Detecting Edges in Images. by Dr. Niels Lobo UCF EXCEL Applications of Calculus

Size: px
Start display at page:

Download "Detecting Edges in Images. by Dr. Niels Lobo UCF EXCEL Applications of Calculus"

Transcription

1 Detecting Edges in Images by Dr. Niels Lobo UCF EXCEL Applications of Calculus

2 Overview of talk We will first do three Examples of problems from the book, and then address the application to Computer Vision.

3 Calculus Problem A from the Book Example A: Textbook s Section 3.1 Example 6 Let D (t) be the U.S. National debt at time t. The table gives approximate values of this function by providing end of year estimates, in billions of dollars, from 1980 to Interpret and estimate the value of D' ( t) t D(t)

4 Calculus Problem A from the Book The derivative means the rate of change of D with respect to t when t = 1990, i.e, the rate of increase of national debt in To compute this, refer to Eqn. 3 in section 3.1, f ( a) = So, according to this eqn., we have D (1990) = D (1990) lim x a f lim t 1990 ( x) x f a D( t) t ( a) D(1990) 1990

5 Calculus Problem A from the Book Eqn. 3 in section 3.1, f ( a) = lim x a f ( x) x f ( a) a According to this eqn., we have D (1990) = lim D( t) D(1990) t 1990 t 1990 So we compute and tabulate values of the difference quotient as follows (the difference quotient records the average rate of change).

6 Calculus Problem A from the Book So we compute and tabulate values of the difference quotient as follows (the difference quotient records the average rate of change) t D( t) t D(1990)

7 Calculus Problem A from the Book Let us see how the table gets its values. t D( t) t D(1990)

8 Calculus Problem A from the Book Remember that the For t = 1980, compute original data was D( t) D(1990) t D(t) t which is divided by 10 (years) which is

9 Calculus Problem A from the Book So, that is the first entry. t D( t) t D(1990)

10 Calculus Problem A from the Book Similarly imilarly, get the rest. t D( t) t D(1990)

11 Calculus Problem A from the Book From the table we see that D (1990) lies somewhere between and billion dollars per year. (Here we are making the reasonable assumption that the debt didn t fluctuate wildly between 1980 and 2000.)

12 Calculus Problem A from the Book We estimate that the rate of increase of the national debt of the United States in 1990 was the average of these two numbers, namely D (1990) 303 billion dollars per year. (because 303 is the average of and )

13 Calculus Problem B from the Book Example B: Textbook s Section 3.1 Problem 31 Let T be the temperature (in ) in Dallas t hours after midnight on June 2, The table shows values of this function recorded every two hours. What is the meaning of? Estimate its value. T '(10) F t T

14 Calculus Problem B from the Book Solution: T '(10) in Dallas at 10 am. means the rate of change of temperature To estimate its value, first we calculate the difference quotient values. Need table of T ( t) t T (10) 10

15 Calculus Problem B from the Book Note the use of the word DIFFERENCE. Due to the fact that we do not have continuous data, (meaning we do not have the function values at all possible times), the best we can do is approximate the derivative by a DIFFERENCE. We would like to have been able to set the gap to being infinitesimally small. But we cannot. So, we settle for a larger gap.

16 Calculus Problem B from the Book Input t T gives a Diff Quotient table t T ( t) t T (10) / /2 -- 7/2 5/2

17 Calculus Problem B from the Book T '(10) lim To estimate, given by, t 1990 we take the average of the difference T ( t) t T (10) 10 quotient values at t=8, and t=12, to get the result ( )/2, i.e., 4.

18 Calculus Problem C from the Book Example C: Textbook s Section 3.1 Problem 32 Life expectancy improved dramatically in the 20th century. The table gives values of E(t), the life expectancy at birth (in years) of a male born in the year t in the United States. Interpret and estimate E '(1910) E'(1950) the values of and.

19 Calculus Problem C from the Book. t E(t) t E(t)

20 Calculus Problem C from the Book Solution: E '(1910) E'(1950) and refer to the rate of change (in this case, increase) of life expectancy at birth for males born in 1910 and 1950 respectively. To estimate these quantities, we build the difference quotient table for each of the required years.

21 Calculus Problem C from the Book. t E( t) E(1910) t 1910 t E( t) E(1910) t

22 Calculus Problem C from the Book. t E( t) E(1910) t

23 Calculus Problem C from the Book Original table is: So, first entry is t E(t) ( )/ (-10) t E( t) E(1910) t

24 Calculus Problem C from the Book. t E( t) E(1910) t 1910 t E( t) E(1910) t Do we need whole table?

25 Calculus Problem C from the Book. t E( t) E(1910) t 1910 t E( t) E(1910) t ?? ?? ?? ?? 1940?? 2000?? 1950??

26 Calculus Problem C from the Book and we proceed to use the approach that E'(1910) is the average of 0.28 and 0.41, for an answer of Similarly, for E'(1950), the difference quotient table is (on the next slide)

27 Calculus Problem C from the Book. t E( t) E(1950) t 1950 t E( t) E(1950) t ?? ?? 1970?? 1920?? 1980?? 1930?? 1990?? ??

28 Calculus Problem C from the Book and E'(1910) is taken to be the average of 0.31 and 0.1, which is 0.205, indicating that the rate of life expectancy gain was slower in 1950 than in 1910.

