STATISTICAL PROCESS ADJUSTMENT PROBLEMS IN SHORT-RUN MANUFACTURING

STATISTICAL PROCESS ADJUSTMENT PROBLEMS IN SHORT-RUN MANUFACTURING The Pennsylvania State University The Graduate School Department of Industrial and Manufacturing Engineering STATISTICAL PROCESS ADJUSTMENT PROBLEMS IN SHORT-RUN MANUFACTURING A Thesis in Industrial Engineering

More information

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation University of Oxford Statistical Methods Autocorrelation Identification and Estimation Dr. Órlaith Burke Michaelmas Term, 2011 Department of Statistics, 1 South Parks Road, Oxford OX1 3TG Contents 1 Model

More information

Ch 9. FORECASTING. Time Series Analysis

Ch 9. FORECASTING. Time Series Analysis In this chapter, we assume the model is known exactly, and consider the calculation of forecasts and their properties for both deterministic trend models and ARIMA models. 9.1 Minimum Mean Square Error

More information

Chapter 2: Unit Roots

Chapter 2: Unit Roots Chapter 2: Unit Roots 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and undeconometrics II. Unit Roots... 3 II.1 Integration Level... 3 II.2 Nonstationarity

More information

E 4160 Autumn term Lecture 9: Deterministic trends vs integrated series; Spurious regression; Dickey-Fuller distribution and test

E 4160 Autumn term Lecture 9: Deterministic trends vs integrated series; Spurious regression; Dickey-Fuller distribution and test E 4160 Autumn term 2016. Lecture 9: Deterministic trends vs integrated series; Spurious regression; Dickey-Fuller distribution and test Ragnar Nymoen Department of Economics, University of Oslo 24 October

More information

E 4101/5101 Lecture 9: Non-stationarity

E 4101/5101 Lecture 9: Non-stationarity E 4101/5101 Lecture 9: Non-stationarity Ragnar Nymoen 30 March 2011 Introduction I Main references: Hamilton Ch 15,16 and 17. Davidson and MacKinnon Ch 14.3 and 14.4 Also read Ch 2.4 and Ch 2.5 in Davidson

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

Chapter 4: Models for Stationary Time Series

Chapter 4: Models for Stationary Time Series Chapter 4: Models for Stationary Time Series Now we will introduce some useful parametric models for time series that are stationary processes. We begin by defining the General Linear Process. Let {Y t

More information

Ch 5. Models for Nonstationary Time Series. Time Series Analysis

Ch 5. Models for Nonstationary Time Series. Time Series Analysis We have studied some deterministic and some stationary trend models. However, many time series data cannot be modeled in either way. Ex. The data set oil.price displays an increasing variation from the

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Input-Output systems The z-transform important issues

More information

ECON 4160, Spring term Lecture 12

ECON 4160, Spring term Lecture 12 ECON 4160, Spring term 2013. Lecture 12 Non-stationarity and co-integration 2/2 Ragnar Nymoen Department of Economics 13 Nov 2013 1 / 53 Introduction I So far we have considered: Stationary VAR, with deterministic

More information

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn }

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn } Stochastic processes Time series are an example of a stochastic or random process Models for time series A stochastic process is 'a statistical phenomenon that evolves in time according to probabilistic

More information

Econometric Forecasting

Econometric Forecasting Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 1, 2014 Outline Introduction Model-free extrapolation Univariate time-series models Trend

More information

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 )

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 ) Covariance Stationary Time Series Stochastic Process: sequence of rv s ordered by time {Y t } {...,Y 1,Y 0,Y 1,...} Defn: {Y t } is covariance stationary if E[Y t ]μ for all t cov(y t,y t j )E[(Y t μ)(y

More information

at least 50 and preferably 100 observations should be available to build a proper model

at least 50 and preferably 100 observations should be available to build a proper model III Box-Jenkins Methods 1. Pros and Cons of ARIMA Forecasting a) need for data at least 50 and preferably 100 observations should be available to build a proper model used most frequently for hourly or

More information

The ARIMA Procedure: The ARIMA Procedure

The ARIMA Procedure: The ARIMA Procedure Page 1 of 120 Overview: ARIMA Procedure Getting Started: ARIMA Procedure The Three Stages of ARIMA Modeling Identification Stage Estimation and Diagnostic Checking Stage Forecasting Stage Using ARIMA Procedure

