BEYOND ASSORTATIVITY PROCLIVITY INDEX FOR ATTRIBUTED NETWORKS (PRONE) Reihaneh Rabbany Dhivya Eswaran*

Size: px
Start display at page:

Download "BEYOND ASSORTATIVITY PROCLIVITY INDEX FOR ATTRIBUTED NETWORKS (PRONE) Reihaneh Rabbany Dhivya Eswaran*"

Transcription

1 PROCLIVITY INDEX FOR ATTRIBUTED NETWORKS (PRONE) Reihaneh Rabbany Artur W. Dubrawski Dhivya Eswaran* Christos Faloutsos

2 PROBLEM BACKGROUND PRONE PROPERTIES PROBLEM DISCOVERIES

3 3 PROBLEM DATA IMPUTATION BOB ALICE CAROL JOHN

4 4 PROBLEM ADS PLACEMENT BOB ALICE CAROL JOHN

5 5 PROBLEM THE CORE PROBLEM GIVEN a graph of nodes & edges attributes for nodes FIND correlation of attributes with network structure

6 6 PROBLEM PROCLIVITY Inclination of nodes with a certain value of attribute to connect to nodes with a certain ALICE other value for the same or a different attribute BOB self cross

7 PROBLEM BACKGROUND PRONE PROPERTIES BACKGROUND DISCOVERIES

8 8 BACKGROUND MIXING MATRIX - DEFINITION [SRC] ATTR 1 [DEST] ATTR Number of edges between CMU graduates and low income people

9 9 BACKGROUND MIXING MATRIX - EXAMPLE GRAPH WITH 2 ATTRIBUTES SHAPE AND COLOR MIXING MATRIX (COLOR, COLOR)

10 10 BACKGROUND MIXING MATRIX - EXAMPLE GRAPH WITH 2 ATTRIBUTES SHAPE AND COLOR MIXING MATRIX (COLOR, SHAPE)

11 11 BACKGROUND NORMALIZED MIXING MATRIX [SRC] ATTR 1 (r values) [DEST] ATTR 2 (k values) =1

12 12 BACKGROUND Q-MODULARITY How unexpected edges between nodes having the same attribute value are

13 13 BACKGROUND R-INDEX A normalized version of Q-modularity Q-modularity

14 14 BACKGROUND LIMITATIONS (1/2) Q and r fail intuition

15 15 BACKGROUND LIMITATIONS (2/2) Q and r do not even apply

16 PROBLEM BACKGROUND PRONE PROPERTIES PRONE DISCOVERIES

17 17 PRONE WHAT WE WANT GOOD OKAY BAD Single spike per row or column

18 18 PRONE QUANTIFYING DIVERGENCES GOOD BAD (1 + 5) = 10 (3 + 3) = 17

19 19 PRONE DIVERGENCES - CHOOSING F 1 5 GOOD 3 3 BAD (1 + 5) = 10 (3 + 3) = 17 (1 + 5) = 90 (3 + 3) = 162 e 1+5 e 1 e e 3+3 e 3 e f(x + y) f(x)+f(y)

20 20 PRIOR WORK RECALL NOTATIONS [SRC] ATTR 1 (r values) [DEST] ATTR 2 (k values) =1

21 21 PRONE PRONE total row divergences total column divergences maximum total divergence assuming marginals are fixed ProNe f =1 D f

22 22 PRONE SPECIAL CASES OF PRONE f(x) =x log x (similar to Normalized Mutual Information) f(x) =x 2 (similar to Adjusted Random Index)

23 PROBLEM BACKGROUND PRONE PROPERTIES PROPERTIES DISCOVERIES

24 24 PROPERTIES KEY PROPERTIES THOROUGHNESS GENERALITY CONSISTENCY SCALABILITY

25 25 PROPERTIES P1. THOROUGHNESS HETEROPHILY RANDOM l 2 3

26 26 PROPERTIES P2. GENERALITY SELF CROSS l 2 3

27 27 PROPERTIES P3. CONSISTENCY CORRELATED RANDOM l 2 3

28 28 PROPERTIES P4. SCALABILITY COMPUTATION TIME (S) linear scaling GRAPH SIZE (NUMBER OF EDGES)

29 29 PROPERTIES KEY PROPERTIES THOROUGHNESS both homophily and heterophily GENERALITY single or a pair of attributes CONSISTENCY zero score for no correlation SCALABILITY computation linear in graph size

30 PROBLEM BACKGROUND PRONE PROPERTIES DISCOVERIES DISCOVERIES

31 31 DISCOVERIES DATA GENDER DORM STATUS CLASS YEAR MAJOR HIGH SCHOOL MINOR A graph per university, e.g., Rice31

32 32 DISCOVERIES VISUALIZATION (1/2) Which attribute has more correlation?

33 33 DISCOVERIES VISUALIZATION (2/2) What is the extent of correlation?

