arxiv: v1 [math.ds] 2 Nov 2015

Size: px
Start display at page:

Download "arxiv: v1 [math.ds] 2 Nov 2015"

Transcription

1 PROPERTIES OF CERTAIN PARTIAL DYNAMIC INTEGRODIFFERENTIAL EQUATIONS rxiv: v1 [mth.ds] 2 Nov 2015 DEEPAK B. PACHPATTE Abstrct. The im of the present pper is to study the existence, uniqueness nd some other properties of solutions of certin prtil dynmic integrodifferentil equtions.the Bnch fixed point theorem nd certin fundmentl inequlity with explicit estimtes re used to estblish our results. 1. Introduction The study of time scle clculus ws initited by Stefn Hilger in his Ph.D disserttion which unifies the continuous nd discrete clculus[4]. Since then mny uthors hve worked on vrious spects dynmic equtions on timescle clculus[5, 6, 7, 8, 9]. Bsic informtion on time scle clculus cn be found in [1, 2, 3, 4]. Mny uthors hve studied vrious types of prtil dynmic equtions on time scles[7, 8, 10, 11, 14].In [12, 13, 15] hve studied the integrodifferentil equtions nd its properties. Motivted by the results in the bove ppers in this pper we study properties of certin prtil dynmic integrodifferentil equtions. In wht follows R denotes the set of rel numbers nd T denotes the rbitrry time scles. Now we give some bsic definitions of time scle clculus. The function f : T R is sid to be rd-continuous if f is continuous t ech right dense point of T nd is denoted by C rd. Let two time scles with t lest two point be denoted by T 1 nd T 2 nd Ω = T 1 T 2. The delt prtil derivtive of rel vlued function f on T 1 T 2 hs prtil derivtive f t 1,t 2 ) with respect to t 1 if for ech ǫ > 0 there exists neighbourhood U t1 of t 1 such tht. f σ 1 t 1 ),t 2 ) f s,t 2 ) f t 1,t 2 )σ 1 t 1 ) s) ε σ 1 t 1 ) s for ll s U t2. The delt prtil derivtive of rel vlued function f on T 1 T 2 hs 2 prtil derivtive f t 1,t 2 ) with respect to t 2 if for ech η > 0 there exists neighbourhood U t2 of t 2 such tht f t1,σ 2 t 2 )) f t 1,l) f 2 t 1,t 2 )σ 2 t 2 ) l) η σ2 t 2 ) l 2010 Mthemtics Subject Clssifiction. 26E70, 34N05, 26D10. Key words nd phrses. Bnch fixed point theorem, Existence nd Uniqueness, integrl inequlity,integrodifferentil equtions, time scles. 1

2 2 D. B. PACHPATTE for ll u U t1. The prtil derivtive of wx, y) for x, y) Ω with respect to x,y nd xy is denoted by w x,y),w 2 x,y) nd w 2 x,y) = w 2 x,y). Suppose I = [,b] with < b nd Ω = Ω I. The prtil derivtive of ux,y,z) for x,y,z) C rd Ω,R) with respect to x,y nd xy is defined by w x,y,z),w 2 x,y,z) nd w 2 x,y,z) = w 2 x,y,z) In this pper we study the prtil dynmic integrodifferentil eqution of the form u 2 x,y,z) = F x,y,z,ux,y,z),u x,y,z),u 2 x,y,z),hu)x,y,z) ), 1.1) with the conditions for x,y) Ω where Hu)x,y,z) = ux,,z) = αx,z), u,y,z) = βy,z) 1.2) G x,y,z,q,ux,y,q),u x,y,q),u 2 x,y,q) ) q, 1.3) whereg C rd Ω R 3,R ),F C rd Ω R 4,R ) ndα,β C rd R I,R). We hve u,,z) = α,z) = β,z). Now for u,u,u 2 C rd Ω,R ), we denote. ux,y,z) W = ux,y,z) u x,y,z) u 2 x,y,z). 1.4) Let S be the spce function stisfying the condition ux,y,z) W = Oe λ x,y, z )), 1.5) where λ > 0 is positive constnt. In spce S we define norm u by u s = sup [ ux,y,z) w e Θλ x,y, z )]. 1.6) x,y,z) Ω I The norm defined 1.6) is clerly Bnch Spce. Then 1.5) implies tht there is constnt N 0 such tht ux,y,z) w N e λ x,y, z )), 1.7) nd we hve u s N. 1.8) The solution of 1.1) nd 1.2) is function ux,y,z) C ) rd Ω,R n stisfying 1.1) nd 1.2). It is esy to see tht ux,y,z) with 1.1) nd

