Calculations of charge exchange cross sections for some ion-atom and ion-molecule systems

Size: px
Start display at page:

Download "Calculations of charge exchange cross sections for some ion-atom and ion-molecule systems"

Transcription

1 Calculations of charge exchange cross sections for some ion-atom and ion-molecule systems Ismanuel Rabadán Departamento de Química, Universidad Autónoma de Madrid May / 42

2 Coworkers Luis Méndez TCAM group Luis Errea Clara Illescas Henok Getahun Pablo Martínez Francisco Guzmán (ADAS-EU) Bernard Pons (Bordeaux) Emese Rozsályi (Debrecen) 2 / 42

3 Charge Exchange and ionization N 2 : possible scavenger gas for ITER Tabarés et al Nucl. Fusion 45 (2005) L27L31 H + 2 +H : ab initio calculations? Li (and Li + ): coating material Phys. Rev. A (2008); Apicella et al J. Nucl. Mater (2007) H(1s), H(n=2) and B 5+ : diagnostic tools J. Phys. B (2010) 3 / 42

4 Charge Exchange and ionization N 2 : possible scavenger gas for ITER Tabarés et al Nucl. Fusion 45 (2005) L27L31 H + 2 +H : ab initio calculations? Li (and Li + ): coating material Phys. Rev. A (2008); Apicella et al J. Nucl. Mater (2007) H(1s), H(n=2) and B 5+ : diagnostic tools J. Phys. B (2010) 3 / 42

5 Charge Exchange and ionization N 2 : possible scavenger gas for ITER Tabarés et al Nucl. Fusion 45 (2005) L27L31 H + 2 +H : ab initio calculations? Li (and Li + ): coating material Phys. Rev. A (2008); Apicella et al J. Nucl. Mater (2007) H(1s), H(n=2) and B 5+ : diagnostic tools J. Phys. B (2010) 3 / 42

6 Charge Exchange and ionization N 2 : possible scavenger gas for ITER Tabarés et al Nucl. Fusion 45 (2005) L27L31 H + 2 +H : ab initio calculations? Li (and Li + ): coating material Phys. Rev. A (2008); Apicella et al J. Nucl. Mater (2007) H(1s), H(n=2) and B 5+ : diagnostic tools J. Phys. B (2010) 3 / 42

7 In this talk... Ion-atom collisions A q+ + B A q+ + B Electronic excitation A (q 1)+ + B +1 Single electron capture (SEC) A q+ + B + + e Ionization 4 / 42

8 In this talk... Ion-atom collisions A q+ + B A q+ + B Electronic excitation A (q 1)+ + B +1 Single electron capture (SEC) A q+ + B + + e Ionization 4 / 42

9 In this talk... Ion-molecule collisons A q+ + BC Electronic and vibronic excitation A q+ + BC A (q 1)+ + BC +1 A q+ + BC +1 + e Single electron capture (SEC) Ionization A q+ + B + C Dissociation B q+ + AC Reactive charge exchange 5 / 42

10 In this talk... Ion-molecule collisons A q+ + BC Electronic and vibronic excitation A q+ + BC A (q 1)+ + BC +1 A q+ + BC +1 + e Single electron capture (SEC) Ionization A q+ + B + C Dissociation B q+ + AC Reactive charge exchange 5 / 42

11 1 Introduction 2 Theoretical treatment Quantum Mechanical treatment Semiclassical Eikonal treatment Classical Eikonal formalism 3 Progress results H + +Li B 5+ +H(n=1,2) H + +N 2 H + 2 +H 6 / 42

12 Group activity Study of ion-atom and ion-molecule collisions Energy range Low Intermediate High kev/u > 10 Process Elastic & CE CE & ionization Ionization Treatment Full quantal Semiclassical/CTMC CTMC 7 / 42

13 Quantum mechanical treatment Simplified system: 2 nuclei + 1 electron e A CMN r R B H = 1 2µ 2 R 1 2µ e 2 e + V (r, R) 8 / 42

14 Quantum mechanical treatment Boundary conditions: Elastic (or excitation) channel e A R a r a B Ψ Φ A i (r a )e ik i R a + Φ A f (r a)f if (ˆR a ) eik f R a f R a 9 / 42

15 Quantum mechanical treatment Boundary conditions: Elastic (or excitation) channel e A R a r a B Ψ Φ A i (r a )e ik i R a + Φ A f (r a)f if (ˆR a ) eik f R a f R a Boundary conditions: charge exchange channel e A R b r b B Ψ f Φ B f (r b)f if (ˆR b ) eik f R b R b 9 / 42

16 Quantum mechanical treatment Common reaction coordinate: Thorson y Delos (1978) To order O(µ 1 ): if r a r b : if r a r b : ( µ k i ξ µ a ) 1/2 k i R a ( ) µ 1/2 k j ξ k j R b µ a ξ = R + 1 µ s(r, R) with s(r, R) = f (r, R)r 1 2 f 2 (r, R)R 10 / 42

17 Quantum mechanical treatment Molecular expansion HΨ J = EΨ J Ψ J (r, ξ) = k χ J k (ξ)φ k(r, ξ) Clamped-nuclei Born-Oppenheimer Hamiltonian: H elec (r, R)Φ k (r, R) = ɛ k (R)Φ k (r, R) 11 / 42

18 Quantum mechanical treatment Second order differential equations [ (2µ) 1 2 ξ + (E ɛ j) ] χ J j + (2µ) 1 k [ 2Mjk ξ + < Φ j 2 ξ Φ k > ] χ J k = 0 with the non-adiabatic couplings: M jk = φ j ξ φ k + φ j (s q ) (s q ) φ k 12 / 42

19 Cross sections Numerical solution of the differential equations: χ J k (ξ) are obtained. Computation of the S matrix. Cross sections: σ ij = π k 2 i (2J + 1) Sij J 2 J 13 / 42

20 Cross sections Numerical solution of the differential equations: χ J k (ξ) are obtained. Computation of the S matrix. Cross sections: σ ij = π k 2 i (2J + 1) Sij J 2 J 13 / 42

21 Cross sections Numerical solution of the differential equations: χ J k (ξ) are obtained. Computation of the S matrix. Cross sections: σ ij = π k 2 i (2J + 1) Sij J 2 J 13 / 42

22 Semiclassical formalism Straight-line nuclear trajectories R = b + vt v X R b Z 14 / 42

23 Semiclassical formalism Straight-line nuclear trajectories: R = b + vt Eikonal equation: [ ] H elec i Ψ(r, t) = 0 t r Molecular expansion: Ψ(r, t) = exp [iu(r, t)] j ( t ) a j (t)φ j (r, R) exp i ɛ j dt 0 15 / 42

24 Semiclassical formalism Straight-line nuclear trajectories: R = b + vt Eikonal equation: [ ] H elec i Ψ(r, t) = 0 t r Molecular expansion: Ψ(r, t) = exp [iu(r, t)] j ( t ) a j (t)φ j (r, R) exp i ɛ j dt 0 15 / 42