More information

Statistics 910, #5 1. Regression Methods

Statistics 910, #5 1. Regression Methods Statistics 910, #5 1 Overview Regression Methods 1. Idea: effects of dependence 2. Examples of estimation (in R) 3. Review of regression 4. Comparisons and relative efficiencies Idea Decomposition Well-known

More information

Dynamic Time Series Regression: A Panacea for Spurious Correlations

Dynamic Time Series Regression: A Panacea for Spurious Correlations International Journal of Scientific and Research Publications, Volume 6, Issue 10, October 2016 337 Dynamic Time Series Regression: A Panacea for Spurious Correlations Emmanuel Alphonsus Akpan *, Imoh

More information

Applied time-series analysis

Applied time-series analysis Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 18, 2011 Outline Introduction and overview Econometric Time-Series Analysis In principle,

More information

THE DETECTION OF SHIFTS IN AUTOCORRELATED PROCESSES WITH MR AND EWMA CHARTS

THE DETECTION OF SHIFTS IN AUTOCORRELATED PROCESSES WITH MR AND EWMA CHARTS THE DETECTION OF SHIFTS IN AUTOCORRELATED PROCESSES WITH MR AND EWMA CHARTS Karin Kandananond, kandananond@hotmail.com Faculty of Industrial Technology, Rajabhat University Valaya-Alongkorn, Prathumthani,

More information

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Fin. Econometrics / 53 State-space Model Eduardo Rossi University of Pavia November 2014 Rossi State-space Model Fin. Econometrics - 2014 1 / 53 Outline 1 Motivation 2 Introduction 3 The Kalman filter 4 Forecast errors 5 State

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Chapter 9 Multivariate time series 2 Transfer function

More information

Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting)

Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting) Stat 5100 Handout #12.e Notes: ARIMA Models (Unit 7) Key here: after stationary, identify dependence structure (and use for forecasting) (overshort example) White noise H 0 : Let Z t be the stationary

More information

Trend-Cycle Decompositions

Trend-Cycle Decompositions Trend-Cycle Decompositions Eric Zivot April 22, 2005 1 Introduction A convenient way of representing an economic time series y t is through the so-called trend-cycle decomposition y t = TD t + Z t (1)

More information

Design and Performance Analysis of the Exponentially Weighted Moving Average Mean Estimate for Processes Subject to Random Step Changes

Design and Performance Analysis of the Exponentially Weighted Moving Average Mean Estimate for Processes Subject to Random Step Changes Design and Performance Analysis of the Exponentially Weighted Moving Average Mean Estimate for Processes Subject to Random Step Changes Argon Chen Graduate Institute of Industrial Engineering National

More information

Chapter 9: Forecasting

Chapter 9: Forecasting Chapter 9: Forecasting One of the critical goals of time series analysis is to forecast (predict) the values of the time series at times in the future. When forecasting, we ideally should evaluate the

More information

Econometrics A. Simple linear model (2) Keio University, Faculty of Economics. Simon Clinet (Keio University) Econometrics A October 16, / 11

Econometrics A. Simple linear model (2) Keio University, Faculty of Economics. Simon Clinet (Keio University) Econometrics A October 16, / 11 Econometrics A Keio University, Faculty of Economics Simple linear model (2) Simon Clinet (Keio University) Econometrics A October 16, 2018 1 / 11 Estimation of the noise variance σ 2 In practice σ 2 too

More information

Econometrics II Heij et al. Chapter 7.1

Econometrics II Heij et al. Chapter 7.1 Chapter 7.1 p. 1/2 Econometrics II Heij et al. Chapter 7.1 Linear Time Series Models for Stationary data Marius Ooms Tinbergen Institute Amsterdam Chapter 7.1 p. 2/2 Program Introduction Modelling philosophy

More information

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis Model diagnostics is concerned with testing the goodness of fit of a model and, if the fit is poor, suggesting appropriate modifications. We shall present two complementary approaches: analysis of residuals