34 34 DISCOVERIES PRONE (FOR VISUALIZED DATA) Similar inferences for other PRONE variations

35 35 DISCOVERIES PRONE (FOR RICE UNIVERSITY) Similar inferences for other Facebook datasets

36 PROBLEM BACKGROUND PRONE PROPERTIES SUMMARY DISCOVERIES

37 37 SUMMARY PRONE PROCLIVITY INDEX 1 5 GOOD Thoroughness Generality self cross 3 3 BAD Consistency Scalability 1 Questions? deswaran@cs.cmu.edu

THE POWER OF CERTAINTY

THE POWER OF CERTAINTY A DIRICHLET-MULTINOMIAL APPROACH TO BELIEF PROPAGATION Dhivya Eswaran* CMU deswaran@cs.cmu.edu Stephan Guennemann TUM guennemann@in.tum.de Christos Faloutsos CMU christos@cs.cmu.edu PROBLEM MOTIVATION

More information

Social-Affiliation Networks: Patterns and the SOAR Model

Social-Affiliation Networks: Patterns and the SOAR Model Social-Affiliation Networks: Patterns and the SOAR Model Dhivya Eswaran 1, Reihaneh Rabbany 2, Artur W. Dubrawski 1, and Christos Faloutsos 1 1 School of Computer Science, Carnegie Mellon University {deswaran,

More information

Modularity and Graph Algorithms

Modularity and Graph Algorithms Modularity and Graph Algorithms David Bader Georgia Institute of Technology Joe McCloskey National Security Agency 12 July 2010 1 Outline Modularity Optimization and the Clauset, Newman, and Moore Algorithm

More information

5 Mutual Information and Channel Capacity

5 Mutual Information and Channel Capacity 5 Mutual Information and Channel Capacity In Section 2, we have seen the use of a quantity called entropy to measure the amount of randomness in a random variable. In this section, we introduce several

More information

Lecture 5 : Proofs DRAFT

Lecture 5 : Proofs DRAFT CS/Math 240: Introduction to Discrete Mathematics 2/3/2011 Lecture 5 : Proofs Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Up until now, we have been introducing mathematical notation

More information

Supporting Statistical Hypothesis Testing Over Graphs

Supporting Statistical Hypothesis Testing Over Graphs Supporting Statistical Hypothesis Testing Over Graphs Jennifer Neville Departments of Computer Science and Statistics Purdue University (joint work with Tina Eliassi-Rad, Brian Gallagher, Sergey Kirshner,

More information

RaRE: Social Rank Regulated Large-scale Network Embedding

RaRE: Social Rank Regulated Large-scale Network Embedding RaRE: Social Rank Regulated Large-scale Network Embedding Authors: Yupeng Gu 1, Yizhou Sun 1, Yanen Li 2, Yang Yang 3 04/26/2018 The Web Conference, 2018 1 University of California, Los Angeles 2 Snapchat

More information

Node similarity and classification

Node similarity and classification Node similarity and classification Davide Mottin, Anton Tsitsulin HassoPlattner Institute Graph Mining course Winter Semester 2017 Acknowledgements Some part of this lecture is taken from: http://web.eecs.umich.edu/~dkoutra/tut/icdm14.html

More information

Statistical Inference. Why Use Statistical Inference. Point Estimates. Point Estimates. Greg C Elvers

Statistical Inference. Why Use Statistical Inference. Point Estimates. Point Estimates. Greg C Elvers Statistical Inference Greg C Elvers 1 Why Use Statistical Inference Whenever we collect data, we want our results to be true for the entire population and not just the sample that we used But our sample

More information

Social Interaction Based Video Recommendation: Recommending YouTube Videos to Facebook Users

Social Interaction Based Video Recommendation: Recommending YouTube Videos to Facebook Users Social Interaction Based Video Recommendation: Recommending YouTube Videos to Facebook Users Bin Nie 1 Honggang Zhang 1 Yong Liu 2 1 Fordham University, Bronx, NY. Email: {bnie, hzhang44}@fordham.edu 2

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 23. Decision Trees Barnabás Póczos Contents Decision Trees: Definition + Motivation Algorithm for Learning Decision Trees Entropy, Mutual Information, Information

More information

Is It As Easy To Discover As To Verify?