29 Images and their Edges Computer Vision Good for substituting machine in place of eye - Can assist with recognition - Can assist with navigation - Can assist with manipulation

30 Computer Vision: Helpful Mirror.

31 Computer Vision: Driverless Cars Automated Driver Console Driverless Taxis Battlefield Urban Driving

32 Surveillance for Safety Camera Network Crime Watch Airport Security Your Title Text here Speaker Crowd Monitor U.S. assets abroad Border Control

33 Computer Vision Crime Watch

34 Computer Vision Airport Security

35 Computer Vision Monitor U.S. Assets Abroad

36 Computer Vision Border Security

37 Medical Imaging 3D Models Image Guided Surgery Revolutionizing Medical Science Automated Cancer Scans Computerized Fracture Estimation

38 Computer Vision A Basic Task: Detect Edges of Regions

39 Detecting Edges in an image This is an example of a picture you might see on a computer screen. 20 X 20 pixel image of black box on square white background. Pixel Values for image

40 Black Rectangle on White Background A

41 Computer Vision To

42 Plot values from a row To Pixel Values

43 Find jumps in the plot Denote the plot by, then we Compute I( x) x ( x I( x 1) 1) I(x) We can think of two values, A and B, moving along the row. So we get the calculation being merely (B-A)/1

44 Again, the plot of a row Pixel Values

45 Plot of difference of pairs B-A Pixel Values

46 Absolute Value of B-A Pixel Values

47 How to find strong edges To find an edge from this derivative plot, use a threshold.

48 Effect of Thresholding Threshold Bar 0 Pixel Values

49 Back to the other example

50 Back to the other example

51 This one has a drop and then a rise Pixel Values

52 Difference of pairs, B-A Pixel Values

53 Absolute Value of (B-A) Pixel Values

54 Thresholding Pixel Values

55 Back to Complete Image A Basic Task: Detect Edges of Regions

56 . Consider a typical image

57 For this typical image We know we can find the edges as we proceed along the horizontal direction i.e., along a row i.e., the x-direction

58 For this typical image What about the vertical direction??? i.e., along a column? i.e., along the y-direction?

59 The y-direction.

60 Compute the Vertical Edges So, just as for the x-direction, we can compute the difference quotient for the y-direction: I( y) I ( y 1) y ( y 1) which means we are to compute the difference between two neighboring points that are vertical.

61 Computer Vision So, at all points on the image, we have 2 answers (one from x- direction and one from y-direction.) How to give a unified answer at all the points on the image?

62 Computer Vision So, denote image by I ( x, y) Then, the two Difference quotients are: I y and I x

63 What to call these two? So, get the notion of the Gradient. The two quantities combine to give the Gradient Vector. See Page 1095 of text.

64 The Gradient.

65 Back to the complete image The Gradient Vector is a physical descriptor of two dimensional functions; The symbol for the gradient vector is, and to repeat, it has two parts, the partial derivatives I x and I y r I

66 Back to the complete image The magnitude of the gradient vector can be obtained by squaring the individual components, adding them, and taking the square root, to get one scalar number. This concept is introduced in your Calculus textbook on page 1095, Chapter 17.

67 Back to the complete image The magnitude of the gradient vector can be obtained by squaring the individual components, adding them, and r I taking the square root, r I s magn = I x 2 + I y 2

68 Computer Vision Apply the gradient magnitude computation to this image

69 Gradient Magnitude.

70 . Use a Threshold

71 Use a LOWER Threshold Edges too Thick!!

72 Thickness of edges Next week, will see how to get thin edges. In the meantime, look at some cool stuff.

73 Computer Vision A

74 Computer Vision A

75 Computer Vision A

76 Computer Vision A

77 Computer Vision A

78 Computer Vision A

79 Computer Vision A

80 Computer Vision A

81 Computer Vision A

82 Computer Vision A

83 Computer Vision A

84 Computer Vision.

The Growth of Functions. A Practical Introduction with as Little Theory as possible

The Growth of Functions. A Practical Introduction with as Little Theory as possible The Growth of Functions A Practical Introduction with as Little Theory as possible Complexity of Algorithms (1) Before we talk about the growth of functions and the concept of order, let s discuss why

More information

GUIDED NOTES 5.6 RATIONAL FUNCTIONS

GUIDED NOTES 5.6 RATIONAL FUNCTIONS GUIDED NOTES 5.6 RATIONAL FUNCTIONS LEARNING OBJECTIVES In this section, you will: Use arrow notation. Solve applied problems involving rational functions. Find the domains of rational functions. Identify

More information

Daily Update. Dondi Ellis. January 27, 2015

Daily Update. Dondi Ellis. January 27, 2015 Daily Update Dondi Ellis January 27, 2015 CLASS 1: Introduction and Section 1.1 REMINDERS: Assignment: Read sections 1.1 and 1.2, and Student Guide (online). Buy a TI-84 or other graphing calculator satisfying

More information

MA Lesson 12 Notes Section 3.4 of Calculus part of textbook

MA Lesson 12 Notes Section 3.4 of Calculus part of textbook MA 15910 Lesson 1 Notes Section 3.4 of Calculus part of textbook Tangent Line to a curve: To understand the tangent line, we must first discuss a secant line. A secant line will intersect a curve at more

More information

Introduction to Algebra: The First Week

Introduction to Algebra: The First Week Introduction to Algebra: The First Week Background: According to the thermostat on the wall, the temperature in the classroom right now is 72 degrees Fahrenheit. I want to write to my friend in Europe,

More information

Linear Motion with Constant Acceleration

Linear Motion with Constant Acceleration Linear Motion 1 Linear Motion with Constant Acceleration Overview: First you will attempt to walk backward with a constant acceleration, monitoring your motion with the ultrasonic motion detector. Then

More information

Human Population Dynamics CAPT Embedded Task

Human Population Dynamics CAPT Embedded Task Name Per. Assigned Due Human Population Dynamics CAPT Embedded Task Essential Question: What factors influence population growth? The human population has existed for a little more than 500,000 years.

