Kinematics. UCVTS AIT Physics

Size: px
Start display at page:

Download "Kinematics. UCVTS AIT Physics"

Transcription

1 Kinematics UCVTS AIT Physics

2 Kinematics Kinematics the branch of mechanics that deals with the study of the motion of objects without regard to the forces that cause the motion Displacement A vector that points from an object s initial position (Xo) to its final position (X) and has a magnitude equal to the shortest distance between the 2 positions UCVTS AIT Physics

3 Vector Example A particle travels from A to B along the path shown by the dotted red line This is the distance traveled and is a scalar The displacement is the solid line from A to B The displacement is independent of the path taken between the two points Displacement is a vector UCVTS AIT Physics

4 Kinematics Kinematics in 1 Dimension We live in a 3-dimensional world, so why bother analyzing 1-dimensional situations? Well, because any translational (straight-line, as opposed to rotational) motion problem can be separated into one or more 1-dimensional problems. Problems are often analyzed this way in physics (and remember throughout your future career; a complex problem can often be reduced to a series of simpler problems). The first step in solving a kinematics problem is to set up a coordinate system. This defines an origin (a starting point) as well as positive and negative directions. We'll also need to distinguish between scalars and vectors (which we have done already last week.remember? I know you do ). A scalar is something that has only a magnitude, like area or temperature, while a vector has both a magnitude and a direction, like displacement or velocity. In analyzing the motion of objects, there are four basic parameters to keep track of. These are time (t) displacement (x or y) velocity (v) acceleration (a). Time is a scalar, while the other three are vectors. In 1 dimension, however, it's difficult to see the difference between a scalar and a vector. The difference will be more obvious in 2 dimensions. UCVTS AIT Physics

5 Kinematics Kinematics in 1 Dimension Displacement The displacement represents the distance traveled, but it is a vector, so it also gives the direction. If you start in a particular spot and then move north 5 meters from where you started, your displacement is 5 m north. If you then turn around and go back, with a displacement of 5 m south, you would have traveled a total distance of 10 m, but your net displacement is zero, because you're back where you started. Displacement is the difference between your final position (x) and your starting point (xi) : It is a vector that points from an object s initial position to it s final position. Speed and Velocity Imagine that on your way to class one morning, you leave home on time, and you walk at 3 m/s east towards campus. After exactly one minute you realize that you've left your physics assignment at home, so you turn around and run, at 6 m/s, back to get it. You're running twice as fast as you walked, so it takes half as long (30 seconds) to get home again. There are several ways to analyze those 90 seconds between the time you left home and the time you arrived back again. One number to calculate is your average speed, which is defined as the total distance covered divided by the time. If you walked for 60 seconds at 3 m/s, you covered 180 m. You covered the same distance on the way back, so you went 360 m in 90 seconds. Average speed = distance / elapsed time = 360 / 90 = 4 m/s. The average velocity, on the other hand, is given by: x average velocity : v t In this case, your average velocity for the round trip is zero, because you're back where you started so the displacement is zero distance avg speed total time x average velocity : v x is the displacement vector, v has same direction as x t v instantaneous velocity v t is small t v average acceleration : a v is a vector t UCVTS AIT Physics

6 Kinematics Acceleration An object accelerates whenever its velocity changes. Going back to the example we used above, let's say instead of instantly breaking into a run the moment you turned around: you steadily increased your velocity from 3m/s west to 6 m/s west in a 10 second period. If your velocity increased at a constant rate, you experienced a constant acceleration of 0.3 m/s per second (or, 0.3 m/s2). We can figure out the average velocity during this time. If the acceleration is constant, which it is in this case, then the average velocity is simply the average of the initial and final velocities. The average of 3 m/s west and 6 m/s west is 4.5 m/s west. This average velocity can then be used to calculate the distance you traveled during your acceleration period, which was 10 seconds long. The distance is simply the average velocity multiplied by the time interval, so 45 m. Similar to the way the average velocity is related to the displacement, the average acceleration is related to the change in velocity: the average acceleration is the change in velocity over the time interval (in this case a change in velocity of 3 m/s in a time interval of 10 seconds). The instantaneous acceleration is given by: a v t As with the instantaneous velocity, the time interval is very small (unless the acceleration is constant, and then the time interval can be as big as we feel like making it). On the way out, you traveled at a constant velocity, so your acceleration was zero. On the trip back your instantaneous acceleration was 0.3 m/s2 for the first 10 seconds, and then zero after that as you maintained your top speed. Just as you arrived back at your front door, your instantaneous acceleration would be negative, because your velocity drops from 6 m/s west to zero in a small time interval. If you took 2 seconds to come to a stop, your acceleration is -6 / 2 = -3 m/s2. UCVTS AIT Physics

7

8 On October 15, 1997, in the Black Rock Desert, Nevada, the ThrustSSC set a new unlimited world land speed record reaching mph, or Mach 1.02.