3 INTEGRODIFFERENTIAL EQUATIONS 3 1.2) stisfy the following dynmic integrodifferentil eqution. ux,y,z) = αx,z)βy,z) α0,z) F s,t,z,us,t,z),u s,t,z),u 2 s,t,z),hu)s,t,z) ) t s, for x,y,z) C rd Ω,R) u x,y,z) = α x,z) F u 2 x,y,z) = β 2 y,z) x F x,t,z,ux,t,z),u x,t,z),u 2 x,t,z),hu)x,t,z) ) t, 1.9) 1.10) s,y,z,ux,t,z),u s,y,z),u 2 s,y,z),hu)s,y,z) ) s. We need following Lemm given in [3]. Lemm [[3], Theorem 2.6] Let u C rd T,R ), R for ll t T k, then for ll t T k. u t) t)ut), ut) ut 0 )e t,t 0 ), 2. Min Results 1.11) Now we give our min results Theorem 1.1 Suppose tht the functions F,G in 1.1) stisfy the condition F x,y,z,u 1,u 2,u 3,u 4 ) F x,y,z,u 1,u 2,u 3,u 4 ) M x,y,z)[ u 1 u 1 u 2 u 2 u 3 u 3 u 4 u 4 ], 2.1) Gx,y,z,q,u 1,u 2,u 3 ) Gx,y,z,q,u 1,u 2,u 3 )

4 4 D. B. PACHPATTE Kx,y,z,q)[ u 1 u 1 u 2 u 2 u 3 u 3 ], 2.2) where M C rd Ω,R ) nd K Crd Ω I,R ). For λ s in 1.5), there exists nonnegtive γ i i = 1,2,3) such tht M s,t,z)[e λ s,t, z ) ks,t,z,q)e λ s,t, q ) q t s γ 1 e λ x,y, z ), 2.3) M x,t,z)[e λ x,t, q ) x kx,t,z,q)e λ x,t, q ) q t γ 2 e λ x,y, z ), 2.4) M s,y,z)[e λ x,t, z ) ks,y,z,q)e λ s,y, q ) q s γ 3 e λ x,y, z ), 2.5) for x,y Ω, z I. There exist nonnegtive constnts η i i = 1,2,3) such tht αx,z) βy,z) α0,z) f s,t,z,0,0,h0)s,t,z)) t s η 1 e λ x,y, z ), 2.6) α x,z) β y,z) y F x,t,z,0,0,0,h0)x,t,z)) t η 2 e λ x,y, z ), 2.7) F s,y,z,0,0,0,h0)s,y,z)) s η 3 e λ x,y, z ), 2.8)

5 INTEGRODIFFERENTIAL EQUATIONS 5 where α,β re s in 1.2). If γ = γ 1 γ 2 γ 3 < 1 then problem 1.1) 1.2) hs unique solution ux,y,z) on 1.1) 1.2) in S. Proof. Let ux,y,z) S nd define the opertor T by Tu)x,y,z) = αx,z)βy,z) α0,z) F s,t,z,us,t,z),u s,t,z),u 2 s,t,z),hu)s,t,z) ) t s. 2.9) Now we show tht P mps S into itself. Tu is rd-continuous on Ω I nd Tu R. From 2.9) nd given hypotheses we hve Pu)x,y,z) αx,z) βy,z) α0,z) F s,t,z,us,t,z),u s,t,z),u 2 s,t,z),hu)s,t,z) ) F s,t,z,0,0,0,h0)s,t,z)) t s F s,t,z,0,0,0,h0)s,t,z)) t s η 1 e λ x,y, z ) M s,t,z)[e λ s,t, z ) us,t,z) e Θλ s,t, z ) kx,y,z,q)e λ s,t, q ) ux,y, q ) W e Θλ s,t, q ) q t s η 1 e λ x,y, z ) u s M s,t,z)[e λ s,t, z ) kx,y,z,q)e λ s,t, q ) q t s [η 1 Nγ 1 ]e λ x,y, z ). 2.10)

6 6 D. B. PACHPATTE Delt differentiting on both sides of 2.9) with respect to x nd 1.8) we hve Pu) x,y,z) α x,z) F x,t,z,ux,t,z),u x,t,z),u 2 x,t,z),hu)x,t,z) ) F x,t,z,0,0,0,h0)x,t,z)) t F x,t,z,0,0,0,h0)x,t,z)) t η 2 e λ x,y, z ) u s M x,t,z)[e λ x,t, z ) kx,t,z,q)e λ x,t, q ) q t [η 2 Nγ 2 ]e λ x,y, z ). 2.11) Similrly we hve Pu) 2 x,y,z) [η 3 Nγ 3 ]e λ x,y, z ). 2.12) From 2.10) 2.12) we hve Pu s [η 1 η 2 η 3 )Nγ]. Thus proving tht P mps S into itself. NowweshowthtopertorP iscontrctionmp. Letux,y,z),ux,y,z) S. From 2.9) we hve Pu)x,y,z) Pu)x,y,z) F s,t,z,us,t,z),u s,t,z),u 2 s,t,z),hu)s,t,z) ) F s,t,z,us,t,z),u s,t,z),u 2 s,t,z),hu)s,t,z) ) t s u u s M x,t,z)[e λ s,t, z )