More information

Position and Displacement

Position and Displacement Position and Displacement Ch. in your text book Objectives Students will be able to: ) Explain the difference between a scalar and a vector quantity ) Explain the difference between total distance traveled

More information

Derivative and Integral: Some Concepts for Geodesy

Derivative and Integral: Some Concepts for Geodesy Derivative and Integral: Some Concepts for Geodesy James R. Clynch, 2003 I. Rates of Change (Derivatives) and Integrals There are many places in physics where the rates of change occur. This is the derivative

More information

MTH What is a Difference Quotient?

MTH What is a Difference Quotient? MTH 111 - What is a Difference Quotient? Another way to think about the difference quotient is that it yields a new function that gives the average rate of change of the original function, for two points

More information

Contrast Sensitivity

Contrast Sensitivity Contrast Sensitivity Performance in a vision based task, such as reading text, recognizing faces, or operating a vehicle, is limited by the overall quality of the image. Image quality depends on many factors,

More information

Anna D Aloise May 2, 2017 INTD 302: Final Project. Demonstrate an Understanding of the Fundamental Concepts of Calculus

Anna D Aloise May 2, 2017 INTD 302: Final Project. Demonstrate an Understanding of the Fundamental Concepts of Calculus Anna D Aloise May 2, 2017 INTD 302: Final Project Demonstrate an Understanding of the Fundamental Concepts of Calculus Analyzing the concept of limit numerically, algebraically, graphically, and in writing.

More information

MTH 103 Group Activity Problems (W1B) Name: Types of Functions and Their Rates of Change Section 1.4 part 1 (due April 6)

MTH 103 Group Activity Problems (W1B) Name: Types of Functions and Their Rates of Change Section 1.4 part 1 (due April 6) MTH 103 Group Activity Problems (W1B) Name: Types of Functions and Their Rates of Change Section 1.4 part 1 (due April 6) Learning Objectives Identify linear and nonlinear functions Interpret slope as

More information

Some Notes on Linear Algebra

Some Notes on Linear Algebra Some Notes on Linear Algebra prepared for a first course in differential equations Thomas L Scofield Department of Mathematics and Statistics Calvin College 1998 1 The purpose of these notes is to present

More information

UNIT 4: ONE-DIMENSIONAL MOTION II A Mathematical Description Approximate Classroom Time: Two 110 minute sessions

UNIT 4: ONE-DIMENSIONAL MOTION II A Mathematical Description Approximate Classroom Time: Two 110 minute sessions Name St.No. - Date (YY/MM/DD) / / Section INSTRUCTOR VERSION UNIT 4: ONE-DIMENSIONAL MOTION II A Mathematical Description Approximate Classroom Time: Two 110 minute sessions At the point where a speeding

More information

Math 1553 Introduction to Linear Algebra. School of Mathematics Georgia Institute of Technology

Math 1553 Introduction to Linear Algebra. School of Mathematics Georgia Institute of Technology Math 1553 Introduction to Linear Algebra School of Mathematics Georgia Institute of Technology Chapter 1 Overview Linear. Algebra. What is Linear Algebra? Linear having to do with lines/planes/etc. For

More information

GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS

GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS LEARNING OBJECTIVES In this section, you will: Evaluate exponential functions. Find the equation of an exponential function. Use compound interest formulas. Evaluate

More information

Turn off all noise-making devices and all devices with an internet connection and put them away. Put away all headphones, earbuds, etc.

Turn off all noise-making devices and all devices with an internet connection and put them away. Put away all headphones, earbuds, etc. NAME: FINAL EXAM INSTRUCTIONS: This exam is a closed book exam. You may not use your text, homework, or other aids except for a 3 5 notecard. You may use an allowable calculator, TI 83 or 84 to perform

More information

Motion in 1 Dimension. By Prof. Massimiliano Galeazzi, University of Miami

Motion in 1 Dimension. By Prof. Massimiliano Galeazzi, University of Miami Motion in 1 Dimension By Prof. Massimiliano Galeazzi, University of Miami When you throw a pebble straight up, how high does it go? How fast is it when it gets back? If you are in your car at a red light

More information

CHEMCAPER: Periodic Table of Elements

CHEMCAPER: Periodic Table of Elements CHEMCAPER: Periodic Table of Elements Image Source: Periodic Table of Elements. Wikimedia Commons. THEORY PERIODIC TABLE OF ELEMENTS Today we re taking a closer look at the Periodic Table of Elements and

More information

Lesson U2.1 Study Guide

Lesson U2.1 Study Guide Lesson U2.1 Study Guide Sunday, June 3, 2018 2:05 PM Matrix operations, The Inverse of a Matrix and Matrix Factorization Reading: Lay, Sections 2.1, 2.2, 2.3 and 2.5 (about 24 pages). MyMathLab: Lesson

More information

Neural Networks 2. 2 Receptive fields and dealing with image inputs

Neural Networks 2. 2 Receptive fields and dealing with image inputs CS 446 Machine Learning Fall 2016 Oct 04, 2016 Neural Networks 2 Professor: Dan Roth Scribe: C. Cheng, C. Cervantes Overview Convolutional Neural Networks Recurrent Neural Networks 1 Introduction There

More information

3.3.1 Linear functions yet again and dot product In 2D, a homogenous linear scalar function takes the general form:

3.3.1 Linear functions yet again and dot product In 2D, a homogenous linear scalar function takes the general form: 3.3 Gradient Vector and Jacobian Matri 3 3.3 Gradient Vector and Jacobian Matri Overview: Differentiable functions have a local linear approimation. Near a given point, local changes are determined by

More information

15. LECTURE 15. I can calculate the dot product of two vectors and interpret its meaning. I can find the projection of one vector onto another one.