25 Semiclassical formalism Straight-line nuclear trajectories: R = b + vt Eikonal equation: [ ] H elec i Ψ(r, t) = 0 t r Molecular expansion: Ψ(r, t) = exp [iu(r, t)] j ( t ) a j (t)φ j (r, R) exp i ɛ j dt 0 15 / 42

26 Cross sections σ ij (v) = 2π 0 b P ij (b, v)db P ij (b, v) = lim t φ j (r)d j (r, t) Ψ 2 = lim t a j (t; b, v) 2 Sudden approximation: σ sud = 0 dρ σ(ρ) χ(ρ) 2 16 / 42

27 Eikonal CTMC The projectile follows straight-line trajectories: R = b + vt Electronic motion: ensemble of N ( 10 5 ) trajectories {r j } with a Classical distribution function ρ(r, p, t) = 1 N N δ(r r j )δ(p p j ) j=1 that satisfies the Liouville s equation: ρ t = [ρ, H] 17 / 42

28 Hamilton s equations ṙ j = H p j ; ṗ j = H r j Electron trajectories are obtained by solving the Hamilton s equations with the classical Hamiltonian: H(r, p) = p2 2 V t Z p r p 18 / 42

29 Multi-centre pseudo-potential for N 2 V 2c (r N1, r N2 ) = V N (r N1 ) + V N (r N2 ) V N = 7 N N r N N N r N (1 + αr N ) exp ( 2αr N ) OM3 α = OM4 α = OM5,6 α = OM7 α = N N = 6.5 ɛ k (model potential) ɛ k (SCF) < a.u. 19 / 42

30 Multi-centre pseudo-potential for N 2 V 2c (r N1, r N2 ) = V N (r N1 ) + V N (r N2 ) V N = 7 N N r N N N r N (1 + αr N ) exp ( 2αr N ) OM3 α = OM4 α = OM5,6 α = OM7 α = N N = 6.5 ɛ k (model potential) ɛ k (SCF) < a.u. 19 / 42

31 Microcanonical initial distribution Random values of φ and cos θ r = rmax 2 ( β ), β=random and rmax fulfills V (θ, φ, r max ) = E j Electron in the perihelion: [ ] θ p = tan 1 1 tan θ cos (φ φ p ) ; φ p random The Hamilton s equations are integrated until t = t 0 + 2π random 20 / 42

32 Microcanonical initial distribution Random values of φ and cos θ r = rmax 2 ( β ), β=random and rmax fulfills V (θ, φ, r max ) = E j Electron in the perihelion: [ ] θ p = tan 1 1 tan θ cos (φ φ p ) ; φ p random The Hamilton s equations are integrated until t = t 0 + 2π random 20 / 42

33 Microcanonical initial distribution Random values of φ and cos θ r = rmax 2 ( β ), β=random and rmax fulfills V (θ, φ, r max ) = E j Electron in the perihelion: [ ] θ p = tan 1 1 tan θ cos (φ φ p ) ; φ p random The Hamilton s equations are integrated until t = t 0 + 2π random 20 / 42

34 Microcanonical initial distribution Random values of φ and cos θ r = rmax 2 ( β ), β=random and rmax fulfills V (θ, φ, r max ) = E j Electron in the perihelion: [ ] θ p = tan 1 1 tan θ cos (φ φ p ) ; φ p random The Hamilton s equations are integrated until t = t 0 + 2π random 20 / 42

35 Many-electron interpretation One-electron transition probabilities Capture: p cap k = N cap /N Ionization: p ion k = N ion /N Elastic: pk el = 1 pcap k pk ion Independent event model (IEVM) Crothers and McCarrol (JPB 1987); Janev et al (JPB 1995) P SEC = 2 5 k=1 p cap k ; P SI = 2 5 k=1 p ion k 21 / 42

36 Anisotropy treatment σ X (v) = 1 4π db dωp X (b, v, Ω) σx 1 + σx 2 + σx / 42

37 H + +Li H+Li + (Errea et al 2008) Orbital energies (hartree) R (a 0 ) R (a 0 ) 23 / 42

38 H + +Li H+Li σ (10-16 cm 2 ) σ (10-16 cm 2 ) E (ev/amu) E (ev/amu) 24 / 42

39 B 5+ +H(n=2) B 4+ +H + (Guzmán et al 2010) 13 n eff B 4+ (n=10) B 4+ (n=9) B 5+ +H(n=2) B 4+ (n=8) B 4+ (n=7) B 4+ (n=6) B 4+ (n=5) Be 5+ +H(1s) B 4+ (n=4) B 4+ (n=3) B 4+ (n=2) R (a 0 ) 25 / 42

40 B 5+ +H(n=2) B 4+ +H σ (10-16 cm 2 ) 10 1 B 5+ + H(n=2) CTMC B 5+ + H(n=2) OEDM ionization (n=2) CTMC E (kev/amu) 26 / 42

41 B 5+ +H(n=2) B 4+ +H + 1e-13 1e-14 n=6 n=8 n=7 ionization 1e-15 n=5 total CX σ (cm 2 ) 1e-16 1e-17 n=4 n=3 1e-18 n=2 1e E (kev/amu) 27 / 42

42 1 B 5+ +H(1s) potential 0 Energy (a.u./10-3 ) B 5+ +H(1s) C 4+ (1s 2 )+H(1s) R (a.u.) 28 / 42

43 Elastic and EC collisions B 5+ +H(1s) (Barragán et al 2010) E 1/2 σ (Å 2 ev 1/2 ) 36 (25) (1,27) 34 (26) (1,28) (29) (31) (30) (32) (0,34) (0,35) (0,36) (0,37) (38) (39) Cross section (10-13 cm 2 ) (25) (1,27) (1,28) (29) (30) (31) (32) 1-state calculation 12-state calculation σ SLL + σ g σ SLL (0,34) (0,35) Energy (10-3 ev) LZL model Energy (10-3 ev) (0,36) (37) (38)(39) 29 / 42

44 H + +N 2 H+N V (E h ) Excitation Capture Entrance H + + N 2 (w 1 u ) H + + N 2 (a 1 Π g ) H(1s) + N 2 (B Σu ) + 2 H(1s) + N 2 (A Πu ) H(1s) + N 2 (X Σg ) H + + N 2 (X 1 + Σ g ) Expt: Gilmore R (a 0 ) 30 / 42

45 H + +N 2 H+N V (E h ) Excitation Capture Entrance H + + N 2 (w 1 u ) H + + N 2 (a 1 Π g ) H(1s) + N 2 (B Σu ) + 2 H(1s) + N 2 (A Πu ) H(1s) + N 2 (X Σg ) H + + N 2 (X 1 + Σ g ) Expt: Gilmore R (a 0 ) 0.2 Radial Coupling (a.u.) Rotational R (a 0 ) 31 / 42

46 H + +N 2 H+N Cross section (10-16 cm 2 ) Rudd (1985): Exp. capture Rudd (1985): Exp. ionization Gao (1990): Experiment Cabrera-Trujillo (2002): Theory E (kev) 32 / 42