7 INTEGRODIFFERENTIAL EQUATIONS 7 ks,t,z,q)e λ s,t, q ) q t s u u s γ 1 e λ x,y, z ). 2.13) Similrly delt differentiting both sides of 2.12) with respect to x nd y we hve Pu) x,y,z) Pu) x,y,z) u u s γ 2 e λ x,y, z ), 2.14) nd Pu) 2 x,y,z) Pu) 2 x,y,z) u u s γ 3 e λ x,y, z ). 2.15) From 2.13) 2.15) we obtin Pu Pu s γ u u s. Since γ < 1, P hs unique fixed point in S by Bnch fixed point theorem. The fixed point of P is solution of 1.1) 1.2). This completes the proof. 3. Properties of solutions Now we study the properties of solution of dynmic integrodifferentil eqution of the form u 2 x,y,z) = f x,y,z,ux,y,z),hu)x,y,z)), 3.1) with 1.2) for x,y,z) Ω where hu)x,y,z) = jx,y,z,q,ux,y,q))dq, 3.2) ) in which i C rd Ω R,R, f Crd Ω R 2,R). Now we prove the following dynmic inequlity which cn be used in studying some properties of solutions. ) ) Theorem 3.1 Let w,p C rd Ω,R, Crd Ω I,R nd c 0 constnt. If wx,y,z) c [ps,t,z)ws,t,z) rs,t,z,q)ws,t,q) q t s, 3.3)

8 8 D. B. PACHPATTE for x,y,z) Ω then wx,y,z) ce Qx,y,z) x, ), 3.4) where x,y,z) Ω nd Qx,y,z) = ps,t,z) Proof. For n rbitrry Z I from 3.3) we hve rs,t,z,q) q s. 3.5) Put wx,y,z) c ms,t) = ps,t,z)ws,t,z) The inequlity 3.6) becomes Now define then wx,y,z) c vx,y) = c [ps,t,z)ws,t,z) rs,t,z,q)ws,t,q) q t s. 3.6) rs,t,z,q)ws,t,q) q. 3.7) ms,t) t s. 3.8) ms,t) t s, 3.9) v0,y) = vx,0) = c,wx,y,z) vx,y). 3.10) Delt differentiting both sides of 3.9) with respect to x nd y using 3.7) nd 3.10) we hve v 2 x,y) = mx,y) = px,y,z)wx,y,z) rx,y,z,q)wx,y,q) q

9 INTEGRODIFFERENTIAL EQUATIONS 9 vx,y) px,y,z) rs,t,z,q) q. 3.11) By keeping x fixed in 3.11), nd tking y = t nd delt integrting with respect to second vrible from to y. Using the fct tht v x,y) px,t,z) vx,y) px,t,z) rx,t,z,q) q vx,t) t rx,t,z,q) q t vx,y)qx,y,z). 3.12) Now treting y fixed in 3.12) nd pplying Lemm we hve vx,y) ce Qx,y,Z) x, ). 3.13) Becuse Z is rbitrry nd using 3.10) we get 3.9). Theorem 3.2 Suppose the functions f, j in 3.1),3.2) stisfy the conditions f x,y,z,u,v) f x,y,z,u,v) p 1 x,y,z)[ u u v v ], 3.14) jx,y,z,q,u) jx,y,z,q,u) p 2 x,y,z,q) u u, 3.15) ) ) where p 1 C rd Ω,R, p2 C rd Ω I,R, c 0 nd p 1 s,t,z) p 1 s,t,z,q) q t s <, 3.16) then the problem 3.1) 1.1) hs t most one solution. Proof. Let u 1 x,y,z) nd u 2 x,y,z) be two solutions of problem 3.1) 1.1). u 1 x,y,z) u 2 x,y,z) f s,t,z,u 1 s,t,z),hu 1 )s,t,z)) f s,t,z,u 2 s,t,z),hu 2 )s,t,z)) t s [p 1 s,t,z) u 1 s,t,z) u 2 s,t,z)

10 10 D. B. PACHPATTE hu 1 )s,t,z) hu 2 )s,t,z) ] t s [p 1 s,t,z) u 1 s,t,z) u 2 s,t,z) p 1 s,t,z,q) u 1 s,t,q) u 2 s,t,q) q t s. 3.17) NowpplyingTheorem3.1to3.17)yields u 1 x,y,z) u 2 x,y,z) 0 which gives u 1 x,y,z) = u 2 x,y,z). This proves tht there is t most one solution to problem 3.1) 1.1). Now we prove the theorem which gives the boundedness of solution of 3.1) 1.1). Theorem 3.3. Suppose the function f,j,α,β in 3.1) 1.1) stisfy the conditions f x,y,z,u,v) p 1 x,y,z)[ u v ], 3.18) jx,y,z,u,v) p 2 x,y,z,q) u, 3.19) αx,z)βy,z) α0,z) c, 3.20) where p 1 C rd Ω,R ), p 2 C rd Ω I,R ), c 0 is constnt nd the condition 3.16) holds. Then solution ux, y, z) is bounded nd ux,y,z) ce Qx,y,z) x, ), 3.21) for x,y,z) Ω Proof. Since ux,y,z) is solution of 3.1) 1.1). We hve ux,y,z) αx,z)βy,z) α0,z) c f s,t,z,us,t,z),hu)s,t,z)) t s [p 1 s,t,z) us,t,z) p 2 s,t,z,q) us,t,q) q t s. 3.22) Now n ppliction of Theorem 3.1 to 3.22) yields 3.21) thus proving the boundedness of solution. Now we give the dependency of solution of eqution on given condition