9 Physics Problem Solving Steps 1. Don t Panic! Every problem has a solution. Well, at least the problems this year in Physics 2. READ the problem, READ the problem! 3. Construct an informative diagram of the physical situation (sketch). 4. Identify and list the given information in variable form (make a table of values) 5. Identify and list the unknown information in variable form. 6. Read the problem again to make sure you are solving for the correct quantity. 7. Identify and list the equation which will be used to determine the unknown information from the known variables. 8. Substitute known values into the equation and use appropriate algebraic steps to solve for the unknown or solve for the unknown variable first and then substitute known values (this is generally preferable and easier) 9. Check your answer to ensure that it is reasonable and mathematically correct (include UNITS in you solution and final answer) UCVTS AIT Physics

10 Kinematics Equations of Kinematics when Acceleration is Constant When the acceleration of an object is constant, calculations of the distance traveled by an object, the velocity it's traveling at a particular time, and/or the time it takes to reach a particular velocity or go a particular distance, are simplified. There are four equations that can be used to relate the different variables, so that knowing some of the variables allows the others to be determined. Note that the equations apply under these conditions: the acceleration is constant the motion is measured from t = 0 the equations are vector equations, but the variables are not normally written in bold letters. The fact that they are vectors comes in, however, with positive and negative signs. The equations are: v v at f 0 1 x f x0 ( v0 v ) t x f x0 v0t at 2 v v 2 a( x x ) 2 2 f 0 f 0 UCVTS AIT Physics

11 Kinematics Applications of the Equations of Kinetics 1. Make a drawing to represent the situation being studied 2. Decide which directions are positive and negative 3. Make a chart and write down all known values and what the question is asking for. 4. Verify that that the given information contains at least 3 of the 5 kinetic variables. 5. If the motion of the object is divided into segments, remember that the final velocity of one segment is the initial velocity of the next segment. Do Example 4 problem in text UCVTS AIT Physics

12 Kinematics Freely Falling Bodies (Free Fall) Objects falling straight down under the influence of gravity are excellent examples of objects traveling at constant acceleration in one dimension. This also applies to anything you throw straight up in the air which, because of the constant acceleration downwards, will rise until the velocity drops to zero and then will fall back down again. The acceleration experienced by a dropped or thrown object while it is in flight comes from the gravitational force exerted on the object by the Earth. If we're dealing with objects at the Earth's surface, which we usually are, we call this acceleration g, which has a value of 9.8 m/s2. This value is determined by three things: the mass of the Earth, the radius of the Earth, and a number called the universal gravitational constant. A typical one-dimensional free fall question (free fall meaning that the only acceleration we have to worry about is g) might go like this. You throw a ball straight up. It leaves your hand at 12.0 m/s. How high does it go? If, when the ball is on the way down, you catch it at the same height at which you let it go, how long was it in flight? How fast is it traveling when you catch it? Origin = height at which it leaves your hand Positive direction = up (a) At the very top of its flight, the ball has an instantaneous velocity of zero. We can plug v = 0 into the equation: This gives: 0 = (-9.8) x Solving for x gives x = 7.35 m, so the ball goes 7.35 m high. (b) To analyze the rest of the problem, it's helpful to remember that the down half of the trip is a mirror image of the up half. In other words, if, while going up, the ball passes through a particular height at a particular velocity (2 m/s up, for example), on its way down it will pass through that height at the same speed, with its velocity directed down rather than up. This means that the up half of the trip takes the same time as the down half of the trip, so we could just figure out how long it takes to reach its maximum height, and then double that to get the total time. Another way to do it is simply to plug x = 0 into the equation: This gives 0 = t t2 A factor of t can be canceled out of both terms, leaving: 0 = t, which gives a time of t = 12 / 4.9 = 2.45 s. (c) The answer for part (c) has to be 12 m/s down, because of the mirror-image relationship between the up half of the flight and the down half. We could also figure it out using the equation: v = vo + a t which gives: v = (2.45) = -12 m/s. UCVTS AIT Physics

13 Freely Falling Bodies (Free Fall) Do Example 12 (CJ8) Kinematics UCVTS AIT Physics

14 Kinematics 2D Kinematics Motion can be described in terms of time t and the x and y components of the displacement, acceleration and initial and final velocity vectors. Treat the x and y motion separately (each occurs as if the other was not happening!) Combine x and y motions at the end of the problem using Pythagorean Theorem and trigonometry x component x displacement y a acceleration a x v final velocity v f x v initial velocity v y component 0x 0y t elapsed time t y f y usually just constant velocity : v x t v v a t v v a t f x 0x x f y 0y y x 1 1 ( v0x v f x ) t y ( v0y v f y ) t 2 2 x 1 1 v0 xt a 2 2 xt y v0 yt ayt 2 2 v f x v0x 2axx v f y v0y UCVTS AIT Physics 2ay y

15 UCVTS AIT Physics

16 2-Dimensional Motion Definition: motion that occurs with both x and y components. Example: Playing pool. Throwing a ball to another person. Each dimension of the motion can obey different equations of motion.

17 Solving 2-D Problems Resolve all vectors into components x-component Y-component Work the problem as two one-dimensional problems. Each dimension can obey different equations of motion. Re-combine the results for the two components at the end of the problem.

18 Sample Problem You run in a straight line at a speed of 5.0 m/s in a direction that is 40 o south of west. a) How far west have you traveled in 2.5 minutes? b) How far south have you traveled in 2.5 minutes?

19 Sample Problem A roller coaster rolls down a 20 o incline with an acceleration of 5.0 m/s 2 (starting from rest). a) How far horizontally has the coaster traveled in 10 seconds? b) How far vertically has the coaster traveled in 10 seconds?

20 Projectile Motion Something is fired, thrown, shot, or hurled near the earth s surface. Horizontal velocity is constant. Vertical velocity is accelerated. Air resistance is ignored.

21 1-Dimensional Projectile Definition: A projectile that moves in a vertical direction only, subject to acceleration by gravity. Examples: Drop something off a cliff. Throw something straight up and catch it. You calculate vertical motion only. The motion has no horizontal component.