More information

Forecasting and Estimation

Forecasting and Estimation February 3, 2009 Forecasting I Very frequently the goal of estimating time series is to provide forecasts of future values. This typically means you treat the data di erently than if you were simply tting

More information

Time Series 3. Robert Almgren. Sept. 28, 2009

Time Series 3. Robert Almgren. Sept. 28, 2009 Time Series 3 Robert Almgren Sept. 28, 2009 Last time we discussed two main categories of linear models, and their combination. Here w t denotes a white noise: a stationary process with E w t ) = 0, E

More information

Economics 582 Random Effects Estimation

Economics 582 Random Effects Estimation Economics 582 Random Effects Estimation Eric Zivot May 29, 2013 Random Effects Model Hence, the model can be re-written as = x 0 β + + [x ] = 0 (no endogeneity) [ x ] = = + x 0 β + + [x ] = 0 [ x ] = 0

More information

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Financial Econometrics / 49

State-space Model. Eduardo Rossi University of Pavia. November Rossi State-space Model Financial Econometrics / 49 State-space Model Eduardo Rossi University of Pavia November 2013 Rossi State-space Model Financial Econometrics - 2013 1 / 49 Outline 1 Introduction 2 The Kalman filter 3 Forecast errors 4 State smoothing

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303)

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42 Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 Open-Loop

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY & Contents PREFACE xiii 1 1.1. 1.2. Difference Equations First-Order Difference Equations 1 /?th-order Difference

More information

Discrete time processes

Discrete time processes Discrete time processes Predictions are difficult. Especially about the future Mark Twain. Florian Herzog 2013 Modeling observed data When we model observed (realized) data, we encounter usually the following

More information

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL B. N. MANDAL Abstract: Yearly sugarcane production data for the period of - to - of India were analyzed by time-series methods. Autocorrelation

More information

Phase-error Correction by Single-phase Phase-Locked Loops based on Transfer Delay

Phase-error Correction by Single-phase Phase-Locked Loops based on Transfer Delay Global Summit on Electronics and Electrical Engineering Valencia - Spain Phase-error Correction by Single-phase Phase-Locked Loops based on Transfer Delay Main research Project: Distributed Harmonics Compensation

More information

The regression model with one fixed regressor cont d

The regression model with one fixed regressor cont d The regression model with one fixed regressor cont d 3150/4150 Lecture 4 Ragnar Nymoen 27 January 2012 The model with transformed variables Regression with transformed variables I References HGL Ch 2.8

More information

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω ECO 513 Spring 2015 TAKEHOME FINAL EXAM (1) Suppose the univariate stochastic process y is ARMA(2,2) of the following form: y t = 1.6974y t 1.9604y t 2 + ε t 1.6628ε t 1 +.9216ε t 2, (1) where ε is i.i.d.

More information

EL1820 Modeling of Dynamical Systems

EL1820 Modeling of Dynamical Systems EL1820 Modeling of Dynamical Systems Lecture 10 - System identification as a model building tool Experiment design Examination and prefiltering of data Model structure selection Model validation Lecture

More information

1 Linear Difference Equations

1 Linear Difference Equations ARMA Handout Jialin Yu 1 Linear Difference Equations First order systems Let {ε t } t=1 denote an input sequence and {y t} t=1 sequence generated by denote an output y t = φy t 1 + ε t t = 1, 2,... with

More information

Chapter 3 - Temporal processes

Chapter 3 - Temporal processes STK4150 - Intro 1 Chapter 3 - Temporal processes Odd Kolbjørnsen and Geir Storvik January 23 2017 STK4150 - Intro 2 Temporal processes Data collected over time Past, present, future, change Temporal aspect

More information

Time series models in the Frequency domain. The power spectrum, Spectral analysis

Time series models in the Frequency domain. The power spectrum, Spectral analysis ime series models in the Frequency domain he power spectrum, Spectral analysis Relationship between the periodogram and the autocorrelations = + = ( ) ( ˆ α ˆ ) β I Yt cos t + Yt sin t t= t= ( ( ) ) cosλ

More information

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis

Chapter 12: An introduction to Time Series Analysis. Chapter 12: An introduction to Time Series Analysis Chapter 12: An introduction to Time Series Analysis Introduction In this chapter, we will discuss forecasting with single-series (univariate) Box-Jenkins models. The common name of the models is Auto-Regressive