11 INTEGRODIFFERENTIAL EQUATIONS 11 Theorem 3.4. Suppose the function f,k in 3.1),3.2) stisfy the conditions 3.14),3.15) nd the condition 3.16) holds. Let ux, y, z) nd vx,y,z) be the solutions of eqution with condition 1.2) nd vx,0,z) = αx,z), v0,y,z) = βy,z), 3.23) respectively nd αx,z)βy,z) α0,z) [ αx,z)βy,z) α0,z) ], 3.24) where α,β,α,β C rd R I,R) nd 0 is constnt. Then ux,y,z) vx,y,z) e Qx,y,z) x, ). 3.25) Proof. Since ux,y,z) nd vx,y,z) re solutions of 3.1)-1.1) nd 3.1) 3.23) nd the given conditions we hve ux,y,z) ux,y,z) αx,z)βy,z) α0,z) [ αx,z)βy,z) α0,z) ] f s,t,z,us,t,z),hu)s,t,z)) f s,t,z,vs,t,z),hu)s,t,z)) t s [p 1 s,t,z) us,t,z) vs,t,z) p 2 s,t,z,q) us,t,z) vs,t,z) q t s. 3.26) Now n ppliction of Theorem 3.1 to3.26) gives the estimte3.25) which gives the dependency of solution of eqution 3.1) on given conditions. Acknowledgement. This reserch is supported by Science nd Engineering Reserch BordSERB), New Delhi, Indi, Snct. No. SB/S4/MS:861/13 References References [1] M. Bohner nd A. Peterson, Dynmic equtions on time scles, Birkhuser Boston/Berlin, 2001). [2] M. Bohner nd A. Peterson, Advnces in Dynmic equtions on time scles, Birkhuser Boston/Berlin, 2003).

12 12 D. B. PACHPATTE [3] E.A.Bohner, M. Bohner nd F. Akin, Pchptte inequlities on on time scles, J. Inequl. Pure Appl. Mth.,,61)2005), Art. 6. [4] S. Hilger, Anlysis on Mesure chin-a unified pproch to continuous nd discrete clculus, Results. Mth., 18:18-56, [5] D. B. Pchptte, Explicit estimtes on integrl inequlities with time scle, J. Inequl. Pure. Appl. Mth., Vol. 7, Issue 4, Artivle 143, [6] D. B. Pchptte, Integrl Inequlitys for prtil dynmic equtions on time scles, Electron. J. Differentil Equtions,Vol ), No. 50, 1-7. [7] D. B. Pchptte, Properties of solutions to nonliner dynmic integrl equtions on Time Scles, Electron. J. Differentil Equtions,Vol ). No pp.1-8. [8] D. B. Pchptte, Properties of some prtil dynmic equtions on time scles, Interntionl Journl of Prtil Differentil Equtions, Vol. 2013, Art. ID , 9 pges [9] D. B. Pchptte, Properties of some dynmic Integrl equtions on time scles, Ann. Funct. Anl., Vol.4, No2.,2013. [10] B. Jckson, Prtil dymic equtions on time scles, J. Comput. Appl. Mth.,Vol.186, Issue 2, Feb 2006, p [11] Y. Sun, T. Hssnb, Some nonliner dynmic integrl inequlities on time scles, Appl. Mth. Comput., Vol 220, 2013, P [12] G. Liu, X. Xing, Y. Peng Nonliner integrodifferentil equtions nd optiml control problems on time scles, Comput. Mth. Appl., Vol 61,Issue 2, Jn 2011, P [13] A. S. Nowk, Integrodifferentil equtions on time scles with Henstock- Kurzweil-pettis Delt Integrls, Abstr. Appl. Anl., Vol 2010,Art. ID , p. 17. [14] F. Meng, J. Sho, Some new Volterr Fredholm type dynmic integrl inequlities on time scles, Appl. Mth. Comput., Vol. 223, 2013, p [15] Y. Xing, M. Hn, G. Zheng Initil vlue problem for first order integrodifferentil eqution of Volter type on Time scles, Nonliner Anl., Vol. 60, Issue 3,Feb 2005, p Deepk B. Pchptte Deprtment of Mthemtics, Dr. Bbsheb Ambedkr Mrthwd University, Aurngbd, Mhrshtr , Indi E-mil ddress: pchptte@gmil.com

Multiple Positive Solutions for the System of Higher Order Two-Point Boundary Value Problems on Time Scales

Multiple Positive Solutions for the System of Higher Order Two-Point Boundary Value Problems on Time Scales Electronic Journl of Qulittive Theory of Differentil Equtions 2009, No. 32, -3; http://www.mth.u-szeged.hu/ejqtde/ Multiple Positive Solutions for the System of Higher Order Two-Point Boundry Vlue Problems

More information

WENJUN LIU AND QUÔ C ANH NGÔ

WENJUN LIU AND QUÔ C ANH NGÔ AN OSTROWSKI-GRÜSS TYPE INEQUALITY ON TIME SCALES WENJUN LIU AND QUÔ C ANH NGÔ Astrct. In this pper we derive new inequlity of Ostrowski-Grüss type on time scles nd thus unify corresponding continuous

More information

A NOTE ON SOME FRACTIONAL INTEGRAL INEQUALITIES VIA HADAMARD INTEGRAL. 1. Introduction. f(x)dx a