22 2-Dimensional Projectile Definition: A projectile that moves both horizontally and vertically, subject to acceleration by gravity in vertical direction. Examples: Throw a softball to someone else. Fire a cannon horizontally off a cliff. You calculate vertical and horizontal motion.

23 Horizontal Component of Velocity Is constant Not accelerated Not influence by gravity Follows equation: x = V o,x t

24 Horizontal Component of Velocity

25 Horizontal and Vertical

26 Sample Problem The Zambezi River flows over Victoria Falls in Africa. The falls are approximately 108 m high. If the river is flowing horizontally at 3.6 m/s just before going over the falls, what is the speed of the water when it hits the bottom? Assume the water is in freefall as it drops.

27 Sample Problem An astronaut on the planet Zircon tosses a rock horizontally with a speed of 6.75 m/s. The rock falls a distance of 1.20 m and lands a horizontal distance of 8.95 m from the astronaut. What is the acceleration due to gravity on Zircon?

28 Sample Problem Playing shortstop, you throw a ball horizontally to the second baseman with a speed of 22 m/s. The ball is caught by the second baseman 0.45 s later. a) How far were you from the second baseman? b) What is the distance of the vertical drop?

29 Launch angle Definition: The angle at which a projectile is launched. The launch angle determines what the trajectory of the projectile will be. Launch angles can range from -90 o (throwing something straight down) to +90 o (throwing something straight up) and everything in between.

30 Zero Launch angle v o A zero launch angle implies a perfectly horizontal launch.

31 General launch angle v o You must begin problems like this by resolving the velocity vector into its components.

32 A situation to consider A hunter spies a monkey in a tree, takes aim, and fires. At the moment the bullet leaves the gun the monkey lets go of the tree branch and drops straight down. How should the hunter aim to hit the monkey? Aim directly at the monkey Aim high (over the monkey's head) Aim low (below the monkey)

33 Resolving the velocity Use speed and the launch angle to find horizontal and vertical velocity components V o V o,y = V o sin V o,x = V o cos

34 Resolving the velocity Then proceed to work problems just like you did with the zero launch angle problems. V o V o,y = V o sin V o,x = V o cos

35 Sample problem A soccer ball is kicked with a speed of 9.50 m/s at an angle of 25 o above the horizontal. If the ball lands at the same level from which is was kicked, how long was it in the air?

36 Sample problem Snowballs are thrown with a speed of 13 m/s from a roof 7.0 m above the ground. Snowball A is thrown straight downward; snowball B is thrown in a direction 25 o above the horizontal. When the snowballs land, is the speed of A greater than, less than, or the same speed of B? Verify your answer by calculation of the landing speed of both snowballs.

37 Projectiles launched over level ground These projectiles have highly symmetric characteristics of motion. It is handy to know these characteristics, since a knowledge of the symmetry can help in working problems and predicting the motion. Lets take a look at projectiles launched over level ground.

38 Acceleration of a projectile y g g g g g x Acceleration points down at 9.8 m/s 2 for the entire trajectory of all projectiles.

39 Velocity of a projectile y v x v y v x v y v x v y v x v y v x x Notice how the vertical velocity changes while the horizontal velocity remains constant.

40 Position graphs for 2-D projectiles y y x x t t

41 Velocity graphs for 2-D projectiles Vy Vx t t

42 Acceleration graphs for 2-D projectiles ay ax t t

43 Sample problem A golfer tees off on level ground, giving the ball an initial speed of 42.0 m/s and an initial direction of 35 o above the horizontal. a) How far from the golfer does the ball land?

44 This is what you build when you have an extra F4 Phantom jet engine and a school bus? A team of hot-rodders in Lincoln, Neb., has gone 320 miles an hour in a jet-powered school bus. According to a CBS News report, the bus uses an engine from an old F4 fighter that puts out about 42,000 horsepower certainly enough to overcome the big yellow vehicle s obvious aerodynamic challenges. For people familiar with extreme motorsports, it is no surprise that people are making high-speed runs in school buses. Indeed, the recent speed run represents an intersection of at least two speed-junkie communities: people who routinely make topspeed runs (usually on salt flats, dry lake beds or long runways) and those who enjoy souping up school buses and other unlikely racing vehicles. There are groups that race school buses and drive them in demolition derbies. They fit right in with organizations for other wild competition involving everything from dragracing boats to lawn tractors. For everyday drivers, just the thought of getting stuck behind a plodding school bus can cause shudders. Of course, the hot jet blast from this bus could ruin your paint and your day.

45

Introduction to 2-Dimensional Motion

Introduction to 2-Dimensional Motion Introduction to 2-Dimensional Motion 2-Dimensional Motion! Definition: motion that occurs with both x and y components.! Example:! Playing pool.! Throwing a ball to another person.! Each dimension of the

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Projectile Motion An object may move in both the x and y directions simultaneously. This form of two-dimensional motion we will deal with is called projectile motion.

More information

1-D and 2-D Motion Test Friday 9/8

1-D and 2-D Motion Test Friday 9/8 1-D and -D Motion Test Frida 9/8 3-1 Vectors and Scalars A vector has magnitude as well as direction. Some vector quantities: displacement, velocit, force, momentum A scalar has onl a magnitude. Some scalar

More information

Physics 201 Homework 1

Physics 201 Homework 1 Physics 201 Homework 1 Jan 9, 2013 1. (a) What is the magnitude of the average acceleration of a skier who, starting (a) 1.6 m/s 2 ; (b) 20 meters from rest, reaches a speed of 8.0 m/s when going down

More information

PHYSICS Kinematics in One Dimension

PHYSICS Kinematics in One Dimension PHYSICS Kinematics in One Dimension August 13, 2012 www.njctl.org 1 Motion in One Dimension Return to Table of Contents 2 Distance We all know what the distance between two objects is... So what is it?