More information

Ross Bettinger, Analytical Consultant, Seattle, WA

Ross Bettinger, Analytical Consultant, Seattle, WA ABSTRACT DYNAMIC REGRESSION IN ARIMA MODELING Ross Bettinger, Analytical Consultant, Seattle, WA Box-Jenkins time series models that contain exogenous predictor variables are called dynamic regression

More information

5 Transfer function modelling

5 Transfer function modelling MSc Further Time Series Analysis 5 Transfer function modelling 5.1 The model Consider the construction of a model for a time series (Y t ) whose values are influenced by the earlier values of a series

More information

Class: Trend-Cycle Decomposition

Class: Trend-Cycle Decomposition Class: Trend-Cycle Decomposition Macroeconometrics - Spring 2011 Jacek Suda, BdF and PSE June 1, 2011 Outline Outline: 1 Unobserved Component Approach 2 Beveridge-Nelson Decomposition 3 Spectral Analysis

More information

REGRESSION WITH SPATIALLY MISALIGNED DATA. Lisa Madsen Oregon State University David Ruppert Cornell University

REGRESSION WITH SPATIALLY MISALIGNED DATA. Lisa Madsen Oregon State University David Ruppert Cornell University REGRESSION ITH SPATIALL MISALIGNED DATA Lisa Madsen Oregon State University David Ruppert Cornell University SPATIALL MISALIGNED DATA 10 X X X X X X X X 5 X X X X X 0 X 0 5 10 OUTLINE 1. Introduction 2.

More information

3 Theory of stationary random processes

3 Theory of stationary random processes 3 Theory of stationary random processes 3.1 Linear filters and the General linear process A filter is a transformation of one random sequence {U t } into another, {Y t }. A linear filter is a transformation

More information

Cointegration, Stationarity and Error Correction Models.

Cointegration, Stationarity and Error Correction Models. Cointegration, Stationarity and Error Correction Models. STATIONARITY Wold s decomposition theorem states that a stationary time series process with no deterministic components has an infinite moving average

More information

EECE Adaptive Control

EECE Adaptive Control EECE 574 - Adaptive Control Basics of System Identification Guy Dumont Department of Electrical and Computer Engineering University of British Columbia January 2010 Guy Dumont (UBC) EECE574 - Basics of

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

Dynamic Regression Models (Lect 15)

Dynamic Regression Models (Lect 15) Dynamic Regression Models (Lect 15) Ragnar Nymoen University of Oslo 21 March 2013 1 / 17 HGL: Ch 9; BN: Kap 10 The HGL Ch 9 is a long chapter, and the testing for autocorrelation part we have already

More information

Lecture 8: ARIMA Forecasting Please read Chapters 7 and 8 of MWH Book

Lecture 8: ARIMA Forecasting Please read Chapters 7 and 8 of MWH Book Lecture 8: ARIMA Forecasting Please read Chapters 7 and 8 of MWH Book 1 Predicting Error 1. y denotes a random variable (stock price, weather, etc) 2. Sometimes we want to do prediction (guessing). Let

More information

ECON 4160, Lecture 11 and 12

ECON 4160, Lecture 11 and 12 ECON 4160, 2016. Lecture 11 and 12 Co-integration Ragnar Nymoen Department of Economics 9 November 2017 1 / 43 Introduction I So far we have considered: Stationary VAR ( no unit roots ) Standard inference

More information

The regression model with one stochastic regressor.

The regression model with one stochastic regressor. The regression model with one stochastic regressor. 3150/4150 Lecture 6 Ragnar Nymoen 30 January 2012 We are now on Lecture topic 4 The main goal in this lecture is to extend the results of the regression

More information

Decision 411: Class 9. HW#3 issues

Decision 411: Class 9. HW#3 issues Decision 411: Class 9 Presentation/discussion of HW#3 Introduction to ARIMA models Rules for fitting nonseasonal models Differencing and stationarity Reading the tea leaves : : ACF and PACF plots Unit

More information

Final Exam November 24, Problem-1: Consider random walk with drift plus a linear time trend: ( t