A NOTE ON SOME FRACTIONAL INTEGRAL INEQUALITIES VIA HADAMARD INTEGRAL. 1. Introduction. f(x)dx a Journl of Frctionl Clculus nd Applictions, Vol. 4( Jn. 203, pp. 25-29. ISSN: 2090-5858. http://www.fcj.webs.com/ A NOTE ON SOME FRACTIONAL INTEGRAL INEQUALITIES VIA HADAMARD INTEGRAL VAIJANATH L. CHINCHANE

More information

A General Dynamic Inequality of Opial Type

A General Dynamic Inequality of Opial Type Appl Mth Inf Sci No 3-5 (26) Applied Mthemtics & Informtion Sciences An Interntionl Journl http://dxdoiorg/2785/mis/bos7-mis A Generl Dynmic Inequlity of Opil Type Rvi Agrwl Mrtin Bohner 2 Donl O Regn

More information

Regulated functions and the regulated integral

Regulated functions and the regulated integral Regulted functions nd the regulted integrl Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics University of Toronto April 3 2014 1 Regulted functions nd step functions Let = [ b] nd let X be normed

More information

Communications inmathematicalanalysis Volume 6, Number 2, pp (2009) ISSN

Communications inmathematicalanalysis Volume 6, Number 2, pp (2009) ISSN Communictions inmthemticlanlysis Volume 6, Number, pp. 33 41 009) ISSN 1938-9787 www.commun-mth-nl.org A SHARP GRÜSS TYPE INEQUALITY ON TIME SCALES AND APPLICATION TO THE SHARP OSTROWSKI-GRÜSS INEQUALITY

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

Positive Solutions of Operator Equations on Half-Line

Positive Solutions of Operator Equations on Half-Line Int. Journl of Mth. Anlysis, Vol. 3, 29, no. 5, 211-22 Positive Solutions of Opertor Equtions on Hlf-Line Bohe Wng 1 School of Mthemtics Shndong Administrtion Institute Jinn, 2514, P.R. Chin sdusuh@163.com

More information

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) =

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) = WHEN IS A FUNCTION NOT FLAT? YIFEI PAN AND MEI WANG Abstrct. In this pper we prove unique continution property for vector vlued functions of one vrible stisfying certin differentil inequlity. Key words:

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Set Integral Equations in Metric Spaces

Set Integral Equations in Metric Spaces Mthemtic Morvic Vol. 13-1 2009, 95 102 Set Integrl Equtions in Metric Spces Ion Tişe Abstrct. Let P cp,cvr n be the fmily of ll nonempty compct, convex subsets of R n. We consider the following set integrl

More information

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION Fixed Point Theory, 13(2012), No. 1, 285-291 http://www.mth.ubbcluj.ro/ nodecj/sfptcj.html KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION FULI WANG AND FENG WANG School of Mthemtics nd

More information

Some Improvements of Hölder s Inequality on Time Scales

Some Improvements of Hölder s Inequality on Time Scales DOI: 0.55/uom-207-0037 An. Şt. Univ. Ovidius Constnţ Vol. 253,207, 83 96 Some Improvements of Hölder s Inequlity on Time Scles Cristin Dinu, Mihi Stncu nd Dniel Dănciulescu Astrct The theory nd pplictions

More information

The Delta-nabla Calculus of Variations for Composition Functionals on Time Scales

The Delta-nabla Calculus of Variations for Composition Functionals on Time Scales Interntionl Journl of Difference Equtions ISSN 973-669, Volume 8, Number, pp. 7 47 3) http://cmpus.mst.edu/ijde The Delt-nbl Clculus of Vritions for Composition Functionls on Time Scles Monik Dryl nd Delfim

More information

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions Annls of University of Criov, Mth. Comp. Sci. Ser. Volume 3, 7, Pges 8 87 ISSN: 13-693 Some estimtes on the Hermite-Hdmrd inequlity through qusi-convex functions Dniel Alexndru Ion Abstrct. In this pper

More information

FRACTIONAL DYNAMIC INEQUALITIES HARMONIZED ON TIME SCALES

FRACTIONAL DYNAMIC INEQUALITIES HARMONIZED ON TIME SCALES FRACTIONAL DYNAMIC INEQUALITIES HARMONIZED ON TIME SCALES M JIBRIL SHAHAB SAHIR Accepted Mnuscript Version This is the unedited version of the rticle s it ppered upon cceptnce by the journl. A finl edited

More information

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN Electronic Journl of Differentil Equtions, Vol. 203 (203), No. 28, pp. 0. ISSN: 072-669. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu LYAPUNOV-TYPE INEQUALITIES FOR

More information

Positive solutions for system of 2n-th order Sturm Liouville boundary value problems on time scales

Positive solutions for system of 2n-th order Sturm Liouville boundary value problems on time scales Proc. Indin Acd. Sci. Mth. Sci. Vol. 12 No. 1 Februry 201 pp. 67 79. c Indin Acdemy of Sciences Positive solutions for system of 2n-th order Sturm Liouville boundry vlue problems on time scles K R PRASAD

More information

The inequality (1.2) is called Schlömilch s Inequality in literature as given in [9, p. 26]. k=1

The inequality (1.2) is called Schlömilch s Inequality in literature as given in [9, p. 26]. k=1 THE TEACHING OF MATHEMATICS 2018, Vol XXI, 1, pp 38 52 HYBRIDIZATION OF CLASSICAL INEQUALITIES WITH EQUIVALENT DYNAMIC INEQUALITIES ON TIME SCALE CALCULUS Muhmmd Jibril Shhb Shir Abstrct The im of this