More information

Chapter 3. Kinematics in Two Dimensions

Chapter 3. Kinematics in Two Dimensions Chapter 3 Kinematics in Two Dimensions 3.1 Trigonometry 3.1 Trigonometry sin! = h o h cos! = h a h tan! = h o h a 3.1 Trigonometry tan! = h o h a tan50! = h o 67.2m h o = tan50! ( 67.2m) = 80.0m 3.1 Trigonometry!

More information

Kinematics Multiple- Choice Questions (answers on page 16)

Kinematics Multiple- Choice Questions (answers on page 16) Kinematics Multiple- Choice Questions (answers on page 16) 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle.

More information

Projectile Motion. v a = -9.8 m/s 2. Good practice problems in book: 3.23, 3.25, 3.27, 3.29, 3.31, 3.33, 3.43, 3.47, 3.51, 3.53, 3.

Projectile Motion. v a = -9.8 m/s 2. Good practice problems in book: 3.23, 3.25, 3.27, 3.29, 3.31, 3.33, 3.43, 3.47, 3.51, 3.53, 3. v a = -9.8 m/s 2 A projectile is anything experiencing free-fall, particularly in two dimensions. 3.23, 3.25, 3.27, 3.29, 3.31, 3.33, 3.43, 3.47, 3.51, 3.53, 3.55 Projectile Motion Good practice problems

More information

Trigonometry Basics. Which side is opposite? It depends on the angle. θ 2. Y is opposite to θ 1 ; Y is adjacent to θ 2.

Trigonometry Basics. Which side is opposite? It depends on the angle. θ 2. Y is opposite to θ 1 ; Y is adjacent to θ 2. Trigonometry Basics Basic Terms θ (theta) variable for any angle. Hypotenuse longest side of a triangle. Opposite side opposite the angle (θ). Adjacent side next to the angle (θ). Which side is opposite?

More information

Kinematics in Two-Dimensions

Kinematics in Two-Dimensions Slide 1 / 92 Slide 2 / 92 Kinematics in Two-Dimensions www.njctl.org Slide 3 / 92 How to Use this File Each topic is composed of brief direct instruction There are formative assessment questions after

More information

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time.

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time. Chapter: Chapter 2 Learning Objectives LO 2.1.0 Solve problems related to position, displacement, and average velocity to solve problems. LO 2.1.1 Identify that if all parts of an object move in the same

More information

Chapter 2. Kinematics in One Dimension. continued

Chapter 2. Kinematics in One Dimension. continued Chapter 2 Kinematics in One Dimension continued 2.6 Freely Falling Bodies Example 10 A Falling Stone A stone is dropped from the top of a tall building. After 3.00s of free fall, what is the displacement

More information

3 Vectors and Two- Dimensional Motion

3 Vectors and Two- Dimensional Motion May 25, 1998 3 Vectors and Two- Dimensional Motion Kinematics of a Particle Moving in a Plane Motion in two dimensions is easily comprehended if one thinks of the motion as being made up of two independent

More information

LAHS Physics Semester 1 Final Practice Multiple Choice

LAHS Physics Semester 1 Final Practice Multiple Choice LAHS Physics Semester 1 Final Practice Multiple Choice The following Multiple Choice problems are practice MC for the final. Some or none of these problems may appear on the real exam. Answers are provided

More information

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test AP Physics 1 Unit 2: 2 Dimensional Kinematics Name: Date In Class Homework to completed that evening (before coming to next class period) 9/6 Tue (B) 9/7 Wed (C) 1D Kinematics Test Unit 2 Video 1: Vectors

More information

GALILEAN RELATIVITY. Projectile motion. The Principle of Relativity

GALILEAN RELATIVITY. Projectile motion. The Principle of Relativity GALILEAN RELATIVITY Projectile motion The Principle of Relativity When we think of the term relativity, the person who comes immediately to mind is of course Einstein. Galileo actually understood what

More information

Adding Vectors in Two Dimensions

Adding Vectors in Two Dimensions Slide 37 / 125 Adding Vectors in Two Dimensions Return to Table of Contents Last year, we learned how to add vectors along a single axis. The example we used was for adding two displacements. Slide 38

More information

Chapter 3: Vectors and Projectile Motion

Chapter 3: Vectors and Projectile Motion Chapter 3: Vectors and Projectile Motion Vectors and Scalars You might remember from math class the term vector. We define a vector as something with both magnitude and direction. For example, 15 meters/second

More information

Chapter 2. Motion In One Dimension

Chapter 2. Motion In One Dimension I. Displacement, Position, and Distance Chapter 2. Motion In One Dimension 1. John (Mike, Fred, Joe, Tom, Derek, Dan, James) walks (jogs, runs, drives) 10 m north. After that he turns around and walks

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

PHYSICS - CLUTCH CH 02: 1D MOTION (KINEMATICS)

PHYSICS - CLUTCH CH 02: 1D MOTION (KINEMATICS) !! www.clutchprep.com CONSTANT / AVERAGE VELOCITY AND SPEED Remember there are two terms that deal with how much something moves: - Displacement ( ) is a vector (has direction; could be negative) - Distance

More information

Vectors and Scalars. Scalar: A quantity specified by its magnitude only Vector: A quantity specified both by its magnitude and direction.