15. LECTURE 15. I can calculate the dot product of two vectors and interpret its meaning. I can find the projection of one vector onto another one. 5. LECTURE 5 Objectives I can calculate the dot product of two vectors and interpret its meaning. I can find the projection of one vector onto another one. In the last few lectures, we ve learned that

More information

Determination of Density 1

Determination of Density 1 Introduction Determination of Density 1 Authors: B. D. Lamp, D. L. McCurdy, V. M. Pultz and J. M. McCormick* Last Update: February 1, 2013 Not so long ago a statistical data analysis of any data set larger

More information

MATH 56A SPRING 2008 STOCHASTIC PROCESSES

MATH 56A SPRING 2008 STOCHASTIC PROCESSES MATH 56A SPRING 008 STOCHASTIC PROCESSES KIYOSHI IGUSA Contents 4. Optimal Stopping Time 95 4.1. Definitions 95 4.. The basic problem 95 4.3. Solutions to basic problem 97 4.4. Cost functions 101 4.5.

More information

Calculus at Rutgers. Course descriptions

Calculus at Rutgers. Course descriptions Calculus at Rutgers This edition of Jon Rogawski s text, Calculus Early Transcendentals, is intended for students to use in the three-semester calculus sequence Math 151/152/251 beginning with Math 151

More information

Theory of Computation

Theory of Computation Theory of Computation Dr. Sarmad Abbasi Dr. Sarmad Abbasi () Theory of Computation 1 / 38 Lecture 21: Overview Big-Oh notation. Little-o notation. Time Complexity Classes Non-deterministic TMs The Class

More information

MATH 1003 Review: Part 2. Matrices. MATH 1003 Review: Part 2. Matrices

MATH 1003 Review: Part 2. Matrices. MATH 1003 Review: Part 2. Matrices Matrices (Ch.4) (i) System of linear equations in 2 variables (L.5, Ch4.1) Find solutions by graphing Supply and demand curve (ii) Basic ideas about Matrices (L.6, Ch4.2) To know a matrix Row operation

More information

UNIT 4: ONE-DIMENSIONAL MOTION II A Mathematical Description Approximate Classroom Time: Two 110 minute sessions

UNIT 4: ONE-DIMENSIONAL MOTION II A Mathematical Description Approximate Classroom Time: Two 110 minute sessions Workshop Physics: Unit 4 One Dimensional Motion II Page 4-1 Author: Priscilla Laws Name St.No. - Date (YY/MM/DD) / / Section INSTRUCTOR VERSION UNIT 4: ONE-DIMENSIONAL MOTION II A Mathematical Description

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION APPLICATIONS OF INTEGRATION 6.5 Average Value of a Function In this section, we will learn about: Applying integration to find out the average value of a function. AVERAGE

More information

How many states. Record high temperature

How many states. Record high temperature Record high temperature How many states Class Midpoint Label 94.5 99.5 94.5-99.5 0 97 99.5 104.5 99.5-104.5 2 102 102 104.5 109.5 104.5-109.5 8 107 107 109.5 114.5 109.5-114.5 18 112 112 114.5 119.5 114.5-119.5

More information

Biostatistics Presentation of data DR. AMEER KADHIM HUSSEIN M.B.CH.B.FICMS (COM.)

Biostatistics Presentation of data DR. AMEER KADHIM HUSSEIN M.B.CH.B.FICMS (COM.) Biostatistics Presentation of data DR. AMEER KADHIM HUSSEIN M.B.CH.B.FICMS (COM.) PRESENTATION OF DATA 1. Mathematical presentation (measures of central tendency and measures of dispersion). 2. Tabular

More information

Math6100 Day 8 Notes 6.1, 6.2 & 6.3, Area

Math6100 Day 8 Notes 6.1, 6.2 & 6.3, Area Math6100 Day 8 Notes 6.1, 6.2 & 6.3, Area 6.1 Area of Polygonal Regions Let's first derive formulas for the area of these shapes. 1. Rectangle 2. Parallelogram 3. Triangle 4. Trapezoid 1 Ex 1: Find the

More information

Quarks and the Cosmos

Quarks and the Cosmos Quarks and the Cosmos A lecture to the President s Council Purdue University Ian Shipsey(*) (*) one of 15 astrophysicists & particle physicists at Purdue University 1 Unfinished business from the 20 th

More information

Sampling, Frequency Distributions, and Graphs (12.1)

Sampling, Frequency Distributions, and Graphs (12.1) 1 Sampling, Frequency Distributions, and Graphs (1.1) Design: Plan how to obtain the data. What are typical Statistical Methods? Collect the data, which is then subjected to statistical analysis, which

More information

STANDARDS OF LEARNING CONTENT REVIEW NOTES. ALGEBRA I Part II 1 st Nine Weeks,

STANDARDS OF LEARNING CONTENT REVIEW NOTES. ALGEBRA I Part II 1 st Nine Weeks, STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA I Part II 1 st Nine Weeks, 2016-2017 OVERVIEW Algebra I Content Review Notes are designed by the High School Mathematics Steering Committee as a resource