47 H + +N 2 H+N Cross section (10-16 cm 2 ) Rudd (1985): Exp. capture Rudd (1985): Exp. ionization Gao (1990): Experiment Cabrera-Trujillo (2002): Theory CTMC ion CTMC cap E (kev) 32 / 42

48 H + +N 2 H+N Cross section (10-16 cm 2 ) Rudd (1985): Exp. capture Rudd (1985): Exp. ionization Gao (1990): Experiment Cabrera-Trujillo (2002): Theory CTMC ion CTMC cap 2, FC E (kev) 32 / 42

49 H + +N 2 H+N Cross section (10-16 cm 2 ) Rudd (1985): Exp. capture Rudd (1985): Exp. ionization Gao (1990): Experiment Cabrera-Trujillo (2002): Theory CTMC ion CTMC cap 2, FC 4, FC E (kev) 32 / 42

50 H + +N 2 H+N Cross section (10-16 cm 2 ) Rudd (1985): Exp. capture Rudd (1985): Exp. ionization Gao (1990): Experiment Cabrera-Trujillo (2002): Theory CTMC ion CTMC cap 2, FC 4, FC 6, FC E (kev) 32 / 42

51 H + +N 2 H+N Cross section (10-16 cm 2 ) Rudd (1985): Exp. capture Rudd (1985): Exp. ionization Gao (1990): Experiment Cabrera-Trujillo (2002): Theory CTMC ion CTMC cap 2, FC 4, FC 6, FC 2, Sudden E (kev) 32 / 42

52 H + 2 +H H 2 +H V (E h ) H 2 (a 3 Σ g + ) + H(1s) H 2 (X 1 Σ g + ) + H(n=2) H 2 (X 1 Σ g + ) + H(1s) R (a 0 ) 33 / 42

53 H + 2 +H H 2 +H V (E h ) H 2 (a 3 Σ g + ) + H(1s) H 2 (X 1 Σ g + ) + H(n=2) -1.4 H 3 + (gs) -1.6 H 2 (X 1 Σ g + ) + H(1s) R (a 0 ) 33 / 42

54 H + 2 +H H 2 +H V (E h ) H 2 (a 3 Σ g + ) + H(1s) H 2 (X 1 Σ g + ) + H(n=2) -1.4 H 2 + (gs)+h (gs) H 3 + (gs) -1.6 H 2 (X 1 Σ g + ) + H(1s) R (a 0 ) 33 / 42

55 H + 2 +H H 2 +H V (E h ) H 2 (a 3 Σ g + ) + H(1s) H 2 (X 1 Σ g + ) + H(n=2) -1.4 H 2 + (gs)+h (gs) H 3 + (gs) -1.6 H 2 (X 1 Σ g + ) + H(1s) R (a 0 ) 33 / 42

56 H + 2 +H H 2 +H V (E h ) -1.2 H 2 + (gs)+h (gs) H 3 + (gs) H 2 (a 3 Σ g + ) + H(1s) -1.3 H 2 (X 1 Σ g + ) + H(n=2) R (a 0 ) 33 / 42

57 H + 2 +H H 2 +H V (E h ) -1.2 H 2 + (gs)+h (gs) H 3 + (gs) H 2 (a 3 Σ g + ) + H(1s) -1.3 H 2 (X 1 Σ g + ) + H(n=2) R (a 0 ) 33 / 42

58 H + 2 +H H 2 +H Radial coupling (a.u.) 4 2 V (E h ) H 2 + (gs)+h (gs) H 3 + (gs) 0 H 2 (a 3 Σ g + ) + H(1s) H 2 (X 1 Σ g + ) + H(n=2) R (a 0 ) R (a 0 ) 34 / 42

59 H + 2 +H H 2 +H Szucs et al (1983) Peart & Bennet (1986) Peart et al (1997) Liu et al (2006) 100 σ (10-16 cm 2 ) v (cm/s) 35 / 42

60 H + 2 +H H 2 +H Szucs et al (1983) Peart & Bennet (1986) Peart et al (1997) Liu et al (2006) σ (10-16 cm 2 ) V (E h ) H 2 + (gs)+h (gs) H 3 + (gs) H 2 (a 3 Σ g + ) + H(1s) H 2 (X 1 Σ g + ) + H(n=2) v (cm/s) R (a 0 ) 36 / 42

61 H + 2 +H H 2 +H Szucs et al (1983) Peart & Bennet (1986) Peart et al (1997) Liu et al (2006) σ (10-16 cm 2 ) V (E h ) H 2 + (gs)+h (gs) H 3 + (gs) H 2 (a 3 Σ g + ) + H(1s) H 2 (X 1 Σ g + ) + H(n=2) v (cm/s) R (a 0 ) 37 / 42

62 H + 2 +H H 2 +H Szucs et al (1983) Peart & Bennet (1986) Peart et al (1997) Liu et al (2006) , σ (10-16 cm 2 ) V (E h ) H 2 + (gs)+h (gs) H 3 + (gs) H 2 (a 3 Σ g + ) + H(1s) H 2 (X 1 Σ g + ) + H(n=2) v (cm/s) R (a 0 ) 38 / 42

63 H + 2 +H H 2 +H Szucs et al (1983) Peart & Bennet (1986) Peart et al (1997) Liu et al (2006) , σ (10-16 cm 2 ) V (E h ) H 2 + (gs)+h (gs) H 3 + (gs) H 2 (a 3 Σ g + ) + H(1s) H 2 (X 1 Σ g + ) + H(n=2) v (cm/s) R (a 0 ) 39 / 42

64 Summary Large-scale quantal, semiclassical and classical calculations. Elastic, electron capture and ionization cross sections. Ion-atom collisions: B 5+ +H(n=1,2) and H + +Li Ion-molecule collisions: H + +N 2 and H +H / 42

65 References Barragán et al (2010): P. Barragán, L. F. Errea, F. Guzmán, L. Méndez, I. Rabadán, I. Ben-Itzhak. Phys. Rev. A (2010) Guzmán et al (2010): F. Guzmán, L. F. Errea, C. Illescas, L. Méndez and B. Pons. J. Phys. B (2010) Errea et al (2008): L. F. Errea, F. Guzmán, L. Méndez, B. Pons and A. Riera. Phys. Rev. A (2008) Rudd et al (1985): M. E. Rudd, T. V. Goffe and A. Itoh. Phys.Rev. A (1985) Cabrera-Trujillo et al (2002): R. Cabrera-Trujillo, Y. Öhrn, E. Deumens, J. R. Sabin, and B. G. Lindsay. Phys. Rev. A (2002) Gao et al (1990): R. S. Gao, L. K. Johnson, C. L. Hakes, K. A. Smith and R. R. Stebbings. Phys. Rev. A (1990) Gilmore (1965): F. R. Gilmore. J. Quant. Spectry. Radiative Transfer, 5, 369 (1965) 41 / 42