Vectors and Scalars. Scalar: A quantity specified by its magnitude only Vector: A quantity specified both by its magnitude and direction. Vectors and Scalars Scalar: A quantity specified by its magnitude only Vector: A quantity specified both by its magnitude and direction. To distinguish a vector from a scalar quantity, it is usually written

More information

Projectile Motion. v = v 2 + ( v 1 )

Projectile Motion. v = v 2 + ( v 1 ) What do the following situations have in common? Projectile Motion A monkey jumps from the branch of one tree to the branch of an adjacent tree. A snowboarder glides at top speed off the end of a ramp

More information

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1

1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False Answer: B Var: 1 University Physics, 13e (Young/Freedman) Chapter 2 Motion Along a Straight Line 2.1 Conceptual Questions 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the acceleration of an object is negative, the object must be slowing down. A) True B) False

More information

PH Fall - Section 04 - Version A DRAFT

PH Fall - Section 04 - Version A DRAFT 1. A truck (traveling in a straight line), starts from rest and accelerates to 30 m/s in 20 seconds. It cruises along at that constant speed for one minute, then brakes, coming to a stop in 25 m. Determine

More information

Chapter 4. Two-Dimensional Motion

Chapter 4. Two-Dimensional Motion Chapter 4. Two-Dimensional Motion 09/1/003 I. Intuitive (Understanding) Review Problems. 1. If a car (object, body, truck) moves with positive velocity and negative acceleration, it means that its a) speed

More information

AP Physics 1 Kinematics 1D

AP Physics 1 Kinematics 1D AP Physics 1 Kinematics 1D 1 Algebra Based Physics Kinematics in One Dimension 2015 08 25 www.njctl.org 2 Table of Contents: Kinematics Motion in One Dimension Position and Reference Frame Displacement

More information

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement

12/06/2010. Chapter 2 Describing Motion: Kinematics in One Dimension. 2-1 Reference Frames and Displacement. 2-1 Reference Frames and Displacement Chapter 2 Describing Motion: Kinematics in One Dimension 2-1 Reference Frames and Displacement Any measurement of position, distance, or speed must be made with respect to a reference frame. For example,

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3 A.P. Physics B Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters - 3 * In studying for your test, make sure to study this review sheet along with your quizzes and homework assignments.

More information

Chapter 3 2-D Motion

Chapter 3 2-D Motion Chapter 3 2-D Motion We will need to use vectors and their properties a lot for this chapter. .. Pythagorean Theorem: Sample problem: First you hike 100 m north. Then hike 50 m west. Finally

More information

During the second part of the trip then we travelled at 50 km/hr for hour so x = v avg t =

During the second part of the trip then we travelled at 50 km/hr for hour so x = v avg t = PH 2213 : Chapter 02 Homework Solutions Problem 2.6 : You are driving home from school steadily at 90 km/hr for 130 km. It then begins to rain and you slow to 50 km/hr. You arrive home after driving 3

More information

AP PHYSICS C MECHANICS SUMMER ASSIGNMENT 2018/2019

AP PHYSICS C MECHANICS SUMMER ASSIGNMENT 2018/2019 AP PHYSICS C MECHANICS SUMMER ASSIGNMENT 2018/2019 This course is equivalent to pre-engineering introductory Physics course for the university students. Comprehension of important physical concepts is

More information

What is a Vector? A vector is a mathematical object which describes magnitude and direction

What is a Vector? A vector is a mathematical object which describes magnitude and direction What is a Vector? A vector is a mathematical object which describes magnitude and direction We frequently use vectors when solving problems in Physics Example: Change in position (displacement) Velocity

More information

In this activity, we explore the application of differential equations to the real world as applied to projectile motion.

In this activity, we explore the application of differential equations to the real world as applied to projectile motion. Applications of Calculus: Projectile Motion ID: XXXX Name Class In this activity, we explore the application of differential equations to the real world as applied to projectile motion. Open the file CalcActXX_Projectile_Motion_EN.tns

More information

Chapter 3 Homework Packet. Conceptual Questions

Chapter 3 Homework Packet. Conceptual Questions Chapter 3 Homework Packet Conceptual Questions 1) Which one of the following is an example of a vector quantity? A) mass B) area C) distance D) velocity A vector quantity has both magnitude and direction.

More information

2-D Vector Equations have the same form as 1-D Kinematics. f i i

2-D Vector Equations have the same form as 1-D Kinematics. f i i 2-D Vector Equations have the same form as 1-D Kinematics v = v + at f i 1 r = r + v t+ at f i i 2 2 2-D Vector Equations have the same form as 1-D Kinematics v = viˆ+ v ˆj f x y = ( v + ati ) ˆ+ ( v +

More information

170 Test example problems CH1,2,3

170 Test example problems CH1,2,3 170 Test example problems CH1,2,3 WARNING: these are simply examples that showed up in previous semesters test. It does NOT mean that similar problems will be present in THIS semester s test. Hence, you

More information

PSI AP Physics 1 Kinematics. Free Response Problems

PSI AP Physics 1 Kinematics. Free Response Problems PSI AP Physics 1 Kinematics Free Response Problems 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will

More information

Physics 231. Topic 3: Vectors and two dimensional motion. Alex Brown September MSU Physics 231 Fall

Physics 231. Topic 3: Vectors and two dimensional motion. Alex Brown September MSU Physics 231 Fall Physics 231 Topic 3: Vectors and two dimensional motion Alex Brown September 14-18 2015 MSU Physics 231 Fall 2014 1 What s up? (Monday Sept 14) 1) Homework set 01 due Tuesday Sept 15 th 10 pm 2) Learning

More information

Worksheet At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s. What is its average acceleration during this time interval?