Is It As Easy To Discover As To Verify? Is It As Easy To Discover As To Verify? Sam Buss Department of Mathematics U.C. San Diego UCSD Math Circle May 22, 2004 A discovered identity The Bailey-Borwein-Plouffe formula for π (1997): π = n=0 (

More information

Winter 2011 Josh Benaloh Brian LaMacchia

Winter 2011 Josh Benaloh Brian LaMacchia Winter 2011 Josh Benaloh Brian LaMacchia Fun with Public-Key Tonight we ll Introduce some basic tools of public-key crypto Combine the tools to create more powerful tools Lay the ground work for substantial

More information

7.1 One-to-One Functions

7.1 One-to-One Functions 514 transcendental functions 7.1 One-to-One Functions You ve seen that some equations have only one solution (for eample, 5 2 = 3 and 3 = 8), while some have two solutions ( 2 + 3 = 7) and some even have

More information

Recommendation Systems

Recommendation Systems Recommendation Systems Pawan Goyal CSE, IITKGP October 29-30, 2015 Pawan Goyal (IIT Kharagpur) Recommendation Systems October 29-30, 2015 1 / 61 Recommendation System? Pawan Goyal (IIT Kharagpur) Recommendation

More information

Learning a Degree-Augmented Distance Metric from a Network. Bert Huang, U of Maryland Blake Shaw, Foursquare Tony Jebara, Columbia U

Learning a Degree-Augmented Distance Metric from a Network. Bert Huang, U of Maryland Blake Shaw, Foursquare Tony Jebara, Columbia U Learning a Degree-Augmented Distance Metric from a Network Bert Huang, U of Maryland Blake Shaw, Foursquare Tony Jebara, Columbia U Beyond Mahalanobis: Supervised Large-Scale Learning of Similarity NIPS

More information

Data Mining. CS57300 Purdue University. Jan 11, Bruno Ribeiro

Data Mining. CS57300 Purdue University. Jan 11, Bruno Ribeiro Data Mining CS57300 Purdue University Jan, 208 Bruno Ribeiro Regression Posteriors Working with Data 2 Linear Regression: Review 3 Linear Regression (use A)? Interpolation (something is missing) (x,, x

More information

Recommendation Systems

Recommendation Systems Recommendation Systems Pawan Goyal CSE, IITKGP October 21, 2014 Pawan Goyal (IIT Kharagpur) Recommendation Systems October 21, 2014 1 / 52 Recommendation System? Pawan Goyal (IIT Kharagpur) Recommendation

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan Introduction The markets can be thought of as a complex interaction of a large number of random processes,

More information

Survey on Population Mean

Survey on Population Mean MATH 203 Survey on Population Mean Dr. Neal, Spring 2009 The first part of this project is on the analysis of a population mean. You will obtain data on a specific measurement X by performing a random

More information

Capacity Releasing Diffusion for Speed and Locality

Capacity Releasing Diffusion for Speed and Locality 000 00 002 003 004 005 006 007 008 009 00 0 02 03 04 05 06 07 08 09 020 02 022 023 024 025 026 027 028 029 030 03 032 033 034 035 036 037 038 039 040 04 042 043 044 045 046 047 048 049 050 05 052 053 054

More information

Today. Binary relations establish a relationship between elements of two sets

Today. Binary relations establish a relationship between elements of two sets Today Relations Binary relations and properties Relationship to functions n-ary relations Definitions Binary relations establish a relationship between elements of two sets Definition: Let A and B be two

More information

Alternative Parameterizations of Markov Networks. Sargur Srihari

Alternative Parameterizations of Markov Networks. Sargur Srihari Alternative Parameterizations of Markov Networks Sargur srihari@cedar.buffalo.edu 1 Topics Three types of parameterization 1. Gibbs Parameterization 2. Factor Graphs 3. Log-linear Models Features (Ising,

More information

Faloutsos, Tong ICDE, 2009

Faloutsos, Tong ICDE, 2009 Large Graph Mining: Patterns, Tools and Case Studies Christos Faloutsos Hanghang Tong CMU Copyright: Faloutsos, Tong (29) 2-1 Outline Part 1: Patterns Part 2: Matrix and Tensor Tools Part 3: Proximity

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/30/17 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 2

More information

Definition (The carefully thought-out calculus version based on limits).

Definition (The carefully thought-out calculus version based on limits). 4.1. Continuity and Graphs Definition 4.1.1 (Intuitive idea used in algebra based on graphing). A function, f, is continuous on the interval (a, b) if the graph of y = f(x) can be drawn over the interval

More information

Learning from Sensor Data: Set II. Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University

Learning from Sensor Data: Set II. Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University Learning from Sensor Data: Set II Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University 1 6. Data Representation The approach for learning from data Probabilistic

More information

Network Data: an overview

Network Data: an overview Network Data: an overview Introduction to Graph Theory and Sociometric Notation Dante J. Salto & Taya L. Owens 6 February 2013 Rockefeller College RPAD 637 Works Summarized Wasserman, S. & Faust, K. (2009).