More information

AMATH 731: Applied Functional Analysis Fall Some basics of integral equations

AMATH 731: Applied Functional Analysis Fall Some basics of integral equations AMATH 731: Applied Functionl Anlysis Fll 2009 1 Introduction Some bsics of integrl equtions An integrl eqution is n eqution in which the unknown function u(t) ppers under n integrl sign, e.g., K(t, s)u(s)

More information

Wirtinger s Integral Inequality on Time Scale

Wirtinger s Integral Inequality on Time Scale Theoreticl themtics & pplictions vol.8 no.1 2018 1-8 ISSN: 1792-9687 print 1792-9709 online Scienpress Ltd 2018 Wirtinger s Integrl Inequlity on Time Scle Ttjn irkovic 1 bstrct In this pper we estblish

More information

HYERS-ULAM STABILITY OF HIGHER-ORDER CAUCHY-EULER DYNAMIC EQUATIONS ON TIME SCALES

HYERS-ULAM STABILITY OF HIGHER-ORDER CAUCHY-EULER DYNAMIC EQUATIONS ON TIME SCALES Dynmic Systems nd Applictions 23 (2014) 653-664 HYERS-ULAM STABILITY OF HIGHER-ORDER CAUCHY-EULER DYNAMIC EQUATIONS ON TIME SCALES DOUGLAS R. ANDERSON Deprtment of Mthemtics, Concordi College, Moorhed,

More information

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation Journl of Applied Mthemtics Volume 2011, Article ID 743923, 7 pges doi:10.1155/2011/743923 Reserch Article On Existence nd Uniqueness of Solutions of Nonliner Integrl Eqution M. Eshghi Gordji, 1 H. Bghni,

More information

A New Generalization of Lemma Gronwall-Bellman

A New Generalization of Lemma Gronwall-Bellman Applied Mthemticl Sciences, Vol. 6, 212, no. 13, 621-628 A New Generliztion of Lemm Gronwll-Bellmn Younes Lourtssi LA2I, Deprtment of Electricl Engineering, Mohmmdi School Engineering Agdl, Rbt, Morocco

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

On Inequality for the Non-Local Fractional Differential Equation

On Inequality for the Non-Local Fractional Differential Equation Globl Journl of Pure nd Applied Mthemtics. ISSN 0973-178 Volume 13, Number 3 2017), pp. 981 993 Reserch Indi Publictions http://www.ripubliction.com/gjpm.htm On Inequlity for the Non-Locl Frctionl Differentil

More information

POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS

POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS Electronic Journl of Differentil Equtions, Vol. 27(27), No. 156, pp. 1 8. ISSN: 172-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu (login: ftp) POSITIVE SOLUTIONS

More information

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity Punjb University Journl of Mthemtics (ISSN 116-56) Vol. 45 (13) pp. 33-38 New Integrl Inequlities of the Type of Hermite-Hdmrd Through Qusi Convexity S. Hussin Deprtment of Mthemtics, College of Science,

More information

The Hadamard s inequality for quasi-convex functions via fractional integrals

The Hadamard s inequality for quasi-convex functions via fractional integrals Annls of the University of Criov, Mthemtics nd Computer Science Series Volume (), 3, Pges 67 73 ISSN: 5-563 The Hdmrd s ineulity for usi-convex functions vi frctionl integrls M E Özdemir nd Çetin Yildiz

More information

ON THE C-INTEGRAL BENEDETTO BONGIORNO

ON THE C-INTEGRAL BENEDETTO BONGIORNO ON THE C-INTEGRAL BENEDETTO BONGIORNO Let F : [, b] R be differentible function nd let f be its derivtive. The problem of recovering F from f is clled problem of primitives. In 1912, the problem of primitives

More information

Optimal control problems on time scales described by Volterra integral equations on time scales

Optimal control problems on time scales described by Volterra integral equations on time scales Artigo Originl DOI:10.5902/2179-460X18004 Ciênci e Ntur, Snt Mri v.38 n.2, 2016, Mi.- Ago. p. 740 744 Revist do Centro de Ciêncis Nturis e Exts - UFSM ISSN impress: 0100-8307 ISSN on-line: 2179-460X Optiml

More information

CHEBYSHEV TYPE INEQUALITY ON NABLA DISCRETE FRACTIONAL CALCULUS. 1. Introduction

CHEBYSHEV TYPE INEQUALITY ON NABLA DISCRETE FRACTIONAL CALCULUS. 1. Introduction Frctionl Differentil Clculus Volume 6, Number 2 (216), 275 28 doi:1.7153/fdc-6-18 CHEBYSHEV TYPE INEQUALITY ON NABLA DISCRETE FRACTIONAL CALCULUS SERKAN ASLIYÜCE AND AYŞE FEZA GÜVENILIR (Communicted by

More information

Henstock Kurzweil delta and nabla integrals

Henstock Kurzweil delta and nabla integrals Henstock Kurzweil delt nd nbl integrls Alln Peterson nd Bevn Thompson Deprtment of Mthemtics nd Sttistics, University of Nebrsk-Lincoln Lincoln, NE 68588-0323 peterso@mth.unl.edu Mthemtics, SPS, The University