More information

Consensus Algorithms for Camera Sensor Networks. Roberto Tron Vision, Dynamics and Learning Lab Johns Hopkins University

Consensus Algorithms for Camera Sensor Networks. Roberto Tron Vision, Dynamics and Learning Lab Johns Hopkins University Consensus Algorithms for Camera Sensor Networks Roberto Tron Vision, Dynamics and Learning Lab Johns Hopkins University Camera Sensor Networks Motes Small, battery powered Embedded camera Wireless interface

More information

Dr. Allen Back. Sep. 8, 2014

Dr. Allen Back. Sep. 8, 2014 in R 3 Dr. Allen Back Sep. 8, 2014 in R 3 in R 3 Def: For f (x, y), the partial derivative with respect to x at p 0 = (x 0, y 0 ) is f x = lim f (x 0 + h, y 0 ) f (x 0, y 0 ) h 0 h or f x = lim f (p 0

More information

Lesson 31 - Average and Instantaneous Rates of Change

Lesson 31 - Average and Instantaneous Rates of Change Lesson 31 - Average and Instantaneous Rates of Change IBHL Math & Calculus - Santowski 1 Lesson Objectives! 1. Calculate an average rate of change! 2. Estimate instantaneous rates of change using a variety

More information

Limits, Rates of Change, and Tangent Lines

Limits, Rates of Change, and Tangent Lines Limits, Rates of Change, and Tangent Lines jensenrj July 2, 2018 Contents 1 What is Calculus? 1 2 Velocity 2 2.1 Average Velocity......................... 3 2.2 Instantaneous Velocity......................

More information

The plot shows the graph of the function f (x). Determine the quantities.

The plot shows the graph of the function f (x). Determine the quantities. MATH 211 SAMPLE EXAM 1 SOLUTIONS 6 4 2-2 2 4-2 1. The plot shows the graph of the function f (x). Determine the quantities. lim f (x) (a) x 3 + Solution: Look at the graph. Let x approach 3 from the right.

More information

Machine Learning Basics

Machine Learning Basics Security and Fairness of Deep Learning Machine Learning Basics Anupam Datta CMU Spring 2019 Image Classification Image Classification Image classification pipeline Input: A training set of N images, each

More information

AP Calculus AB. Course Overview. Course Outline and Pacing Guide

AP Calculus AB. Course Overview. Course Outline and Pacing Guide AP Calculus AB Course Overview AP Calculus AB is designed to follow the topic outline in the AP Calculus Course Description provided by the College Board. The primary objective of this course is to provide

More information

Derivatives: definition and computation

Derivatives: definition and computation Math 10A September 6, 2016 Announcements The breakfasts tomorrow and Thursday are full, but there are spaces at the 8AM breakfast on September 13. This is a breakfast from last semester. The gentleman

More information

Nucleation versus spinodal

Nucleation versus spinodal Nucleation versus spinodal In this animation, we show two different mechanisms of phase separation Course Name: Phase transformations and heat treatment Authors M P Gururajan Learning Objectives After

More information

Contingency Tables. Contingency tables are used when we want to looking at two (or more) factors. Each factor might have two more or levels.

Contingency Tables. Contingency tables are used when we want to looking at two (or more) factors. Each factor might have two more or levels. Contingency Tables Definition & Examples. Contingency tables are used when we want to looking at two (or more) factors. Each factor might have two more or levels. (Using more than two factors gets complicated,

More information

CGC 1D Geography of Canada Summative Evaluation

CGC 1D Geography of Canada Summative Evaluation CGC 1D of Canada Summative Evaluation We have made it to the summative part of the course. Your summative evaluation is a study of a specific CITY or REGION in Canada. Cities will be chosen by students.

More information

Mathematics B. Statistics. General comments. Characteristics of good responses Senior External Examination Assessment report

Mathematics B. Statistics. General comments. Characteristics of good responses Senior External Examination Assessment report Mathematics B 0 Senior Eternal Eamination Assessment report Statistics Year Number of candidates Level of achievement VHA HA SA LA VLA 0 50 9 4 0 5 0 6 4 5 9 0 60 4 0 0 4 00 6 6 4 5 5 009 6 9 7 0 7 9 General

More information

TRACKING and DETECTION in COMPUTER VISION Filtering and edge detection

TRACKING and DETECTION in COMPUTER VISION Filtering and edge detection Technischen Universität München Winter Semester 0/0 TRACKING and DETECTION in COMPUTER VISION Filtering and edge detection Slobodan Ilić Overview Image formation Convolution Non-liner filtering: Median

More information

Magnetostatics: Part 1

Magnetostatics: Part 1 Magnetostatics: Part 1 We present magnetostatics in comparison with electrostatics. Sources of the fields: Electric field E: Coulomb s law. Magnetic field B: Biot-Savart law. Charge Current (moving charge)

More information

MAT137 - Term 2, Week 2

MAT137 - Term 2, Week 2 MAT137 - Term 2, Week 2 This lecture will assume you have watched all of the videos on the definition of the integral (but will remind you about some things). Today we re talking about: More on the definition

More information

Detection of Motor Vehicles and Humans on Ocean Shoreline. Seif Abu Bakr

Detection of Motor Vehicles and Humans on Ocean Shoreline. Seif Abu Bakr Detection of Motor Vehicles and Humans on Ocean Shoreline Seif Abu Bakr Dec 14, 2009 Boston University Department of Electrical and Computer Engineering Technical report No.ECE-2009-05 BOSTON UNIVERSITY

More information

SIFT: SCALE INVARIANT FEATURE TRANSFORM BY DAVID LOWE

SIFT: SCALE INVARIANT FEATURE TRANSFORM BY DAVID LOWE SIFT: SCALE INVARIANT FEATURE TRANSFORM BY DAVID LOWE Overview Motivation of Work Overview of Algorithm Scale Space and Difference of Gaussian Keypoint Localization Orientation Assignment Descriptor Building

More information

Properties of Waves. Before You Read. What are the features of a wave?