More information

Name: Student ID number:

Name: Student ID number: Math 20E Final Exam Name: Student ID number: Instructions: Answers without work may be given no credit at the grader s discretion. The test is out of 69 points, with 2 extra credit points possible. This

More information

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 1 CCBC Dundalk Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 1 A Function and its Second Derivative Recall page 4 of Handout 3.1 where we encountered the third degree polynomial f(x) = x 3 5x 2 4x + 20. Its derivative

More information

Testing Independence

Testing Independence Testing Independence Dipankar Bandyopadhyay Department of Biostatistics, Virginia Commonwealth University BIOS 625: Categorical Data & GLM 1/50 Testing Independence Previously, we looked at RR = OR = 1

More information

Structure Learning: the good, the bad, the ugly

Structure Learning: the good, the bad, the ugly Readings: K&F: 15.1, 15.2, 15.3, 15.4, 15.5 Structure Learning: the good, the bad, the ugly Graphical Models 10708 Carlos Guestrin Carnegie Mellon University September 29 th, 2006 1 Understanding the uniform

More information

Mining Triadic Closure Patterns in Social Networks

Mining Triadic Closure Patterns in Social Networks Mining Triadic Closure Patterns in Social Networks Hong Huang, University of Goettingen Jie Tang, Tsinghua University Sen Wu, Stanford University Lu Liu, Northwestern University Xiaoming Fu, University

More information

Lecture 16 Oct 21, 2014

Lecture 16 Oct 21, 2014 CS 395T: Sublinear Algorithms Fall 24 Prof. Eric Price Lecture 6 Oct 2, 24 Scribe: Chi-Kit Lam Overview In this lecture we will talk about information and compression, which the Huffman coding can achieve

More information

Generating Private Synthetic Data: Presentation 2

Generating Private Synthetic Data: Presentation 2 Generating Private Synthetic Data: Presentation 2 Mentor: Dr. Anand Sarwate July 17, 2015 Overview 1 Project Overview (Revisited) 2 Sensitivity of Mutual Information 3 Simulation 4 Results with Real Data

More information

Must-read Material : Multimedia Databases and Data Mining. Indexing - Detailed outline. Outline. Faloutsos

Must-read Material : Multimedia Databases and Data Mining. Indexing - Detailed outline. Outline. Faloutsos Must-read Material 15-826: Multimedia Databases and Data Mining Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. Technical Report SAND2007-6702, Sandia National Laboratories,

More information

Membership grade mining of mutually inverse fuzzy implication propositions

Membership grade mining of mutually inverse fuzzy implication propositions Granul. Comput. (2017) 2:55 62 DOI 10.1007/s41066-016-0026-1 ORIGINAL PAPER Membership grade mining of mutually inverse fuzzy implication propositions Xunwei Zhou 1 Received: 24 March 2016 / Accepted:

More information

Topics in Complexity

Topics in Complexity Topics in Complexity Please evaluate this course on Axess! Your feedback really does make a difference. Applied Complexity Theory Complexity theory has enormous practical relevance across various domains

More information

Example. χ 2 = Continued on the next page. All cells

Example. χ 2 = Continued on the next page. All cells Section 11.1 Chi Square Statistic k Categories 1 st 2 nd 3 rd k th Total Observed Frequencies O 1 O 2 O 3 O k n Expected Frequencies E 1 E 2 E 3 E k n O 1 + O 2 + O 3 + + O k = n E 1 + E 2 + E 3 + + E

More information

Bayesian Networks (Part II)

Bayesian Networks (Part II) 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Bayesian Networks (Part II) Graphical Model Readings: Murphy 10 10.2.1 Bishop 8.1,

More information

The derivative: Definition

The derivative: Definition The derivative: Definition The derivative of a function at a point x = a is defined as * +,' -*(+) lim ' ) ' = f (a) Alternative notation: let h = x a = δx * 5 -*(+) 7* lim = lim = f (a) 5 + 5-+ 75 ) 75

More information

Two Way Table 2 Categorical Variable Analysis Problem

Two Way Table 2 Categorical Variable Analysis Problem Two Way Table 2 Categorical Variable Analysis Problem It seems unfortunate that we have to present one the richest concepts, full of a few twists and turns, in this intro. stats. Class this early in the

More information

Loss Functions and Optimization. Lecture 3-1

Loss Functions and Optimization. Lecture 3-1 Lecture 3: Loss Functions and Optimization Lecture 3-1 Administrative Assignment 1 is released: http://cs231n.github.io/assignments2017/assignment1/ Due Thursday April 20, 11:59pm on Canvas (Extending

More information

Dimensionality Reduction. CS57300 Data Mining Fall Instructor: Bruno Ribeiro

Dimensionality Reduction. CS57300 Data Mining Fall Instructor: Bruno Ribeiro Dimensionality Reduction CS57300 Data Mining Fall 2016 Instructor: Bruno Ribeiro Goal } Visualize high dimensional data (and understand its Geometry) } Project the data into lower dimensional spaces }

More information

Algebra 1 Unit 2 Benchmark Exam

Algebra 1 Unit 2 Benchmark Exam Name: Block: Date: Algebra 1 Unit 2 Benchmark Exam Scoring For Teacher Use Only 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Total / 11/27/2013 NJ DOE Unit 2_Algebra 1 Page 1 1. Solve the