66 References Szücs (1983): S. Szücs, M. Karemera and M. Terao, Abstracs of XIII-ICPEAC, Berlin p-482 Liu (2006): C. L. Liu, J. G. Wang and R. K Janev. J. Phys. B (2006) Peart (1997): B. Peart, R. Padgett and D. A. Hayton. J. Phys. B (1997) Peart (1986): B. Peart and M. A. Bennett. J. Phys. B. 19 L321 (1986) 42 / 42

Theoretical treatment of Ion-Atom and Ion-Molecule Collisions

Theoretical treatment of Ion-Atom and Ion-Molecule Collisions Theoretical treatment of Ion-Atom and Ion-Molecule Collisions Ismanuel Rabadán Departamento de Química, Universidad Autónoma de Madrid (Laboratorio Asociado al CIEMAT de Física Atómica y Molecular en Plasmas

More information

and excitation in ion-h, He collisions in the energy range of kev/amu

and excitation in ion-h, He collisions in the energy range of kev/amu Theoretical studies of ionization, charge transfer and excitation in ion-h, He collisions in the energy range of 25-500 kev/amu Clara Illescas UNIVERSIDAD AUTÓNOMA DE MADRID June 2017 Contents 1 Motivation

More information

CHARGE EXCHANGE IN SLOW COLLISIONS OF IONS WITH HYDROGEN ISOTOPES. ADIABATIC APPROACH Inga Yu. Tolstikhina

CHARGE EXCHANGE IN SLOW COLLISIONS OF IONS WITH HYDROGEN ISOTOPES. ADIABATIC APPROACH Inga Yu. Tolstikhina CHARGE EXCHANGE IN SLOW COLLISIONS OF IONS WITH HYDROGEN ISOTOPES. ADIABATIC APPROACH Inga Yu. Tolstikhina P.N.Lebedev Physical Institute, Russian Academy of Sciences Moscow, Russia Theoretical approaches

More information

Calculations of electron-molecule scattering cross sections using the Rmatrix method

Calculations of electron-molecule scattering cross sections using the Rmatrix method Calculations of electron-molecule scattering cross sections using the Rmatrix method Jimena Gorfinkiel Department of Physical Sciences The Open University Milton Keynes, UK Jimena.Gorfinkiel@open.ac.uk

More information

Atomic and Molecular Data Activities for Fusion Research in JAEA. T. Nakano Japan Atomic Energy Agency

Atomic and Molecular Data Activities for Fusion Research in JAEA. T. Nakano Japan Atomic Energy Agency "Technical Aspects of Atomic and Molecular Data Processing and Exchange" (20th Meeting of the Atomic and Molecular Data Centres and ALADDIN Network), 7-9 September 2009, IAEA HQ, Vienna, Austria Atomic

More information

Low-Energy Charge Transfer in Multiply-Charged Ion-Atom Collisions Studied with the Combined SCVB-MOCC Approach

Low-Energy Charge Transfer in Multiply-Charged Ion-Atom Collisions Studied with the Combined SCVB-MOCC Approach Int. J. Mol. Sci. 2002, 3, 220 229 Int. J. Mol. Sci. ISSN 1422-0067 www.mdpi.org/ijms/ Low-Energy Charge Transfer in Multiply-Charged Ion-Atom Collisions Studied with the Combined SCVB-MOCC Approach D.

More information

Charge transfer in slow collisions of O 8+ and Ar 8+ ions with H 1s below 2 kev/amu

Charge transfer in slow collisions of O 8+ and Ar 8+ ions with H 1s below 2 kev/amu PHYSICAL REVIEW A 70, 012702 (2004) Charge transfer in slow collisions of O 8+ and Ar 8+ ions with H 1s below 2 kev/amu Teck-Ghee Lee, 1,2 M. Hesse, 2,3 Anh-Thu Le, 2 and C. D. Lin 2 1 Physics Division,

More information

Energy and Forces in DFT

Energy and Forces in DFT Energy and Forces in DFT Total Energy as a function of nuclear positions {R} E tot ({R}) = E DF T ({R}) + E II ({R}) (1) where E DF T ({R}) = DFT energy calculated for the ground-state density charge-density

More information

Basis Generator Method Calculations for Charge-Transfer Collisions Involving Few-Electron Systems. Tom Kirchner

Basis Generator Method Calculations for Charge-Transfer Collisions Involving Few-Electron Systems. Tom Kirchner Basis Generator Method Calculations for Charge-Transfer Collisions Involving Few-Electron Systems Tom Kirchner Few-electron dynamics Challenging because of nonseparability Interesting because of nonseparability

More information

Total and state-selective electron capture cross sections for C 3+ + H collisions

Total and state-selective electron capture cross sections for C 3+ + H collisions J. Phys. B: At. Mol. Opt. Phys. 32 (1999) 5271 5278. Printed in the UK PII: S0953-4075(99)06231-8 Total and state-selective electron capture cross sections for C 3+ + H collisions H C Tseng and C D Lin

More information

Eikonal method for halo nuclei

Eikonal method for halo nuclei Eikonal method for halo nuclei E. C. Pinilla, P. Descouvemont and D. Baye Université Libre de Bruxelles, Brussels, Belgium 1. Motivation 2. Introduction 3. Four-body eikonal method Elastic scattering 9

More information

HEAVY PARTICLE COLLISION PROCESSES. Alain Dubois

HEAVY PARTICLE COLLISION PROCESSES. Alain Dubois HEAVY PARTICLE COLLISION PROCESSES Alain Dubois Laboratoire de Chimie Physique - Matière et Rayonnement Université Pierre et Marie Curie - CNRS Paris FRANCE Heavy particle collision processes I - Introduction

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

Charge transfer in collisions of Be q+ (q=2-4) and B q+ (q=3-5) ions with H

Charge transfer in collisions of Be q+ (q=2-4) and B q+ (q=3-5) ions with H Journal of Physics: Conference Series OPEN ACCESS Charge transfer in collisions of Be q+ (q=2-4) and B q+ (q=3-5) ions with H To cite this article: Y Wu et al 2015 J. Phys.: Conf. Ser. 576 012012 View

More information

International Atomic Energy Agency, Vienna, Austria. Charge Transfer in Collisions of Ions with atoms and molecules.