Properties of Waves. Before You Read. What are the features of a wave? Properties of Waves Textbook pages 134 143 Before You Read Section 4.1 Summary In this section, you will find out about waves, such as water waves, sound waves, and radio waves. On the lines below, list

More information

WEEK 7 NOTES AND EXERCISES

WEEK 7 NOTES AND EXERCISES WEEK 7 NOTES AND EXERCISES RATES OF CHANGE (STRAIGHT LINES) Rates of change are very important in mathematics. Take for example the speed of a car. It is a measure of how far the car travels over a certain

More information

Total Variation Theory and Its Applications

Total Variation Theory and Its Applications Total Variation Theory and Its Applications 2nd UCC Annual Research Conference, Kingston, Jamaica Peter Ndajah University of the Commonwealth Caribbean, Kingston, Jamaica September 27, 2018 Peter Ndajah

More information

Matrices (Ch.4) MATH 1003 Review: Part 2. Matrices. Matrices (Ch.4) Matrices (Ch.4)

Matrices (Ch.4) MATH 1003 Review: Part 2. Matrices. Matrices (Ch.4) Matrices (Ch.4) Matrices (Ch.4) Maosheng Xiong Department of Mathematics, HKUST (i) System of linear equations in 2 variables (L.5, Ch4.) Find solutions by graphing Supply and demand curve (ii) Basic ideas about Matrices

More information

Lecture 6: Edge Detection. CAP 5415: Computer Vision Fall 2008

Lecture 6: Edge Detection. CAP 5415: Computer Vision Fall 2008 Lecture 6: Edge Detection CAP 5415: Computer Vision Fall 2008 Announcements PS 2 is available Please read it by Thursday During Thursday lecture, I will be going over it in some detail Monday - Computer

More information

x 3x 1 if x 3 On problems 8 9, use the definition of continuity to find the values of k and/or m that will make the function continuous everywhere.

x 3x 1 if x 3 On problems 8 9, use the definition of continuity to find the values of k and/or m that will make the function continuous everywhere. CALCULUS AB WORKSHEET ON CONTINUITY AND INTERMEDIATE VALUE THEOREM Work the following on notebook paper. On problems 1 4, sketch the graph of a function f that satisfies the stated conditions. 1. f has

More information

MA 123 September 8, 2016

MA 123 September 8, 2016 Instantaneous velocity and its Today we first revisit the notion of instantaneous velocity, and then we discuss how we use its to compute it. Learning Catalytics session: We start with a question about

More information

CIRCUITS AND ELECTRONICS

CIRCUITS AND ELECTRONICS 6.002x CIRCUITS AND EECTRONICS The Impedance Model!!! Reading: Section 3.3 from text Review Sinusoidal Steady State (SSS) Reading 3., 3.2 v I i cost R C v SSS Focus on sinusoids. Focus on steady state,

More information

2.1 Definition. Let n be a positive integer. An n-dimensional vector is an ordered list of n real numbers.

2.1 Definition. Let n be a positive integer. An n-dimensional vector is an ordered list of n real numbers. 2 VECTORS, POINTS, and LINEAR ALGEBRA. At first glance, vectors seem to be very simple. It is easy enough to draw vector arrows, and the operations (vector addition, dot product, etc.) are also easy to

More information

Geology Geomath Computer Lab Quadratics and Settling Velocities

Geology Geomath Computer Lab Quadratics and Settling Velocities Geology 351 - Geomath Computer Lab Quadratics and Settling Velocities In Chapter 3 of Mathematics: A simple tool for geologists, Waltham takes us through a brief review of quadratic equations and their

More information

Math 1526 Excel Lab 2 Summer 2012

Math 1526 Excel Lab 2 Summer 2012 Math 1526 Excel Lab 2 Summer 2012 Riemann Sums, Trapezoidal Rule and Simpson's Rule: In this lab you will learn how to recover information from rate of change data. For instance, if you have data for marginal

More information

GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS

GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS LEARNING OBJECTIVES In this section, you will: Evaluate exponential functions. Find the equation of an exponential function. Use compound interest formulas. Evaluate

More information

Evaluating Piecewise-defined Functions Sketching the Graph of a Piecewise-defined Functions

Evaluating Piecewise-defined Functions Sketching the Graph of a Piecewise-defined Functions 7 Functions Concepts: The Definition of A Function Function Notation Piecewise-defined Functions Evaluating Piecewise-defined Functions Sketching the Graph of a Piecewise-defined Functions The Domain of

More information

Discrete Probability and State Estimation

Discrete Probability and State Estimation 6.01, Spring Semester, 2008 Week 12 Course Notes 1 MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.01 Introduction to EECS I Spring Semester, 2008 Week

More information

Relationships Between Quantities

Relationships Between Quantities Algebra 1 Relationships Between Quantities Relationships Between Quantities Everyone loves math until there are letters (known as variables) in problems!! Do students complain about reading when they come

More information

Position, Velocity, Acceleration

Position, Velocity, Acceleration 191 CHAPTER 7 Position, Velocity, Acceleration When we talk of acceleration we think of how quickly the velocity is changing. For example, when a stone is dropped its acceleration (due to gravity) is approximately

More information

Safety: BE SURE TO KEEP YOUR SMART CART UPSIDE-DOWN WHEN YOU RE NOT ACTIVELY USING IT TO RECORD DATA.