More information

HYPOTHESIS TESTING: THE CHI-SQUARE STATISTIC

HYPOTHESIS TESTING: THE CHI-SQUARE STATISTIC 1 HYPOTHESIS TESTING: THE CHI-SQUARE STATISTIC 7 steps of Hypothesis Testing 1. State the hypotheses 2. Identify level of significant 3. Identify the critical values 4. Calculate test statistics 5. Compare

More information

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018 CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Recap Network Flow Problems Max-Flow Min Cut Theorem Ford Fulkerson Augmenting Paths Residual Flow Graph Integral Solutions

More information

Measuring Social Influence Without Bias

Measuring Social Influence Without Bias Measuring Social Influence Without Bias Annie Franco Bobbie NJ Macdonald December 9, 2015 The Problem CS224W: Final Paper How well can statistical models disentangle the effects of social influence from

More information

Protein Complex Identification by Supervised Graph Clustering

Protein Complex Identification by Supervised Graph Clustering Protein Complex Identification by Supervised Graph Clustering Yanjun Qi 1, Fernanda Balem 2, Christos Faloutsos 1, Judith Klein- Seetharaman 1,2, Ziv Bar-Joseph 1 1 School of Computer Science, Carnegie

More information

Section 11.1 Sequences

Section 11.1 Sequences Math 152 c Lynch 1 of 8 Section 11.1 Sequences A sequence is a list of numbers written in a definite order: a 1, a 2, a 3,..., a n,... Notation. The sequence {a 1, a 2, a 3,...} can also be written {a

More information

Notes on Markov Networks

Notes on Markov Networks Notes on Markov Networks Lili Mou moull12@sei.pku.edu.cn December, 2014 This note covers basic topics in Markov networks. We mainly talk about the formal definition, Gibbs sampling for inference, and maximum

More information

Logic: The Big Picture

Logic: The Big Picture Logic: The Big Picture A typical logic is described in terms of syntax: what are the legitimate formulas semantics: under what circumstances is a formula true proof theory/ axiomatization: rules for proving

More information

Inexact Search is Good Enough

Inexact Search is Good Enough Inexact Search is Good Enough Advanced Machine Learning for NLP Jordan Boyd-Graber MATHEMATICAL TREATMENT Advanced Machine Learning for NLP Boyd-Graber Inexact Search is Good Enough 1 of 1 Preliminaries:

More information

Partitions and Covers

Partitions and Covers University of California, Los Angeles CS 289A Communication Complexity Instructor: Alexander Sherstov Scribe: Dong Wang Date: January 2, 2012 LECTURE 4 Partitions and Covers In previous lectures, we saw

More information

MobiHoc 2014 MINIMUM-SIZED INFLUENTIAL NODE SET SELECTION FOR SOCIAL NETWORKS UNDER THE INDEPENDENT CASCADE MODEL

MobiHoc 2014 MINIMUM-SIZED INFLUENTIAL NODE SET SELECTION FOR SOCIAL NETWORKS UNDER THE INDEPENDENT CASCADE MODEL MobiHoc 2014 MINIMUM-SIZED INFLUENTIAL NODE SET SELECTION FOR SOCIAL NETWORKS UNDER THE INDEPENDENT CASCADE MODEL Jing (Selena) He Department of Computer Science, Kennesaw State University Shouling Ji,

More information

Generalizing Convolutional Neural Networks to Graphstructured. Ben Walker Department of Mathematics, UNC-Chapel Hill 5/4/2018

Generalizing Convolutional Neural Networks to Graphstructured. Ben Walker Department of Mathematics, UNC-Chapel Hill 5/4/2018 Generalizing Convolutional Neural Networks to Graphstructured Data Ben Walker Department of Mathematics, UNC-Chapel Hill 5/4/2018 Overview Relational structure in data and how to approach it Defferrard,

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2014 Introduction The markets can be thought of as a complex interaction of a large number of random

More information

A Location Predictor based on Dependencies Between Multiple Lifelog Data

A Location Predictor based on Dependencies Between Multiple Lifelog Data A Location Predictor based on Dependencies Between Multiple Lifelog Data Masaaki Nishino Takashi Yagi Yukihiro Nakamura Shinyo Muto NTT Cyber Solutions Laboratories, NTT Corporation Masanobu Abe Graduate

More information

Introduction to Artificial Intelligence. Unit # 11

Introduction to Artificial Intelligence. Unit # 11 Introduction to Artificial Intelligence Unit # 11 1 Course Outline Overview of Artificial Intelligence State Space Representation Search Techniques Machine Learning Logic Probabilistic Reasoning/Bayesian

More information

Statistical Inference

Statistical Inference Chapter 14 Confidence Intervals: The Basic Statistical Inference Situation: We are interested in estimating some parameter (population mean, μ) that is unknown. We take a random sample from this population.