International Atomic Energy Agency, Vienna, Austria. Charge Transfer in Collisions of Ions with atoms and molecules. International Centre for Theoretical Physics (ICTP), Trieste, Italy International Atomic Energy Agency, Vienna, Austria Training Workshop on Atomic and Molecular Data for Fusion Energy Research Charge

More information

Low energy ionization, charge transfer and reactive collisions for ion source and edge plasma chemistry. X. Urbain

Low energy ionization, charge transfer and reactive collisions for ion source and edge plasma chemistry. X. Urbain Low energy ionization, charge transfer and reactive collisions for ion source and edge plasma chemistry X. Urbain Experimentalists Network Meeting IAEA November 2018 Merged Ion Beams Low temperature &

More information

Electron-loss and capture cross sections of W and its ions colliding with H and He atoms

Electron-loss and capture cross sections of W and its ions colliding with H and He atoms Electron-loss and capture cross sections of W and its ions colliding with H and He atoms I.Yu. Tolstikhina and V.P. Shevelko P.N. Lebedev Physical Institute, Moscow September 5, 2012 In collaboration with:

More information

The Hartree-Fock approximation

The Hartree-Fock approximation Contents The Born-Oppenheimer approximation Literature Quantum mechanics 2 - Lecture 7 November 21, 2012 Contents The Born-Oppenheimer approximation Literature 1 The Born-Oppenheimer approximation 2 3

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory Introduction to Density Functional Theory S. Sharma Institut für Physik Karl-Franzens-Universität Graz, Austria 19th October 2005 Synopsis Motivation 1 Motivation : where can one use DFT 2 : 1 Elementary

More information

The validity of classical trajectory and perturbative quantal methods for electron-impact ionization from excited states in H-like ions

The validity of classical trajectory and perturbative quantal methods for electron-impact ionization from excited states in H-like ions INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS J. Phys. B: At. Mol. Opt. Phys. 38 (25) L199 L26 doi:1.188/953-475/38/12/l1 LETTER TO THE EDITOR The validity

More information

Direct reactions methodologies for use at fragmentation beam energies

Direct reactions methodologies for use at fragmentation beam energies 1 Direct reactions methodologies for use at fragmentation beam energies TU Munich, February 14 th 2008 Jeff Tostevin, Department of Physics Faculty of Engineering and Physical Sciences University of Surrey,

More information

Non-adiabatic interactions in charge transfer collisions

Non-adiabatic interactions in charge transfer collisions Cent. Eur. J. Phys. 11(9) 2013 1149-1156 DOI: 10.2478/s11534-013-0245-x Central European Journal of Physics Non-adiabatic interactions in charge transfer collisions Research Article Marie Christine Bacchus

More information

Beam-plasma atomic data needs for fusion devices

Beam-plasma atomic data needs for fusion devices Beam-plasma atomic data needs for fusion devices Contemporary areas of application on fusion machines: Beam stopping (H/D/T heating beams) Beam shinethrough in small machines and/or at low density. Power

More information

Molecular Dynamics. Park City June 2005 Tully

Molecular Dynamics. Park City June 2005 Tully Molecular Dynamics John Lance Natasa Vinod Xiaosong Dufie Priya Sharani Hongzhi Group: August, 2004 Prelude: Classical Mechanics Newton s equations: F = ma = mq = p Force is the gradient of the potential:

More information

Alex M Imai, Y. Ohta and A. Itoh Department of Nuclear Engineering, Kyoto University

Alex M Imai, Y. Ohta and A. Itoh Department of Nuclear Engineering, Kyoto University Alex M Imai, Y. Ohta and A. Itoh Department of Nuclear Engineering, Kyoto University Joint IAEA-NFRI Technical Meeting on Data Evaluation for Atomic, Molecular and Plasma-Material Interaction Processes

More information

Convergent TCAO close-coupling calculations for electron transfer, excitation and ionization in intermediate kev He 2+ H collisions

Convergent TCAO close-coupling calculations for electron transfer, excitation and ionization in intermediate kev He 2+ H collisions J. Phys. B: At. Mol. Opt. Phys. 30 (1997) 101 113. Printed in the UK PII: S0953-4075(97)76140-6 Convergent TCAO close-coupling calculations for electron transfer, excitation and ionization in intermediate

More information

Open quantum systems

Open quantum systems Open quantum systems Wikipedia: An open quantum system is a quantum system which is found to be in interaction with an external quantum system, the environment. The open quantum system can be viewed as

More information

Vibrationally resolved ion-molecule collisions

Vibrationally resolved ion-molecule collisions Vibrationally resolved ion-molecule collisions CRP: Atomic and Molecular Data for State-Resolved Modelling of Hydrogen and Helium and Their Isotopes in Fusion plasma Predrag Krstic Physics Division, Oak

More information

A Quantum-Classical Approach for the Study of Cascade Processes in Exotic Hydrogen Atoms

A Quantum-Classical Approach for the Study of Cascade Processes in Exotic Hydrogen Atoms PSAS 28 International Conference on Precision Physics of Simple Atomic Systems Windsor, July 21-26, 28 A Quantum-Classical Approach for the Study of Cascade Processes in Exotic Hydrogen Atoms M.P. Faifman

More information

Diatomic Molecules. 7th May Hydrogen Molecule: Born-Oppenheimer Approximation

Diatomic Molecules. 7th May Hydrogen Molecule: Born-Oppenheimer Approximation Diatomic Molecules 7th May 2009 1 Hydrogen Molecule: Born-Oppenheimer Approximation In this discussion, we consider the formulation of the Schrodinger equation for diatomic molecules; this can be extended

More information

Electron States of Diatomic Molecules

Electron States of Diatomic Molecules IISER Pune March 2018 Hamiltonian for a Diatomic Molecule The hamiltonian for a diatomic molecule can be considered to be made up of three terms Ĥ = ˆT N + ˆT el + ˆV where ˆT N is the kinetic energy operator

More information

Introduction to Computational Chemistry

Introduction to Computational Chemistry Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry room B430, Chemicum 4th floor vesa.hanninen@helsinki.fi September 3, 2013 Introduction and theoretical backround September

More information

Algorithms and Computational Aspects of DFT Calculations

Algorithms and Computational Aspects of DFT Calculations Algorithms and Computational Aspects of DFT Calculations Part I Juan Meza and Chao Yang High Performance Computing Research Lawrence Berkeley National Laboratory IMA Tutorial Mathematical and Computational

More information

Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms

Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms K. JANKOWSKI a, R. SŁUPSKI a, and J. R. FLORES b a Nicholas Copernicus University 87-100 Toruń,

More information

arxiv:nucl-th/ v1 23 Mar 2004

arxiv:nucl-th/ v1 23 Mar 2004 arxiv:nucl-th/0403070v1 23 Mar 2004 A SEMICLASSICAL APPROACH TO FUSION REACTIONS M. S. HUSSEIN Instituto de Física, Universidade de São Paulo CP 66318, 05389-970, São Paulo SP, Brazil E-mail: hussein@fma.if.usp.br

More information

VALENCE Hilary Term 2018

VALENCE Hilary Term 2018 VALENCE Hilary Term 2018 8 Lectures Prof M. Brouard Valence is the theory of the chemical bond Outline plan 1. The Born-Oppenheimer approximation 2. Bonding in H + 2 the LCAO approximation 3. Many electron

More information

JOURNAL DE PHYSIQUE Colloque C1, supplement au nol, Tome 50, janvier P. D. FAINSTEIN( ), V. H. PONCE and R. D. RIVAROLA*

JOURNAL DE PHYSIQUE Colloque C1, supplement au nol, Tome 50, janvier P. D. FAINSTEIN( ), V. H. PONCE and R. D. RIVAROLA* JOURNAL DE PHYSIQUE Colloque C1, supplement au nol, Tome 50, janvier 1989 IONISATION OF HELIUM BY MULTIPLY CHARGED IONS AT INTERMEDIATE AND HIGH ENERGIES P. D. FAINSTEIN( ), V. H. PONCE and R. D. RIVAROLA*