Safety: BE SURE TO KEEP YOUR SMART CART UPSIDE-DOWN WHEN YOU RE NOT ACTIVELY USING IT TO RECORD DATA. Why do people always ignore Objective: 1. Determine how an object s mass affects the friction it experiences. 2. Compare the coefficient of static friction to the coefficient of kinetic friction for each

More information

INTRODUCTION TO DIFFERENTIATION

INTRODUCTION TO DIFFERENTIATION INTRODUCTION TO DIFFERENTIATION GRADIENT OF A CURVE We have looked at the process needed for finding the gradient of a curve (or the rate of change of a curve). We have defined the gradient of a curve

More information

Statistical and Learning Techniques in Computer Vision Lecture 1: Random Variables Jens Rittscher and Chuck Stewart

Statistical and Learning Techniques in Computer Vision Lecture 1: Random Variables Jens Rittscher and Chuck Stewart Statistical and Learning Techniques in Computer Vision Lecture 1: Random Variables Jens Rittscher and Chuck Stewart 1 Motivation Imaging is a stochastic process: If we take all the different sources of

More information

The data in this answer key is sample data only. Student answers will vary based on personal data.

The data in this answer key is sample data only. Student answers will vary based on personal data. Answer Key Road Rage The data in this answer key is sample data only. Student answers will vary based on personal data. This activity will explore how to predict where and when two cars will crash into

More information

Level 3 Calculus, 2014

Level 3 Calculus, 2014 91578 915780 3SUPERVISOR S Level 3 Calculus, 2014 91578 Apply differentiation methods in solving problems 9.30 am Tuesday 18 November 2014 Credits: Six Achievement Achievement with Merit Achievement with

More information

Parking Place Inspection System Utilizing a Mobile Robot with a Laser Range Finder -Application for occupancy state recognition-

Parking Place Inspection System Utilizing a Mobile Robot with a Laser Range Finder -Application for occupancy state recognition- Parking Place Inspection System Utilizing a Mobile Robot with a Laser Range Finder -Application for occupancy state recognition- Sanngoen Wanayuth, Akihisa Ohya and Takashi Tsubouchi Abstract The automated

More information

Derivatives at Several Points: An Important Step between Derivative at a Point and Derivative Function

Derivatives at Several Points: An Important Step between Derivative at a Point and Derivative Function Derivatives at Several Points: An Important Step between Derivative at a Point and Derivative Function Abstract We present activities, with an interactive computer program, that serve to bridge two related

More information

Simple Interactions CS 105 Lecture 2 Jan 26. Matthew Stone

Simple Interactions CS 105 Lecture 2 Jan 26. Matthew Stone Simple Interactions CS 105 Lecture 2 Jan 26 Matthew Stone Rutgers University Department of Computer Science and Center for Cognitive Science Themes from the Preface 2 Computers are multimedia devices Text

More information

module, with the exception that the vials are larger and you only use one initial population size.

module, with the exception that the vials are larger and you only use one initial population size. Population Dynamics and Space Availability (http://web.as.uky.edu/biology/faculty/cooper/population%20dynamics%20examples%2 0with%20fruit%20flies/TheAmericanBiologyTeacher- PopulationDynamicsWebpage.html

More information

COMPUTING AND DATA ANALYSIS WITH EXCEL. Matrix manipulation and systems of linear equations

COMPUTING AND DATA ANALYSIS WITH EXCEL. Matrix manipulation and systems of linear equations COMPUTING AND DATA ANALYSIS WITH EXCEL Matrix manipulation and systems of linear equations Outline 1 Matrices Addition Subtraction Excel functions that return more than one cell Solving systems of linear

More information

Lecture Notes (Math 90): Week IX (Tuesday)

Lecture Notes (Math 90): Week IX (Tuesday) Lecture Notes (Math 90): Week IX (Tuesday) Alicia Harper November 13, 2017 Existence theorems and monotonic functions 1 The Story 1.1 Two more existence theorems! Recall the intermediate value theorem:

More information

What s the Average? Stu Schwartz

What s the Average? Stu Schwartz What s the Average? by Over the years, I taught both AP calculus and AP statistics. While many of the same students took both courses, rarely was there a problem with students confusing ideas from both

More information

ALASKA ITS. Vehicles and Observations in the cloud

ALASKA ITS. Vehicles and Observations in the cloud ALASKA ITS Vehicles and Observations in the cloud 1 YOUR PRESENTERS Wilf Nixon, Salt Institute Mark DeVries, Vaisala Dan Schacher, ADOT&PF 2 Today s Agenda A Cloud Based Overview connected and autonomous

More information

One sided tests. An example of a two sided alternative is what we ve been using for our two sample tests:

One sided tests. An example of a two sided alternative is what we ve been using for our two sample tests: One sided tests So far all of our tests have been two sided. While this may be a bit easier to understand, this is often not the best way to do a hypothesis test. One simple thing that we can do to get

More information

MATH 308 COURSE SUMMARY

MATH 308 COURSE SUMMARY MATH 308 COURSE SUMMARY Approximately a third of the exam cover the material from the first two midterms, that is, chapter 6 and the first six sections of chapter 7. The rest of the exam will cover the

More information

Name Period Date. RNS1.3 Scientific Notation Read and write large and small numbers. Use scientific notation to write numbers and solve problems.