More information

Sampling Distributions. Chapter 9

Sampling Distributions. Chapter 9 Sampling Distributions Chapter 9 First, a word from our textbook A statistic is a numerical value computed from a sample. EX. Mean, median, mode, etc. A parameter is a numerical value determined by the

More information

Computational hardness. Feb 2 abhi shelat

Computational hardness. Feb 2 abhi shelat L4 6501 Computational hardness Feb 2 abhi shelat Eve Alice Bob Eve Alice Bob k Gen k Eve Alice Bob c=enck(mi) k Gen k Eve c Alice Bob c=enck(mi) k Gen k Eve c Alice c=enck(mi) Bob m=deck(c) k Gen k Eve

More information

Preliminary Causal Analysis Results with Software Cost Estimation Data. Anandi Hira, Bob Stoddard, Mike Konrad, Barry Boehm

Preliminary Causal Analysis Results with Software Cost Estimation Data. Anandi Hira, Bob Stoddard, Mike Konrad, Barry Boehm Preliminary Causal Analysis Results with Software Cost Estimation Data Anandi Hira, Bob Stoddard, Mike Konrad, Barry Boehm Parametric Cost Models COCOMO II Effort =2.94 Size E 17 i=1 EM i u Input: size,

More information

ELEC6910Q Analytics and Systems for Social Media and Big Data Applications Lecture 3 Centrality, Similarity, and Strength Ties

ELEC6910Q Analytics and Systems for Social Media and Big Data Applications Lecture 3 Centrality, Similarity, and Strength Ties ELEC6910Q Analytics and Systems for Social Media and Big Data Applications Lecture 3 Centrality, Similarity, and Strength Ties Prof. James She james.she@ust.hk 1 Last lecture 2 Selected works from Tutorial

More information

Lets start off with a visual intuition

Lets start off with a visual intuition Naïve Bayes Classifier (pages 231 238 on text book) Lets start off with a visual intuition Adapted from Dr. Eamonn Keogh s lecture UCR 1 Body length Data 2 Alligators 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7

More information

Database Privacy: k-anonymity and de-anonymization attacks

Database Privacy: k-anonymity and de-anonymization attacks 18734: Foundations of Privacy Database Privacy: k-anonymity and de-anonymization attacks Piotr Mardziel or Anupam Datta CMU Fall 2018 Publicly Released Large Datasets } Useful for improving recommendation

More information

CMSC 451: Max-Flow Extensions

CMSC 451: Max-Flow Extensions CMSC 51: Max-Flow Extensions Slides By: Carl Kingsford Department of Computer Science University of Maryland, College Park Based on Section 7.7 of Algorithm Design by Kleinberg & Tardos. Circulations with

More information

Purnamrita Sarkar (Carnegie Mellon) Deepayan Chakrabarti (Yahoo! Research) Andrew W. Moore (Google, Inc.)

Purnamrita Sarkar (Carnegie Mellon) Deepayan Chakrabarti (Yahoo! Research) Andrew W. Moore (Google, Inc.) Purnamrita Sarkar (Carnegie Mellon) Deepayan Chakrabarti (Yahoo! Research) Andrew W. Moore (Google, Inc.) Which pair of nodes {i,j} should be connected? Variant: node i is given Alice Bob Charlie Friend

More information

CS Lecture 3. More Bayesian Networks

CS Lecture 3. More Bayesian Networks CS 6347 Lecture 3 More Bayesian Networks Recap Last time: Complexity challenges Representing distributions Computing probabilities/doing inference Introduction to Bayesian networks Today: D-separation,

More information

Horizontal and Vertical Asymptotes from section 2.6

Horizontal and Vertical Asymptotes from section 2.6 Horizontal and Vertical Asymptotes from section 2.6 Definition: In either of the cases f(x) = L or f(x) = L we say that the x x horizontal line y = L is a horizontal asymptote of the function f. Note:

More information

Lecture 18: Quantum Information Theory and Holevo s Bound

Lecture 18: Quantum Information Theory and Holevo s Bound Quantum Computation (CMU 1-59BB, Fall 2015) Lecture 1: Quantum Information Theory and Holevo s Bound November 10, 2015 Lecturer: John Wright Scribe: Nicolas Resch 1 Question In today s lecture, we will

More information

11 The Max-Product Algorithm

11 The Max-Product Algorithm Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms for Inference Fall 2014 11 The Max-Product Algorithm In the previous lecture, we introduced

More information

Objectives. 2.1 Scatterplots. Scatterplots Explanatory and response variables. Interpreting scatterplots Outliers

Objectives. 2.1 Scatterplots. Scatterplots Explanatory and response variables. Interpreting scatterplots Outliers Objectives 2.1 Scatterplots Scatterplots Explanatory and response variables Interpreting scatterplots Outliers Adapted from authors slides 2012 W.H. Freeman and Company Relationships A very important aspect