Worksheet At t = 0 a car has a speed of 30 m/s. At t = 6 s, its speed is 14 m/s. What is its average acceleration during this time interval? Worksheet 9 1. A poorly tuned Geo Metro (really old cheap, slow, car) can accelerate from rest to a speed of 28 m/s in 20 s. a) What is the average acceleration of the car? b) What distance does it travel

More information

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS

CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS CHAPTER 3 KINEMATICS IN TWO DIMENSIONS; VECTORS OBJECTIVES After studying the material of this chapter, the student should be able to: represent the magnitude and direction of a vector using a protractor

More information

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83)

Physics Chapter 3 Notes. Section 3-1: Introduction to Vectors (pages 80-83) Physics Chapter 3 Notes Section 3-1: Introduction to Vectors (pages 80-83) We can use vectors to indicate both the magnitude of a quantity, and the direction. Vectors are often used in 2- dimensional problems.

More information

Projectile Motion. Practice test Reminder: test Feb 8, 7-10pm! me if you have conflicts! Your intuitive understanding of the Physical world

Projectile Motion. Practice test Reminder: test Feb 8, 7-10pm!  me if you have conflicts! Your intuitive understanding of the Physical world v a = -9.8 m/s Projectile Motion Good practice problems in book: 3.3, 3.5, 3.7, 3.9, 3.31, 3.33, 3.43, 3.47, 3.51, 3.53, 3.55 Practice test Reminder: test Feb 8, 7-10pm! Email me if you have conflicts!

More information

Energy Storage and Transfer Model: Review Sheet

Energy Storage and Transfer Model: Review Sheet Name Energy Storage and Transfer Model: Review Sheet Date Pd 1. A softball (m = 180 g) traveling at 22.3 m/s moves a fielder's glove backward 25 cm when the ball is caught. a. Construct an energy bar graph

More information

Vectors. Graphical Method. Graphical Method. SEEMS SIMPLE? = 30.5 m/s. Graphical Method. Graphical Method (TIP TO TAIL) S

Vectors. Graphical Method. Graphical Method. SEEMS SIMPLE? = 30.5 m/s. Graphical Method. Graphical Method (TIP TO TAIL) S Vectors Graphical Method General discussion. Vector - A quantity which has magnitude and direction. Velocity, acceleration, Force, E Field, Mag Field, calar - A quantity which has magnitude only. (temp,

More information

PH105 Exam 1 Solution

PH105 Exam 1 Solution PH105 Exam 1 Solution 1. The graph in the figure shows the position of an object as a function of time. The letters A-E represent particular moments of time. At which moment shown (A, B, etc.) is the speed

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

Exam 1 Practice SOLUTIONS Physics 111Q.B

Exam 1 Practice SOLUTIONS Physics 111Q.B Exam 1 Practice SOLUTIONS Physics 111Q.B Instructions This is a collection of practice problems for the first exam. The first exam will consist of 7-10 multiple choice questions followed by 1-3 problems

More information

Unit 1, Lessons 2-5: Vectors in Two Dimensions

Unit 1, Lessons 2-5: Vectors in Two Dimensions Unit 1, Lessons 2-5: Vectors in Two Dimensions Textbook Sign-Out Put your name in it and let s go! Check-In Any questions from last day s homework? Vector Addition 1. Find the resultant displacement

More information

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit?

Midterm Prep. 1. Which combination correctly pairs a vector quantity with its corresponding unit? Name: ate: 1. Which combination correctly pairs a vector quantity with its corresponding unit?. weight and kg. velocity and m/s. speed and m/s. acceleration and m 2 /s 2. 12.0-kilogram cart is moving at

More information

AP Physics 1 Summer Assignment

AP Physics 1 Summer Assignment Name: Email address (write legibly): AP Physics 1 Summer Assignment Packet 3 The assignments included here are to be brought to the first day of class to be submitted. They are: Problems from Conceptual

More information

Honors Physics Acceleration and Projectile Review Guide

Honors Physics Acceleration and Projectile Review Guide Honors Physics Acceleration and Projectile Review Guide Major Concepts 1 D Motion on the horizontal 1 D motion on the vertical Relationship between velocity and acceleration Difference between constant

More information

Newtonian mechanics: kinematics and dynamics Kinematics: mathematical description of motion (Ch 2, Ch 3) Dynamics: how forces affect motion (Ch 4)

Newtonian mechanics: kinematics and dynamics Kinematics: mathematical description of motion (Ch 2, Ch 3) Dynamics: how forces affect motion (Ch 4) July-15-14 10:39 AM Chapter 2 Kinematics in One Dimension Newtonian mechanics: kinematics and dynamics Kinematics: mathematical description of motion (Ch 2, Ch 3) Dynamics: how forces affect motion (Ch

More information

Chapter 2: 1D Kinematics

Chapter 2: 1D Kinematics Chapter 2: 1D Kinematics Description of motion involves the relationship between position, displacement, velocity, and acceleration. A fundamental goal of 1D kinematics is to determine x(t) if given initial

More information

(numerical value) In calculating, you will find the total distance traveled. Displacement problems will find the distance from the starting point to the ending point. *Calculate the total amount traveled

More information

PH Fall - Section 05 - Version C DRAFT

PH Fall - Section 05 - Version C DRAFT 1. A truck (traveling in a straight line), starts from rest and accelerates to 30 m/s in 20 seconds. It cruises along at that constant speed for one minute, then brakes, coming to a stop in 25 m. Determine