More information

The Projector Augmented Wave method

The Projector Augmented Wave method The Projector Augmented Wave method Advantages of PAW. The theory. Approximations. Convergence. 1 The PAW method is... What is PAW? A technique for doing DFT calculations efficiently and accurately. An

More information

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University AN INTRODUCTION TO QUANTUM CHEMISTRY Mark S. Gordon Iowa State University 1 OUTLINE Theoretical Background in Quantum Chemistry Overview of GAMESS Program Applications 2 QUANTUM CHEMISTRY In principle,

More information

Single-particle and cluster excitations

Single-particle and cluster excitations Single-particle and cluster excitations TALENT Module Nb. 6 A. M. Moro Universidad de Sevilla 9/32 Inelastic scattering: cluster model Some nuclei permit a description in terms of two or more clusters:

More information

Quantum Molecular Dynamics Basics

Quantum Molecular Dynamics Basics Quantum Molecular Dynamics Basics Aiichiro Nakano Collaboratory for Advanced Computing & Simulations Depts. of Computer Science, Physics & Astronomy, Chemical Engineering & Materials Science, and Biological

More information

Problem 1: Spin 1 2. particles (10 points)

Problem 1: Spin 1 2. particles (10 points) Problem 1: Spin 1 particles 1 points 1 Consider a system made up of spin 1/ particles. If one measures the spin of the particles, one can only measure spin up or spin down. The general spin state of a

More information

2 Electronic structure theory

2 Electronic structure theory Electronic structure theory. Generalities.. Born-Oppenheimer approximation revisited In Sec..3 (lecture 3) the Born-Oppenheimer approximation was introduced (see also, for instance, [Tannor.]). We are

More information

D. De Fazio, T. V. Tscherbul 2, S. Cavalli 3, and V. Aquilanti 3

D. De Fazio, T. V. Tscherbul 2, S. Cavalli 3, and V. Aquilanti 3 D. De Fazio, T. V. Tscherbul, S. Cavalli 3, and V. Aquilanti 3 1 Istituto di Struttura della Materia C.N.R., 00016 Roma, Italy Department of Chemistry, University of Toronto, M5S 3H6, Canada 3 Dipartimento

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

AN ACCELERATED SURFACE-HOPPING METHOD FOR COMPUTATIONAL SEMICLASSICAL MOLECULAR DYNAMICS. Laren K. Mortensen

AN ACCELERATED SURFACE-HOPPING METHOD FOR COMPUTATIONAL SEMICLASSICAL MOLECULAR DYNAMICS. Laren K. Mortensen AN ACCELERATED SURFACE-HOPPING METHOD FOR COMPUTATIONAL SEMICLASSICAL MOLECULAR DYNAMICS by Laren K. Mortensen A senior thesis submitted to the faculty of Brigham Young University in partial fulfillment

More information

Charge Exchange in Low-Energy H, D + C 4+ Collisions with Full Account of Electron Translation

Charge Exchange in Low-Energy H, D + C 4+ Collisions with Full Account of Electron Translation Int. J. Mol. Sci. 2002, 3, 190-208 Int. J. Mol. Sci. ISSN 1422-0067 www.mdpi.org/ijms/ Charge Exchange in Low-Energy H, D + C 4+ Collisions with Full Account of Electron Translation A. K. Belyaev 1, J.

More information

Problems in deuteron stripping reaction theories

Problems in deuteron stripping reaction theories Problems in deuteron stripping reaction theories DY Pang School of Physics and Nuclear Energy Engineering, Beihang University, Beijing October 7, 2016 Topics: Some history of the study of deuteron stripping

More information

Coulomb Corrections in Quasielastic Scattering off Heavy Nuclei

Coulomb Corrections in Quasielastic Scattering off Heavy Nuclei Coulomb Corrections in Quasielastic Scattering off Heavy Nuclei Andreas Aste Department of Physics and Astronomy Theory Division University of Basel, Switzerland Workshop on Precision ElectroWeak Interactions

More information

Database for Imaging and Transport with Energetic Neutral Atoms (ENAs)

Database for Imaging and Transport with Energetic Neutral Atoms (ENAs) Database for Imaging and Transport with Energetic Neutral Atoms (ENAs) Nicholas Lewkow Harvard-Smithsonian Center for Astrophysics University of Connecticut April 26, 213 Collaborators Vasili Kharchenko

More information

Singly differential electron emission cross sections for ionization of helium by protons

Singly differential electron emission cross sections for ionization of helium by protons Nuclear Instruments and Methods in Physics Research B 233 (25) 176 181 www.elsevier.com/locate/nimb Singly differential electron emission cross sections for ionization of helium by protons I.F. Barna a,

More information

Electron capture, excitation and ionization in slow collisions of Li 3+ ions with ground-state and metastable hydrogen atoms

Electron capture, excitation and ionization in slow collisions of Li 3+ ions with ground-state and metastable hydrogen atoms J. Phys. B: At. Mol. Opt. Phys. 29 (1996) 2497 2514. Printed in the UK Electron capture, excitation and ionization in slow collisions of Li 3+ ions with ground-state and metastable hydrogen atoms R K Janev,

More information

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2 Purdue University CHM 67300 Computational Quantum Chemistry REVIEW Yingwei Wang October 10, 2013 Review: Prof Slipchenko s class, Fall 2013 Contents 1 Hartree energy 2 2 Many-body system 2 3 Born-Oppenheimer

More information

The Overhauser Instability

The Overhauser Instability The Overhauser Instability Zoltán Radnai and Richard Needs TCM Group ESDG Talk 14th February 2007 Typeset by FoilTEX Introduction Hartree-Fock theory and Homogeneous Electron Gas Noncollinear spins and

More information

Conical Intersections. Spiridoula Matsika

Conical Intersections. Spiridoula Matsika Conical Intersections Spiridoula Matsika The Born-Oppenheimer approximation Energy TS Nuclear coordinate R ν The study of chemical systems is based on the separation of nuclear and electronic motion The

More information

High Energy D 2 Bond from Feynman s Integral Wave Equation

High Energy D 2 Bond from Feynman s Integral Wave Equation Applying the Scientific Method to Understanding Anomalous Heat Effects: Opportunities and Challenges High Energy D Bond from Feynman s Integral Wave Equation By: Thomas Barnard Sponsored by: Coolesence

More information

Atomic-basis study of electron transfer into C3+(nZ) orbitals in C4+ + H and C4+ + Li collisions

Atomic-basis study of electron transfer into C3+(nZ) orbitals in C4+ + H and C4+ + Li collisions J. Phys. B: At. Mol. Phys. 17 (1984) 3271-3278. Printed in Great Britain Atomic-basis study of electron transfer into C3+(nZ) orbitals in C4+ + H and C4+ + Li collisions W Fritscht and C D Idin$ t Bereich

More information

CTMC Investigation of Capture and Ionization Processes in P + H(1s) Collisions in Strong Transverse Magnetic Fields