More information

DEKDIV: A Linked-Data-Driven Web Portal for Learning Analytics Data Enrichment, Interactive Visualization, and Knowledge Discovery

DEKDIV: A Linked-Data-Driven Web Portal for Learning Analytics Data Enrichment, Interactive Visualization, and Knowledge Discovery DEKDIV: A Linked-Data-Driven Web Portal for Learning Analytics Data Enrichment, Interactive Visualization, and Knowledge Discovery Yingjie Hu, Grant McKenzie, Jiue-An Yang, Song Gao, Amin Abdalla, and

More information

Use mathematical induction in Exercises 3 17 to prove summation formulae. Be sure to identify where you use the inductive hypothesis.

Use mathematical induction in Exercises 3 17 to prove summation formulae. Be sure to identify where you use the inductive hypothesis. Exercises Exercises 1. There are infinitely many stations on a train route. Suppose that the train stops at the first station and suppose that if the train stops at a station, then it stops at the next

More information

Student Exploration: Bohr Model: Introduction

Student Exploration: Bohr Model: Introduction Name: Date: Student Exploration: Bohr Model: Introduction Vocabulary: absorption spectrum, Bohr model, electron volt, energy level, laser, orbital, photon Prior Knowledge Questions (Do these BEFORE using

More information

Testing Network Hypotheses

Testing Network Hypotheses Slide 1 Testing Network Hypotheses Thursday Afternoon Whether we are using Social Network Analysis as part of a consulting project or in support of academic research, it is important to know if the measures

More information

SYSTEMS OF NONLINEAR EQUATIONS

SYSTEMS OF NONLINEAR EQUATIONS SYSTEMS OF NONLINEAR EQUATIONS Widely used in the mathematical modeling of real world phenomena. We introduce some numerical methods for their solution. For better intuition, we examine systems of two

More information

Using Rank Propagation and Probabilistic Counting for Link-based Spam Detection

Using Rank Propagation and Probabilistic Counting for Link-based Spam Detection Using Rank Propagation and Probabilistic for Link-based Luca Becchetti, Carlos Castillo,Debora Donato, Stefano Leonardi and Ricardo Baeza-Yates 2. Università di Roma La Sapienza Rome, Italy 2. Yahoo! Research

More information

IEOR165 Discussion Week 5

IEOR165 Discussion Week 5 IEOR165 Discussion Week 5 Sheng Liu University of California, Berkeley Feb 19, 2016 Outline 1 1st Homework 2 Revisit Maximum A Posterior 3 Regularization IEOR165 Discussion Sheng Liu 2 About 1st Homework

More information

Module 1: Introduction to Functions

Module 1: Introduction to Functions Haberman / Kling MTH 95 Section II: Functions, Inequalities, and the Absolute Value Module 1: Introduction to Functions A function is a special type of binary relation. So before we discuss what a function

More information

MATH 10 INTRODUCTORY STATISTICS

MATH 10 INTRODUCTORY STATISTICS MATH 10 INTRODUCTORY STATISTICS Tommy Khoo Your friendly neighbourhood graduate student. Week 1 Chapter 1 Introduction What is Statistics? Why do you need to know Statistics? Technical lingo and concepts:

More information

Readings: K&F: 16.3, 16.4, Graphical Models Carlos Guestrin Carnegie Mellon University October 6 th, 2008

Readings: K&F: 16.3, 16.4, Graphical Models Carlos Guestrin Carnegie Mellon University October 6 th, 2008 Readings: K&F: 16.3, 16.4, 17.3 Bayesian Param. Learning Bayesian Structure Learning Graphical Models 10708 Carlos Guestrin Carnegie Mellon University October 6 th, 2008 10-708 Carlos Guestrin 2006-2008

More information

Lecture 11: Generalized Lovász Local Lemma. Lovász Local Lemma

Lecture 11: Generalized Lovász Local Lemma. Lovász Local Lemma Lecture 11: Generalized Recall We design an experiment with independent random variables X 1,..., X m We define bad events A 1,..., A n where) the bad event A i depends on the variables (X k1,..., X kni

More information

1 Introduction. 2 Upper Bound

1 Introduction. 2 Upper Bound A Use of Ramsey Theory in Comm. Comp. This is from An Application of Hindman s Theorem to a Problem in Commmunication Complexity by Pavel Pudlak, which appeared in [1]. 1 Introduction Def 1.1 Let Σ be

More information

STAT 135 Lab 11 Tests for Categorical Data (Fisher s Exact test, χ 2 tests for Homogeneity and Independence) and Linear Regression