More information

Problem: Projectile (CM-1998)

Problem: Projectile (CM-1998) Physics C -D Kinematics Name: ANSWER KEY AP Review Packet Vectors have both magnitude and direction displacement, velocity, acceleration Scalars have magnitude only distance, speed, time, mass Unit vectors

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

Chapter 6 Motion in Two Dimensions

Chapter 6 Motion in Two Dimensions Conceptual Physics/ PEP Name: Date: Chapter 6 Motion in Two Dimensions Section Review 6.1 1. What is the word for the horizontal distance a projectile travels? 2. What does it mean to say a projectile

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term = # v x. t " =0. are the values at t = 0.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term = # v x. t  =0. are the values at t = 0. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term 2012 Exam 1: Practice Problems! d r!! d v! One-Dimensional Kinematics: v =, a = dt dt t " =t v x (t)! v x,0 = # a x (

More information

Kinematics in Two Dimensions; Vectors

Kinematics in Two Dimensions; Vectors Kinematics in Two Dimensions; Vectors Vectors & Scalars!! Scalars They are specified only by a number and units and have no direction associated with them, such as time, mass, and temperature.!! Vectors

More information

Vocabulary Preview. Oct 21 9:53 AM. Projectile Motion. An object shot through the air is called a projectile.

Vocabulary Preview. Oct 21 9:53 AM. Projectile Motion. An object shot through the air is called a projectile. Projectile Trajectory Range Launch angle Vocabulary Preview Projectile Motion Projectile Motion An object shot through the air is called a projectile. A projectile can be a football, a bullet, or a drop

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Chapter 2: 1-D Kinematics

Chapter 2: 1-D Kinematics Chapter : 1-D Kinematics Types of Motion Translational Motion Circular Motion Projectile Motion Rotational Motion Natural Motion Objects have a proper place Objects seek their natural place External forces

More information

Break problems down into 1-d components

Break problems down into 1-d components Motion in 2-d Up until now, we have only been dealing with motion in one-dimension. However, now we have the tools in place to deal with motion in multiple dimensions. We have seen how vectors can be broken

More information

A. Basic Concepts and Graphs

A. Basic Concepts and Graphs A. Basic Concepts and Graphs A01 [Qual] [Easy] For each of the following, select if it is a vector or a scalar. a) Speed b) Distance traveled c) Velocity d) (Linear) Displacement A02 [Qual] [Easy] Give

More information

Components of a Vector

Components of a Vector Vectors (Ch. 1) A vector is a quantity that has a magnitude and a direction. Examples: velocity, displacement, force, acceleration, momentum Examples of scalars: speed, temperature, mass, length, time.

More information

AP Physics First Nine Weeks Review

AP Physics First Nine Weeks Review AP Physics First Nine Weeks Review 1. If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the force exerted by the satellite on the

More information

2. Two Dimensional Kinematics

2. Two Dimensional Kinematics . Two Dimensional Kinematics A) Overview We will begin by introducing the concept of vectors that will allow us to generalize what we learned last time in one dimension to two and three dimensions. In

More information

Review Session 1. Page 1

Review Session 1. Page 1 Review Session 1 1. Which combination of fundamental units can be used to express the amount of work done on an object? 2. The height of a typical kitchen table is approximately A) 10-2 m B) 10 0 m C)

More information

PRACTICE TEST for Midterm Exam

PRACTICE TEST for Midterm Exam South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 PackBack The first answer gives a good physical picture. The video was nice, and worth the second answer. https://www.youtube.com/w atch?v=m57cimnj7fc Slide 3-2 Slide 3-3

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Two Dimensions; Vectors Vectors and Scalars Addition of Vectors Graphical Methods (One and Two- Dimension) Multiplication of a Vector by a Scalar Subtraction of Vectors Graphical

More information

Understanding. 28. Given:! d inital. = 1750 m [W];! d final Required:!! d T Analysis:!! d T. Solution:!! d T

Understanding. 28. Given:! d inital. = 1750 m [W];! d final Required:!! d T Analysis:!! d T. Solution:!! d T Unit 1 Review, pages 100 107 Knowledge 1. (c). (c) 3. (b) 4. (d) 5. (b) 6. (c) 7. (d) 8. (b) 9. (d) 10. (b) 11. (b) 1. True 13. True 14. False. The average velocity of an object is the change in displacement

More information

Linear Motion. By Jack, Cole, Kate and Linus

Linear Motion. By Jack, Cole, Kate and Linus Linear Motion By Jack, Cole, Kate and Linus What is it? -Linear Motion is the study of motion, Kinematics, and Dynamics Motion Motion is dependent on the reference frame in which you are observing. If

More information

AP Physics 1 Summer Assignment 2018 Mrs. DeMaio

AP Physics 1 Summer Assignment 2018 Mrs. DeMaio AP Physics 1 Summer Assignment 2018 Mrs. DeMaio demaiod@middletownk12.org Welcome to AP Physics 1 for the 2018-2019 school year. AP Physics 1 is an algebra based, introductory college-level physics course.

More information

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down?

5) A stone is thrown straight up. What is its acceleration on the way up? 6) A stone is thrown straight up. What is its acceleration on the way down? 5) A stone is thrown straight up. What is its acceleration on the way up? Answer: 9.8 m/s 2 downward 6) A stone is thrown straight up. What is its acceleration on the way down? Answer: 9.8 m/ s 2 downward

More information

MOTION IN A PLANE. Chapter Four MCQ I. (a) 45 (b) 90 (c) 45 (d) 180

MOTION IN A PLANE. Chapter Four MCQ I. (a) 45 (b) 90 (c) 45 (d) 180 Chapter Four MOTION IN A PLANE MCQ I 4.1 The angle between A = ˆi + ˆj and B = ˆi ˆj is (a) 45 (b) 90 (c) 45 (d) 180 4.2 Which one of the following statements is true? (a) A scalar quantity is the one

More information

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc.