CTMC Investigation of Capture and Ionization Processes in P + H(1s) Collisions in Strong Transverse Magnetic Fields Commun. Theor. Phys. 63 (2015) 499 504 Vol. 63, No. 4, April 1, 2015 CTMC Investigation of Capture and Ionization Processes in P + H(1s) Collisions in Strong Transverse Magnetic Fields HE Bin (Ê), 1, WANG

More information

Convergent Close-Coupling approach to atomic and molecular collisions

Convergent Close-Coupling approach to atomic and molecular collisions Convergent Close-Coupling approach to atomic and molecular collisions Igor Bray Dmitry Fursa, Alisher Kadyrov, Andris Stelbovics and many students Head, Physics, Astronomy and Medical Imaging Science,

More information

Key concepts in Density Functional Theory (I) Silvana Botti

Key concepts in Density Functional Theory (I) Silvana Botti From the many body problem to the Kohn-Sham scheme European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute for Microstructure Physics OUTLINE LECTURE I Phenomena to be described by TDDFT Some generalities on functional theories LECTURE

More information

Wavepacket Correlation Function Approach for Nonadiabatic Reactions: Quasi-Jahn-Teller Model

Wavepacket Correlation Function Approach for Nonadiabatic Reactions: Quasi-Jahn-Teller Model Wavepacket Correlation for Nonadiabatic Reactions Bull. Korean Chem. Soc. 04, Vol. 35, No. 4 06 http://dx.doi.org/0.50/bkcs.04.35.4.06 Wavepacket Correlation Function Approach for Nonadiabatic Reactions:

More information

Three-cluster dynamics within an ab initio framework

Three-cluster dynamics within an ab initio framework Three-cluster dynamics within an ab initio framework Universality in Few-Body Systems: Theoretical Challenges and New Directions INT 14-1, March 26, 2014 S. Quaglioni Collaborators: C. Romero-Redondo (TRIUMF)

More information

Solid State Theory: Band Structure Methods

Solid State Theory: Band Structure Methods Solid State Theory: Band Structure Methods Lilia Boeri Wed., 11:15-12:45 HS P3 (PH02112) http://itp.tugraz.at/lv/boeri/ele/ Plan of the Lecture: DFT1+2: Hohenberg-Kohn Theorem and Kohn and Sham equations.

More information

Theoretical description of H 2 Eley-Rideal recombination on W(110)

Theoretical description of H 2 Eley-Rideal recombination on W(110) Theoretical description of H 2 Eley-Rideal recombination on W(110) Cédric CRESPOS, Pascal LARREGARAY, Ernesto QUINTAS, Rémi PETUYA Theoretical Chemistry Group Institut des Sciences Moléculaires Université

More information

Uncertainty in Molecular Photoionization!

Uncertainty in Molecular Photoionization! Uncertainty in Molecular Photoionization! Robert R. Lucchese! Department of Chemistry! Texas A&M University Collaborators:! At Texas A&M: R. Carey, J. Lopez, J. Jose! At ISMO, Orsay, France: D. Dowek and

More information

Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC

Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC Sergey V. Churakov sergey.churakov@psi.ch Paul Scherrer Institute Switzerland Cement Phase Composition C-S-H H Solid Solution Model

More information

ON ELECTRONIC REPRESENTATIONS IN MOLECULAR REACTION DYNAMICS

ON ELECTRONIC REPRESENTATIONS IN MOLECULAR REACTION DYNAMICS ON ELECTRONIC REPRESENTATIONS IN MOLECULAR REACTION DYNAMICS By BENJAMIN J. KILLIAN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

Magnetism in low dimensions from first principles. Atomic magnetism. Gustav Bihlmayer. Gustav Bihlmayer

Magnetism in low dimensions from first principles. Atomic magnetism. Gustav Bihlmayer. Gustav Bihlmayer IFF 10 p. 1 Magnetism in low dimensions from first principles Atomic magnetism Gustav Bihlmayer Institut für Festkörperforschung, Quantum Theory of Materials Gustav Bihlmayer Institut für Festkörperforschung

More information

ELECTRON SHELL IMPACT ON NUCLEI

ELECTRON SHELL IMPACT ON NUCLEI ELECTRON SHELL IMPACT ON THE ALPHA-DECAY OF HEAVY NUCLEI Yu.M. Tchuvil sky Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia In co-authorship with S.Yu. Igashov

More information

H- and He-like X-ray emission due to charge exchange

H- and He-like X-ray emission due to charge exchange H- and He-like X-ray emission due to charge exchange RENATA CUMBEE NPP FELLOW (GFSC, ROB PETRE) PREVIOUSLY UNDER THE DIRECTION OF P. C. S TA N C I L Outline Charge exchange (CX): The basics Why do we care?

More information

Born-Oppenheimer Approximation

Born-Oppenheimer Approximation Born-Oppenheimer Approximation Adiabatic Assumption: Nuclei move so much more slowly than electron that the electrons that the electrons are assumed to be obtained if the nuclear kinetic energy is ignored,

More information

Lecture 10. Born-Oppenheimer approximation LCAO-MO application to H + The potential energy surface MOs for diatomic molecules. NC State University

Lecture 10. Born-Oppenheimer approximation LCAO-MO application to H + The potential energy surface MOs for diatomic molecules. NC State University Chemistry 431 Lecture 10 Diatomic molecules Born-Oppenheimer approximation LCAO-MO application to H + 2 The potential energy surface MOs for diatomic molecules NC State University Born-Oppenheimer approximation

More information

Electron impact ionization of diatomic molecules

Electron impact ionization of diatomic molecules Eur. Phys. J. D 8, 5 5 (8) DOI:./epjd/e8-- Electron impact ionization of diatomic molecules I. Tóth, R.I. Campeanu, V. Chiş and L. Nagy Eur. Phys. J. D 8, 5 5 (8) DOI:./epjd/e8-- THE EUROPEAN PHYSICAL

More information

Ultracold Molecules and Cold Controlled Chemistry. Roman Krems University of British Columbia

Ultracold Molecules and Cold Controlled Chemistry. Roman Krems University of British Columbia Ultracold Molecules and Cold Controlled Chemistry Roman Krems University of British Columbia Sergey Alyabyshev Zhiying Li Timur Tscherbul ultra-cold cold warm hot 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

More information

André Schleife Department of Materials Science and Engineering

André Schleife Department of Materials Science and Engineering André Schleife Department of Materials Science and Engineering Yesterday you (should have) learned this: http://upload.wikimedia.org/wikipedia/commons/e/ea/ Simple_Harmonic_Motion_Orbit.gif 1. deterministic

More information

Ch 125a Problem Set 1

Ch 125a Problem Set 1 Ch 5a Problem Set Due Monday, Oct 5, 05, am Problem : Bra-ket notation (Dirac notation) Bra-ket notation is a standard and convenient way to describe quantum state vectors For example, φ is an abstract

More information

Let b be the distance of closest approach between the trajectory of the center of the moving ball and the center of the stationary one.