STAT 135 Lab 11 Tests for Categorical Data (Fisher s Exact test, χ 2 tests for Homogeneity and Independence) and Linear Regression STAT 135 Lab 11 Tests for Categorical Data (Fisher s Exact test, χ 2 tests for Homogeneity and Independence) and Linear Regression Rebecca Barter April 20, 2015 Fisher s Exact Test Fisher s Exact Test

More information

Multiclass Classification-1

Multiclass Classification-1 CS 446 Machine Learning Fall 2016 Oct 27, 2016 Multiclass Classification Professor: Dan Roth Scribe: C. Cheng Overview Binary to multiclass Multiclass SVM Constraint classification 1 Introduction Multiclass

More information

Assessment Schedule 2014 Geography: Demonstrate understanding of how interacting natural processes shape a New Zealand geographic environment (91426)

Assessment Schedule 2014 Geography: Demonstrate understanding of how interacting natural processes shape a New Zealand geographic environment (91426) NCEA Level 3 Geography (91426) 2014 page 1 of 5 Assessment Schedule 2014 Geography: Demonstrate understanding of how interacting natural processes shape a New Zealand geographic environment (91426) Evidence

More information

Data Exploration vis Local Two-Sample Testing

Data Exploration vis Local Two-Sample Testing Data Exploration vis Local Two-Sample Testing 0 20 40 60 80 100 40 20 0 20 40 Freeman, Kim, and Lee (2017) Astrostatistics at Carnegie Mellon CMU Astrostatistics Network Graph 2017 (not including collaborations

More information

Web Structure Mining Nodes, Links and Influence

Web Structure Mining Nodes, Links and Influence Web Structure Mining Nodes, Links and Influence 1 Outline 1. Importance of nodes 1. Centrality 2. Prestige 3. Page Rank 4. Hubs and Authority 5. Metrics comparison 2. Link analysis 3. Influence model 1.

More information

Loss Functions and Optimization. Lecture 3-1

Loss Functions and Optimization. Lecture 3-1 Lecture 3: Loss Functions and Optimization Lecture 3-1 Administrative: Live Questions We ll use Zoom to take questions from remote students live-streaming the lecture Check Piazza for instructions and

More information

MATH 1501G1/G2/G3 Test II Fall 2006

MATH 1501G1/G2/G3 Test II Fall 2006 MATH 50G/G2/G3 Test II Fall 2006 Name: GTid (9xxxxxxxx): Instructor: Mitchel T. Keller Teaching Assistant and Section: There are 6 questions on this exam on 4 pages (not counting this coverpage). Answer

More information

Tracey Farrigan Research Geographer USDA-Economic Research Service

Tracey Farrigan Research Geographer USDA-Economic Research Service Rural Poverty Symposium Federal Reserve Bank of Atlanta December 2-3, 2013 Tracey Farrigan Research Geographer USDA-Economic Research Service Justification Increasing demand for sub-county analysis Policy

More information

t-closeness: Privacy beyond k-anonymity and l-diversity

t-closeness: Privacy beyond k-anonymity and l-diversity t-closeness: Privacy beyond k-anonymity and l-diversity paper by Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian presentation by Caitlin Lustig for CS 295D Definitions Attributes: explicit identifiers,

More information

Recitation 9: Loopy BP

Recitation 9: Loopy BP Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 204 Recitation 9: Loopy BP General Comments. In terms of implementation,

More information

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials)

Markov Networks. l Like Bayes Nets. l Graphical model that describes joint probability distribution using tables (AKA potentials) Markov Networks l Like Bayes Nets l Graphical model that describes joint probability distribution using tables (AKA potentials) l Nodes are random variables l Labels are outcomes over the variables Markov

More information

TMTA Precalculus Exam 2011

TMTA Precalculus Exam 2011 TMTA Precalculus Exam 011 1. Find the y-intercept of the line defined by the points ( 3, 1 7 ) and ( 5, 1 ). (a) (0, 9 8 ) (b) (0, 11 14 ) (c) (0, 5 8 ) (d) (0, 1) (e) (0, 75 56 ). Find the domain of the

More information

How Well Does Privacy Compose?

How Well Does Privacy Compose? How Well Does Privacy Compose? Thomas Steinke Almaden IPAM/UCLA, Los Angeles CA, 10 Jan. 2018 This Talk Composition!! What is composition? Why is it important? Composition & high-dimensional (e.g. genetic)

More information

Section 2.5 Absolute Value Functions

Section 2.5 Absolute Value Functions 16 Chapter Section.5 Absolute Value Functions So far in this chapter we have been studying the behavior of linear functions. The Absolute Value Function is a piecewise-defined function made up of two linear

More information

Generative Models for Discrete Data

Generative Models for Discrete Data Generative Models for Discrete Data ddebarr@uw.edu 2016-04-21 Agenda Bayesian Concept Learning Beta-Binomial Model Dirichlet-Multinomial Model Naïve Bayes Classifiers Bayesian Concept Learning Numbers

More information