Chapter 2 One-Dimensional Kinematics. Copyright 2010 Pearson Education, Inc. Chapter 2 One-Dimensional Kinematics Units of Chapter 2 Position, Distance, and Displacement Average Speed and Velocity Instantaneous Velocity Acceleration Motion with Constant Acceleration Applications

More information

Projectile Motion Exercises

Projectile Motion Exercises Projectile Motion 11.7 Exercises 1 A ball is thrown horizontally from a cliff with a speed of 10ms-I, at the same time as an identical ball is dropped from the cliff. Neglecting the effect of air resistance

More information

Free Fall. Last new topic that will be on the Midterm

Free Fall. Last new topic that will be on the Midterm Homework Questions? Free Fall Last new topic that will be on the Midterm Do now: Calculate acceleration due to gravity on earth Announcements 3.03 is due Friday Free Fall Introduction: Doc Shuster (AP

More information

Chapter 3. Table of Contents. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion. Section 4 Relative Motion

Chapter 3. Table of Contents. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion. Section 4 Relative Motion Two-Dimensional Motion and Vectors Table of Contents Section 1 Introduction to Vectors Section 2 Vector Operations Section 3 Projectile Motion Section 4 Relative Motion Section 1 Introduction to Vectors

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Optional Problems for Quiz 2 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The components of vectors B and C are given as follows: 1) Bx

More information

FACT: Kinematics is the branch of Newtonian mechanics concerned with the motion of objects without reference to the forces that cause the motion.

FACT: Kinematics is the branch of Newtonian mechanics concerned with the motion of objects without reference to the forces that cause the motion. AP Physics 1- Kinematics Practice Problems FACT: Kinematics is the branch of Newtonian mechanics concerned with the motion of objects without reference to the forces that cause the motion. FACT: Displacement

More information

AP Physics 1- Kinematics Practice Problems (version 2)

AP Physics 1- Kinematics Practice Problems (version 2) AP Physics 1- Kinematics Practice Problems (version 2) FACT: Kinematics is the branch of Newtonian mechanics concerned with the motion of objects without reference to the forces that cause the motion.

More information

Chapter 2. Kinematics in one dimension

Chapter 2. Kinematics in one dimension Chapter 2 Kinematics in one dimension Galileo - the first modern kinematics 1) In a medium totally devoid of resistance all bodies will fall at the same speed 2) During equal intervals of time, a falling

More information

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of

1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] A) Its vertical speed remains the same, and its horizontal

More information

5 Projectile Motion. Projectile motion can be described by the horizontal and vertical components of motion.

5 Projectile Motion. Projectile motion can be described by the horizontal and vertical components of motion. Projectile motion can be described by the horizontal and vertical components of motion. In the previous chapter we studied simple straight-line motion linear motion. Now we extend these ideas to nonlinear

More information

4.1 Motion Is Relative. An object is moving if its position relative to a fixed point is changing. You can describe the motion of an object by its

4.1 Motion Is Relative. An object is moving if its position relative to a fixed point is changing. You can describe the motion of an object by its 4.1 Motion Is Relative You can describe the motion of an object by its position, speed, direction, and acceleration. An object is moving if its position relative to a fixed point is changing. 4.1 Motion

More information

Vectors and Kinematics Notes 1 Review

Vectors and Kinematics Notes 1 Review Velocity is defined as the change in displacement with respect to time. Vectors and Kinematics Notes 1 Review Note that this formula is only valid for finding constant velocity or average velocity. Also,

More information

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION

CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION CHAPTER 2 DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION OBJECTIVES After studying the material of this chapter, the student should be able to: state from memory the meaning of the key terms and phrases

More information

AP Physics C Summer Assignment Kinematics

AP Physics C Summer Assignment Kinematics AP Physics C Summer Assignment Kinematics 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will the motorcycle

More information

Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration

Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration Projectile Motion Vector Quantities A quantity such as force, that has both magnitude and direction. Examples: Velocity, Acceleration Scalar Quantities A quantity such as mass, volume, and time, which

More information

Two-Dimensional Motion Worksheet

Two-Dimensional Motion Worksheet Name Pd Date Two-Dimensional Motion Worksheet Because perpendicular vectors are independent of each other we can use the kinematic equations to analyze the vertical (y) and horizontal (x) components of

More information

1.1 Graphing Motion. IB Physics 11 Kinematics

1.1 Graphing Motion. IB Physics 11 Kinematics IB Physics 11 Kinematics 1.1 Graphing Motion Kinematics is the study of motion without reference to forces and masses. We will need to learn some definitions: A Scalar quantity is a measurement that has

More information

PHYS 111 HOMEWORK #5

PHYS 111 HOMEWORK #5 PHYS 111 HOMEWORK #5 Due : 9 Sept. 016 This is a homework set about projectile motion, so we will be using the equations of motion throughout. Therefore, I will collect all those equations here at the

More information

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli

Lecture PowerPoints. Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli Lecture PowerPoints Chapter 2 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A.

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A. QUESTION 1 The path of a projectile in a uniform gravitational field is shown in the diagram below. When the projectile reaches its maximum height, at point A, its speed v is 8.0 m s -1. Assume g = 10

More information