Name Period Date. RNS1.3 Scientific Notation Read and write large and small numbers. Use scientific notation to write numbers and solve problems. Name Period Date REAL NUMBER SYSTEM Student Pages for Packet : RNS. Conjectures About Make conjectures about multiplication with eponents. Use eponent definitions and rules to simplify epressions. RNS.

More information

Section 11.3 Rates of Change:

Section 11.3 Rates of Change: Section 11.3 Rates of Change: 1. Consider the following table, which describes a driver making a 168-mile trip from Cleveland to Columbus, Ohio in 3 hours. t Time (in hours) 0 0.5 1 1.5 2 2.5 3 f(t) Distance

More information

Part III: Unstructured Data

Part III: Unstructured Data Inf1-DA 2010 2011 III: 51 / 89 Part III Unstructured Data Data Retrieval: III.1 Unstructured data and data retrieval Statistical Analysis of Data: III.2 Data scales and summary statistics III.3 Hypothesis

More information

Mapping a Nation in 3D Singapore s Journey. Bryan Chew Registrar of Titles Assistant Chief Executive Singapore Land Authority

Mapping a Nation in 3D Singapore s Journey. Bryan Chew Registrar of Titles Assistant Chief Executive Singapore Land Authority Mapping a Nation in 3D Singapore s Journey Bryan Chew Registrar of Titles Assistant Chief Executive Singapore Land Authority Singapore Size - 719 sq km Population - 5.5 million Density 7,600/sq km Singapore

More information

Grade 5 Number Strings

Grade 5 Number Strings Grade 5 Purpose: To use number relationships to solve problems and to learn number facts To use known facts and relationships to determine unknown facts To develop and test conjectures To make generalizations

More information

ARE211, Fall 2004 CONTENTS. 4. Univariate and Multivariate Differentiation (cont) Four graphical examples Taylor s Theorem 9

ARE211, Fall 2004 CONTENTS. 4. Univariate and Multivariate Differentiation (cont) Four graphical examples Taylor s Theorem 9 ARE211, Fall 24 LECTURE #18: TUE, NOV 9, 24 PRINT DATE: DECEMBER 17, 24 (CALCULUS3) CONTENTS 4. Univariate and Multivariate Differentiation (cont) 1 4.4. Multivariate Calculus: functions from R n to R

More information

The University of Sydney Math1003 Integral Calculus and Modelling. Semester 2 Exercises and Solutions for Week

The University of Sydney Math1003 Integral Calculus and Modelling. Semester 2 Exercises and Solutions for Week The University of Sydney Math3 Integral Calculus and Modelling Semester 2 Exercises and Solutions for Week 2 2 Assumed Knowledge Sigma notation for sums. The ideas of a sequence of numbers and of the limit

More information

The Comparison Test. J. Gonzalez-Zugasti, University of Massachusetts - Lowell

The Comparison Test. J. Gonzalez-Zugasti, University of Massachusetts - Lowell The Comparison Test The Comparison Test Let a k and b k be series with positive terms and suppose a N b N, a N+ b N+, a N+2 b N+2,, a) If the bigger series b k converges, then the smaller series a k also

More information

Evidence for the Quantization of Electric Charge and Measurement of the Fundamental Unit of Electric Charge

Evidence for the Quantization of Electric Charge and Measurement of the Fundamental Unit of Electric Charge PHYSICS 286: Modern Physics Laboratory SPRING 2009 (K. Kumar and A. Dinsmore, March 2009) Experiment 7: The Millikan Oil Drop Experiment: INTRODUCTION Evidence for the Quantization of Electric Charge and

More information

Year 10 Mathematics Semester 2 Bivariate Data Chapter 13

Year 10 Mathematics Semester 2 Bivariate Data Chapter 13 Year 10 Mathematics Semester 2 Bivariate Data Chapter 13 Why learn this? Observations of two or more variables are often recorded, for example, the heights and weights of individuals. Studying the data

More information

Lecture 2: Linear regression

Lecture 2: Linear regression Lecture 2: Linear regression Roger Grosse 1 Introduction Let s ump right in and look at our first machine learning algorithm, linear regression. In regression, we are interested in predicting a scalar-valued

More information

Grade 3. Grade 3 K 8 Standards 23

Grade 3. Grade 3 K 8 Standards 23 Grade 3 In grade 3, instructional time should focus on four critical areas: (1) developing understanding of multiplication and division and strategies for multiplication and division within 100; (2) developing

More information

Introduction to Linear Systems

Introduction to Linear Systems Introduction to Linear Systems Linear Sysems: Nonhomogeneous and Homogeneous The Three Possibilities Examples. Explanations. Analytic Geometry The Three Rules. Reversible Rules. Equivalent Systems Reduced

More information

Observing Living Things

Observing Living Things Observing Living Things Textbook pages 8 21 Before You Read Section 1.1 Summary This section describes the signs that scientists look for to help them decide if something is living or non-living. On the

More information

What is Binary? Digital Systems and Information Representation. An Example. Physical Representation. Boolean Algebra

What is Binary? Digital Systems and Information Representation. An Example. Physical Representation. Boolean Algebra What is Binary? Digital Systems and Information Representation CSE 102 Underlying base signals are two valued: 0 or 1 true or false (T or F) high or low (H or L) One bit is the smallest unambiguous unit

More information