Final Exam November 24, Problem-1: Consider random walk with drift plus a linear time trend: ( t Problem-1: Consider random walk with drift plus a linear time trend: y t = c + y t 1 + δ t + ϵ t, (1) where {ϵ t } is white noise with E[ϵ 2 t ] = σ 2 >, and y is a non-stochastic initial value. (a) Show

More information

STAT 436 / Lecture 16: Key

STAT 436 / Lecture 16: Key STAT 436 / 536 - Lecture 16: Key Modeling Non-Stationary Time Series Many time series models are non-stationary. Recall a time series is stationary if the mean and variance are constant in time and the

More information

STA 6857 VAR, VARMA, VARMAX ( 5.7)

STA 6857 VAR, VARMA, VARMAX ( 5.7) STA 6857 VAR, VARMA, VARMAX ( 5.7) Outline 1 Multivariate Time Series Modeling 2 VAR 3 VARIMA/VARMAX Arthur Berg STA 6857 VAR, VARMA, VARMAX ( 5.7) 2/ 16 Outline 1 Multivariate Time Series Modeling 2 VAR

More information

Non-Stationary Time Series and Unit Root Testing

Non-Stationary Time Series and Unit Root Testing Econometrics II Non-Stationary Time Series and Unit Root Testing Morten Nyboe Tabor Course Outline: Non-Stationary Time Series and Unit Root Testing 1 Stationarity and Deviation from Stationarity Trend-Stationarity

More information

Classic Time Series Analysis

Classic Time Series Analysis Classic Time Series Analysis Concepts and Definitions Let Y be a random number with PDF f Y t ~f,t Define t =E[Y t ] m(t) is known as the trend Define the autocovariance t, s =COV [Y t,y s ] =E[ Y t t

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information

7. Forecasting with ARIMA models

7. Forecasting with ARIMA models 7. Forecasting with ARIMA models 309 Outline: Introduction The prediction equation of an ARIMA model Interpreting the predictions Variance of the predictions Forecast updating Measuring predictability

More information

Chapter 6: Model Specification for Time Series

Chapter 6: Model Specification for Time Series Chapter 6: Model Specification for Time Series The ARIMA(p, d, q) class of models as a broad class can describe many real time series. Model specification for ARIMA(p, d, q) models involves 1. Choosing

More information

Lecture 2: ARMA(p,q) models (part 2)

Lecture 2: ARMA(p,q) models (part 2) Lecture 2: ARMA(p,q) models (part 2) Florian Pelgrin University of Lausanne, École des HEC Department of mathematics (IMEA-Nice) Sept. 2011 - Jan. 2012 Florian Pelgrin (HEC) Univariate time series Sept.

More information

ECON/FIN 250: Forecasting in Finance and Economics: Section 7: Unit Roots & Dickey-Fuller Tests

ECON/FIN 250: Forecasting in Finance and Economics: Section 7: Unit Roots & Dickey-Fuller Tests ECON/FIN 250: Forecasting in Finance and Economics: Section 7: Unit Roots & Dickey-Fuller Tests Patrick Herb Brandeis University Spring 2016 Patrick Herb (Brandeis University) Unit Root Tests ECON/FIN

More information

Stochastic Processes

Stochastic Processes Elements of Lecture II Hamid R. Rabiee with thanks to Ali Jalali Overview Reading Assignment Chapter 9 of textbook Further Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A First Course in Stochastic

More information

Non-Stationary Time Series and Unit Root Testing

Non-Stationary Time Series and Unit Root Testing Econometrics II Non-Stationary Time Series and Unit Root Testing Morten Nyboe Tabor Course Outline: Non-Stationary Time Series and Unit Root Testing 1 Stationarity and Deviation from Stationarity Trend-Stationarity

More information

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27

ARIMA Models. Jamie Monogan. January 16, University of Georgia. Jamie Monogan (UGA) ARIMA Models January 16, / 27 ARIMA Models Jamie Monogan University of Georgia January 16, 2018 Jamie Monogan (UGA) ARIMA Models January 16, 2018 1 / 27 Objectives By the end of this meeting, participants should be able to: Argue why