Let b be the distance of closest approach between the trajectory of the center of the moving ball and the center of the stationary one. Scattering Classical model As a model for the classical approach to collision, consider the case of a billiard ball colliding with a stationary one. The scattering direction quite clearly depends rather

More information

Introduction to Hartree-Fock Molecular Orbital Theory

Introduction to Hartree-Fock Molecular Orbital Theory Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Origins of Mathematical Modeling in Chemistry Plato (ca. 428-347

More information

Cold molecules: Theory. Viatcheslav Kokoouline Olivier Dulieu

Cold molecules: Theory. Viatcheslav Kokoouline Olivier Dulieu Cold molecules: Theory Viatcheslav Kokoouline Olivier Dulieu Summary (1) Born-Oppenheimer approximation; diatomic electronic states, rovibrational wave functions of the diatomic cold molecule molecule

More information

(1/2) M α 2 α, ˆTe = i. 1 r i r j, ˆV NN = α>β

(1/2) M α 2 α, ˆTe = i. 1 r i r j, ˆV NN = α>β Chemistry 26 Spectroscopy Week # The Born-Oppenheimer Approximation, H + 2. Born-Oppenheimer approximation As for atoms, all information about a molecule is contained in the wave function Ψ, which is the

More information

Resonances in Chemical Reactions : Theory and Experiment. Toshiyuki Takayanagi Saitama University Department of Chemistry

Resonances in Chemical Reactions : Theory and Experiment. Toshiyuki Takayanagi Saitama University Department of Chemistry Resonances in Chemical Reactions : Theory and Experiment Toshiyuki Takayanagi Saitama University Department of Chemistry What is Chemical Reaction? Collision process between molecules (atoms) containing

More information

Project: Vibration of Diatomic Molecules

Project: Vibration of Diatomic Molecules Project: Vibration of Diatomic Molecules Objective: Find the vibration energies and the corresponding vibrational wavefunctions of diatomic molecules H 2 and I 2 using the Morse potential. equired Numerical

More information

Simulation of Gas-Surface Dynamical Interactions

Simulation of Gas-Surface Dynamical Interactions Simulation of Gas-Surface Dynamical Interactions Axel Groß Abteilung Theoretische Chemie Universität Ulm Albert-Einstein-Allee 11 D-89069 Ulm GERMANY email: axel.gross@uni-ulm.de Abstract The interaction

More information

Density Functional Theory: from theory to Applications

Density Functional Theory: from theory to Applications Density Functional Theory: from theory to Applications Uni Mainz May 27, 2012 Large barrier-activated processes time-dependent bias potential extended Lagrangian formalism Basic idea: during the MD dynamics

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo ensemble averaging, no dynamics easy

More information

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation Electrochemistry project, Chemistry Department, November 2006 Ab-initio Molecular Dynamics Simulation Outline Introduction Ab-initio concepts Total energy concepts Adsorption energy calculation Project

More information

arxiv:nucl-th/ v1 21 May 1998

arxiv:nucl-th/ v1 21 May 1998 SUDDEN TO ADIABATIC TRANSITION IN BETA DECAY arxiv:nucl-th/9854v1 1 May 1998 J. Chizma G. Karl and V. Novikov* Department of Physics, University of Guelph, Guelph, CANADA, N1G W1 (* on leave from ITEP,

More information

Theoretical Photochemistry SoSe 2014

Theoretical Photochemistry SoSe 2014 Theoretical Photochemistry SoSe 2014 Lecture 9 Irene Burghardt (burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ Theoretical Photochemistry 1 Topics 1. Photophysical Processes

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

Models for Time-Dependent Phenomena

Models for Time-Dependent Phenomena Models for Time-Dependent Phenomena I. Phenomena in laser-matter interaction: atoms II. Phenomena in laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein p.1 Outline Phenomena

More information

Ab initio molecular dynamics: Basic Theory and Advanced Met

Ab initio molecular dynamics: Basic Theory and Advanced Met Ab initio molecular dynamics: Basic Theory and Advanced Methods Uni Mainz October 30, 2016 Bio-inspired catalyst for hydrogen production Ab-initio MD simulations are used to learn how the active site

More information

Evaluation of inclusive breakup cross sections in reactions induced by weakly-bound nuclei within a three-body model

Evaluation of inclusive breakup cross sections in reactions induced by weakly-bound nuclei within a three-body model Evaluation of inclusive breakup cross sections in reactions induced by weakly-bound nuclei within a three-body model Jin Lei, Antonio M. Moro Departamento de FAMN, Universidad de Sevilla, Apartado 165,

More information

Module 6 1. Density functional theory

Module 6 1. Density functional theory Module 6 1. Density functional theory Updated May 12, 2016 B A DDFT C K A bird s-eye view of density-functional theory Authors: Klaus Capelle G http://arxiv.org/abs/cond-mat/0211443 R https://trac.cc.jyu.fi/projects/toolbox/wiki/dft

More information

Aspects and prospects of

Aspects and prospects of Equation 23 of Radiative Transfer rd Meeting of the Atomic and Molecular Data Centres Network Aspects and prospects of KAERI atomic data center Duck-Hee Kwon and Kil-Byoung Chai Nuclear Data Center Korea

More information

Modeling cold collisions Atoms Molecules

Modeling cold collisions Atoms Molecules Modeling cold collisions Atoms Molecules E. Tiemann, H. Knöckel, A. Pashov* Institute of Quantum Optics *University Sofia, Bulgaria collisional wave function for E 0 A R=0 hk r B adopted from J. Weiner

More information

Igor Gontchar, Maria Chushnyakova Omsk, Russia Nucleus 2015

Igor Gontchar, Maria Chushnyakova Omsk, Russia Nucleus 2015 SYSTEMATIC COMPARISON OF HEAVY-ION FUSION BARRIERS CALCULATED WITHIN THE FRAMEWORK OF THE DOUBLE FOLDING MODEL USING TWO VERSIONS OF NUCLEON-NUCLEON INTERACTION Igor Gontchar, Maria Chushnyakova Omsk,

More information

Low-energy reactions involving halo nuclei: a microscopic version of CDCC

Low-energy reactions involving halo nuclei: a microscopic version of CDCC Low-energy reactions involving halo nuclei: a microscopic version of CDCC P. Descouvemont Université Libre de Bruxelles, Belgium In collaboration with M.S. Hussein (USP) E.C. Pinilla (ULB) J. Grineviciute

More information

Exact factorization of the electron-nuclear wave function and the concept of exact forces in MD

Exact factorization of the electron-nuclear wave function and the concept of exact forces in MD Exact factorization of the electron-nuclear wave function and the concept of exact forces in MD E.K.U. Gross Max-Planck Institute for Microstructure Physics Halle (Saale) OUTLINE Thanks Exact factorisation

More information

Protonium Formation in Antiproton Hydrogen Collisions

Protonium Formation in Antiproton Hydrogen Collisions WDS'8 Proceedings of Contributed Papers, Part III, 168 172, 28. ISBN 978-8-7378-67-8 MATFYZPRESS Protonium Formation in Antiproton Hydrogen Collisions J. Eliášek Charles University in Prague, Faculty of

More information