More information

Houston Journal of Mathematics. c 1999 University of Houston Volume 25, No. 4, 1999

Houston Journal of Mathematics. c 1999 University of Houston Volume 25, No. 4, 1999 Houston Journl of Mthemtics c 999 University of Houston Volume 5, No. 4, 999 ON THE STRUCTURE OF SOLUTIONS OF CLSS OF BOUNDRY VLUE PROBLEMS XIYU LIU, BOQING YN Communicted by Him Brezis bstrct. Behviour

More information

Introduction to the Calculus of Variations

Introduction to the Calculus of Variations Introduction to the Clculus of Vritions Jim Fischer Mrch 20, 1999 Abstrct This is self-contined pper which introduces fundmentl problem in the clculus of vritions, the problem of finding extreme vlues

More information

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1 Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH-115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixed-point itertion to converge when solving the eqution

More information

ON THE GENERALIZED SUPERSTABILITY OF nth ORDER LINEAR DIFFERENTIAL EQUATIONS WITH INITIAL CONDITIONS

ON THE GENERALIZED SUPERSTABILITY OF nth ORDER LINEAR DIFFERENTIAL EQUATIONS WITH INITIAL CONDITIONS PUBLICATIONS DE L INSTITUT MATHÉMATIQUE Nouvelle série, tome 9811 015, 43 49 DOI: 10.98/PIM15019019H ON THE GENERALIZED SUPERSTABILITY OF nth ORDER LINEAR DIFFERENTIAL EQUATIONS WITH INITIAL CONDITIONS

More information

SUPERSTABILITY OF DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS

SUPERSTABILITY OF DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS Electronic Journl of Differentil Equtions, Vol. 01 (01), No. 15, pp. 1. ISSN: 107-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu SUPERSTABILITY OF DIFFERENTIAL

More information

ON MIXED NONLINEAR INTEGRAL EQUATIONS OF VOLTERRA-FREDHOLM TYPE WITH MODIFIED ARGUMENT

ON MIXED NONLINEAR INTEGRAL EQUATIONS OF VOLTERRA-FREDHOLM TYPE WITH MODIFIED ARGUMENT STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume LIV, Number 1, Mrch 29 ON MIXED NONLINEAR INTEGRAL EQUATIONS OF VOLTERRA-FREDHOLM TYPE WITH MODIFIED ARGUMENT Abstrct. In the present pper we consider the

More information

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform IOSR Journl of Mthemtics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 13, Issue 6 Ver. IV (Nov. - Dec. 2017), PP 19-24 www.iosrjournls.org Solutions of Klein - Gordn equtions, using Finite Fourier

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

International Jour. of Diff. Eq. and Appl., 3, N1, (2001),

International Jour. of Diff. Eq. and Appl., 3, N1, (2001), Interntionl Jour. of Diff. Eq. nd Appl., 3, N1, (2001), 31-37. 1 New proof of Weyl s theorem A.G. Rmm Mthemtics Deprtment, Knss Stte University, Mnhttn, KS 66506-2602, USA rmm@mth.ksu.edu http://www.mth.ksu.edu/

More information

The presentation of a new type of quantum calculus

The presentation of a new type of quantum calculus DOI.55/tmj-27-22 The presenttion of new type of quntum clculus Abdolli Nemty nd Mehdi Tourni b Deprtment of Mthemtics, University of Mzndrn, Bbolsr, Irn E-mil: nmty@umz.c.ir, mehdi.tourni@gmil.com b Abstrct

More information

ON BERNOULLI BOUNDARY VALUE PROBLEM

ON BERNOULLI BOUNDARY VALUE PROBLEM LE MATEMATICHE Vol. LXII (2007) Fsc. II, pp. 163 173 ON BERNOULLI BOUNDARY VALUE PROBLEM FRANCESCO A. COSTABILE - ANNAROSA SERPE We consider the boundry vlue problem: x (m) (t) = f (t,x(t)), t b, m > 1

More information

GENERALIZED ABSTRACTED MEAN VALUES

GENERALIZED ABSTRACTED MEAN VALUES GENERALIZED ABSTRACTED MEAN VALUES FENG QI Abstrct. In this rticle, the uthor introduces the generlized bstrcted men vlues which etend the concepts of most mens with two vribles, nd reserches their bsic

More information

A product convergence theorem for Henstock Kurzweil integrals

A product convergence theorem for Henstock Kurzweil integrals A product convergence theorem for Henstock Kurzweil integrls Prsr Mohnty Erik Tlvil 1 Deprtment of Mthemticl nd Sttisticl Sciences University of Albert Edmonton AB Cnd T6G 2G1 pmohnty@mth.ulbert.c etlvil@mth.ulbert.c

More information

df dt f () b f () a dt

df dt f () b f () a dt Vector lculus 16.7 tokes Theorem Nme: toke's Theorem is higher dimensionl nlogue to Green's Theorem nd the Fundmentl Theorem of clculus. Why, you sk? Well, let us revisit these theorems. Fundmentl Theorem

More information

An iterative method for solving nonlinear functional equations

An iterative method for solving nonlinear functional equations J. Mth. Anl. Appl. 316 (26) 753 763 www.elsevier.com/locte/jm An itertive method for solving nonliner functionl equtions Vrsh Dftrdr-Gejji, Hossein Jfri Deprtment of Mthemtics, University of Pune, Gneshkhind,