More information

Vector autoregressions, VAR

Vector autoregressions, VAR 1 / 45 Vector autoregressions, VAR Chapter 2 Financial Econometrics Michael Hauser WS17/18 2 / 45 Content Cross-correlations VAR model in standard/reduced form Properties of VAR(1), VAR(p) Structural VAR,

More information

Ch. 15 Forecasting. 1.1 Forecasts Based on Conditional Expectations

Ch. 15 Forecasting. 1.1 Forecasts Based on Conditional Expectations Ch 15 Forecasting Having considered in Chapter 14 some of the properties of ARMA models, we now show how they may be used to forecast future values of an observed time series For the present we proceed

More information

Topic 4 Unit Roots. Gerald P. Dwyer. February Clemson University

Topic 4 Unit Roots. Gerald P. Dwyer. February Clemson University Topic 4 Unit Roots Gerald P. Dwyer Clemson University February 2016 Outline 1 Unit Roots Introduction Trend and Difference Stationary Autocorrelations of Series That Have Deterministic or Stochastic Trends

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

Circle a single answer for each multiple choice question. Your choice should be made clearly.

Circle a single answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 4, 215 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 31 questions. Circle

More information

Online monitoring of MPC disturbance models using closed-loop data

Online monitoring of MPC disturbance models using closed-loop data Online monitoring of MPC disturbance models using closed-loop data Brian J. Odelson and James B. Rawlings Department of Chemical Engineering University of Wisconsin-Madison Online Optimization Based Identification

More information

OPTIMAL DESIGN INPUTS FOR EXPERIMENTAL CHAPTER 17. Organization of chapter in ISSO. Background. Linear models

OPTIMAL DESIGN INPUTS FOR EXPERIMENTAL CHAPTER 17. Organization of chapter in ISSO. Background. Linear models CHAPTER 17 Slides for Introduction to Stochastic Search and Optimization (ISSO)by J. C. Spall OPTIMAL DESIGN FOR EXPERIMENTAL INPUTS Organization of chapter in ISSO Background Motivation Finite sample

More information

LECTURE ON HAC COVARIANCE MATRIX ESTIMATION AND THE KVB APPROACH

LECTURE ON HAC COVARIANCE MATRIX ESTIMATION AND THE KVB APPROACH LECURE ON HAC COVARIANCE MARIX ESIMAION AND HE KVB APPROACH CHUNG-MING KUAN Institute of Economics Academia Sinica October 20, 2006 ckuan@econ.sinica.edu.tw www.sinica.edu.tw/ ckuan Outline C.-M. Kuan,

More information

Statistics 910, #15 1. Kalman Filter

Statistics 910, #15 1. Kalman Filter Statistics 910, #15 1 Overview 1. Summary of Kalman filter 2. Derivations 3. ARMA likelihoods 4. Recursions for the variance Kalman Filter Summary of Kalman filter Simplifications To make the derivations

More information

6.435, System Identification

6.435, System Identification System Identification 6.435 SET 3 Nonparametric Identification Munther A. Dahleh 1 Nonparametric Methods for System ID Time domain methods Impulse response Step response Correlation analysis / time Frequency

More information

EASTERN MEDITERRANEAN UNIVERSITY ECON 604, FALL 2007 DEPARTMENT OF ECONOMICS MEHMET BALCILAR ARIMA MODELS: IDENTIFICATION

EASTERN MEDITERRANEAN UNIVERSITY ECON 604, FALL 2007 DEPARTMENT OF ECONOMICS MEHMET BALCILAR ARIMA MODELS: IDENTIFICATION ARIMA MODELS: IDENTIFICATION A. Autocorrelations and Partial Autocorrelations 1. Summary of What We Know So Far: a) Series y t is to be modeled by Box-Jenkins methods. The first step was to convert y t

More information

Forecasting with ARMA Models

Forecasting with ARMA Models LECTURE 4 Forecasting with ARMA Models Minumum Mean-Square Error Prediction Imagine that y(t) is a stationary stochastic process with E{y(t)} = 0. We may be interested in predicting values of this process

More information

Lecture 4a: ARMA Model

Lecture 4a: ARMA Model Lecture 4a: ARMA Model 1 2 Big Picture Most often our goal is to find a statistical model to describe real time series (estimation), and then predict the future (forecasting) One particularly popular model

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 III. Stationary models 1 Purely random process 2 Random walk (non-stationary)

More information

Autoregressive and Moving-Average Models

Autoregressive and Moving-Average Models Chapter 3 Autoregressive and Moving-Average Models 3.1 Introduction Let y be a random variable. We consider the elements of an observed time series {y 0,y 1,y2,...,y t } as being realizations of this randoms

More information

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA

TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA CHAPTER 6 TIME SERIES ANALYSIS AND FORECASTING USING THE STATISTICAL MODEL ARIMA 6.1. Introduction A time series is a sequence of observations ordered in time. A basic assumption in the time series analysis

More information

Univariate Nonstationary Time Series 1

Univariate Nonstationary Time Series 1 Univariate Nonstationary Time Series 1 Sebastian Fossati University of Alberta 1 These slides are based on Eric Zivot s time series notes available at: http://faculty.washington.edu/ezivot Introduction

More information

On Input Design for System Identification

On Input Design for System Identification On Input Design for System Identification Input Design Using Markov Chains CHIARA BRIGHENTI Masters Degree Project Stockholm, Sweden March 2009 XR-EE-RT 2009:002 Abstract When system identification methods

More information

Cointegrated VARIMA models: specification and. simulation

Cointegrated VARIMA models: specification and. simulation Cointegrated VARIMA models: specification and simulation José L. Gallego and Carlos Díaz Universidad de Cantabria. Abstract In this note we show how specify cointegrated vector autoregressive-moving average

More information

Estimation and application of best ARIMA model for forecasting the uranium price.

Estimation and application of best ARIMA model for forecasting the uranium price. Estimation and application of best ARIMA model for forecasting the uranium price. Medeu Amangeldi May 13, 2018 Capstone Project Superviser: Dongming Wei Second reader: Zhenisbek Assylbekov Abstract This

More information

Stat 248 Lab 2: Stationarity, More EDA, Basic TS Models

Stat 248 Lab 2: Stationarity, More EDA, Basic TS Models Stat 248 Lab 2: Stationarity, More EDA, Basic TS Models Tessa L. Childers-Day February 8, 2013 1 Introduction Today s section will deal with topics such as: the mean function, the auto- and cross-covariance

More information

Basic concepts and terminology: AR, MA and ARMA processes

Basic concepts and terminology: AR, MA and ARMA processes ECON 5101 ADVANCED ECONOMETRICS TIME SERIES Lecture note no. 1 (EB) Erik Biørn, Department of Economics Version of February 1, 2011 Basic concepts and terminology: AR, MA and ARMA processes This lecture

More information

Exercises - Time series analysis

Exercises - Time series analysis Descriptive analysis of a time series (1) Estimate the trend of the series of gasoline consumption in Spain using a straight line in the period from 1945 to 1995 and generate forecasts for 24 months. Compare

More information

F & B Approaches to a simple model

F & B Approaches to a simple model A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 215 http://www.astro.cornell.edu/~cordes/a6523 Lecture 11 Applications: Model comparison Challenges in large-scale surveys

More information

Nonstationary Time Series:

Nonstationary Time Series: Nonstationary Time Series: Unit Roots Egon Zakrajšek Division of Monetary Affairs Federal Reserve Board Summer School in Financial Mathematics Faculty of Mathematics & Physics University of Ljubljana September

More information

Prelim Examination. Friday August 11, Time limit: 150 minutes

Prelim Examination. Friday August 11, Time limit: 150 minutes University of Pennsylvania Economics 706, Fall 2017 Prelim Prelim Examination Friday August 11, 2017. Time limit: 150 minutes Instructions: (i) The total number of points is 80, the number of points for

More information

EFFICIENT LINEAR MIMO ADAPTIVE INVERSE CONTROL

EFFICIENT LINEAR MIMO ADAPTIVE INVERSE CONTROL EFFICIENT LINEAR MIMO ADAPTIVE INVERSE CONTROL Dr. Gregory L. Plett Electrical and Computer Engineering Department University of Colorado at Colorado Springs P.O. Box 715, Colorado Springs, CO 8933 715

More information