More information

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015 Advnced Clculus: MATH 410 Uniform Convergence of Functions Professor Dvid Levermore 11 December 2015 12. Sequences of Functions We now explore two notions of wht it mens for sequence of functions {f n

More information

Problem Set 4: Solutions Math 201A: Fall 2016

Problem Set 4: Solutions Math 201A: Fall 2016 Problem Set 4: s Mth 20A: Fll 206 Problem. Let f : X Y be one-to-one, onto mp between metric spces X, Y. () If f is continuous nd X is compct, prove tht f is homeomorphism. Does this result remin true

More information

ON SOME NEW FRACTIONAL INTEGRAL INEQUALITIES

ON SOME NEW FRACTIONAL INTEGRAL INEQUALITIES Volume 1 29, Issue 3, Article 86, 5 pp. ON SOME NEW FRACTIONAL INTEGRAL INEQUALITIES SOUMIA BELARBI AND ZOUBIR DAHMANI DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MOSTAGANEM soumi-mth@hotmil.fr zzdhmni@yhoo.fr

More information

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs Applied Mthemticl Sciences, Vol. 2, 2008, no. 8, 353-362 New Integrl Inequlities for n-time Differentible Functions with Applictions for pdfs Aristides I. Kechriniotis Technologicl Eductionl Institute

More information

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1 Int. Journl of Mth. Anlysis, Vol. 7, 2013, no. 41, 2039-2048 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/10.12988/ijm.2013.3499 On the Generlized Weighted Qusi-Arithmetic Integrl Men 1 Hui Sun School

More information

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004 Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

More information

ON THE WEIGHTED OSTROWSKI INEQUALITY

ON THE WEIGHTED OSTROWSKI INEQUALITY ON THE WEIGHTED OSTROWSKI INEQUALITY N.S. BARNETT AND S.S. DRAGOMIR School of Computer Science nd Mthemtics Victori University, PO Bo 14428 Melbourne City, VIC 8001, Austrli. EMil: {neil.brnett, sever.drgomir}@vu.edu.u

More information

Calculus of variations with fractional derivatives and fractional integrals

Calculus of variations with fractional derivatives and fractional integrals Anis do CNMAC v.2 ISSN 1984-820X Clculus of vritions with frctionl derivtives nd frctionl integrls Ricrdo Almeid, Delfim F. M. Torres Deprtment of Mthemtics, University of Aveiro 3810-193 Aveiro, Portugl

More information

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1 Generl Mthemtics Vol. 6, No. (28), 7 97 Ostrowski Grüss Čebyšev type inequlities for functions whose modulus of second derivtives re convex Nzir Ahmd Mir, Arif Rfiq nd Muhmmd Rizwn Abstrct In this pper,

More information

Three solutions to a p(x)-laplacian problem in weighted-variable-exponent Sobolev space

Three solutions to a p(x)-laplacian problem in weighted-variable-exponent Sobolev space DOI: 0.2478/uom-203-0033 An. Şt. Univ. Ovidius Constnţ Vol. 2(2),203, 95 205 Three solutions to p(x)-lplcin problem in weighted-vrible-exponent Sobolev spce Wen-Wu Pn, Ghsem Alizdeh Afrouzi nd Lin Li Abstrct

More information

ON CLOSED CONVEX HULLS AND THEIR EXTREME POINTS. S. K. Lee and S. M. Khairnar

ON CLOSED CONVEX HULLS AND THEIR EXTREME POINTS. S. K. Lee and S. M. Khairnar Kngweon-Kyungki Mth. Jour. 12 (2004), No. 2, pp. 107 115 ON CLOSED CONVE HULLS AND THEIR ETREME POINTS S. K. Lee nd S. M. Khirnr Abstrct. In this pper, the new subclss denoted by S p (α, β, ξ, γ) of p-vlent

More information

A PROOF OF THE FUNDAMENTAL THEOREM OF CALCULUS USING HAUSDORFF MEASURES

A PROOF OF THE FUNDAMENTAL THEOREM OF CALCULUS USING HAUSDORFF MEASURES INROADS Rel Anlysis Exchnge Vol. 26(1), 2000/2001, pp. 381 390 Constntin Volintiru, Deprtment of Mthemtics, University of Buchrest, Buchrest, Romni. e-mil: cosv@mt.cs.unibuc.ro A PROOF OF THE FUNDAMENTAL

More information

Exact solutions for nonlinear partial fractional differential equations

Exact solutions for nonlinear partial fractional differential equations Chin. Phys. B Vol., No. (0) 004 Exct solutions for nonliner prtil frctionl differentil equtions Khled A. epreel )b) nd Sleh Omrn b)c) ) Mthemtics Deprtment, Fculty of Science, Zgzig University, Egypt b)

More information

The Banach algebra of functions of bounded variation and the pointwise Helly selection theorem

The Banach algebra of functions of bounded variation and the pointwise Helly selection theorem The Bnch lgebr of functions of bounded vrition nd the pointwise Helly selection theorem Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto Jnury, 015 1 BV [, b] Let < b. For f

More information

Journal of Computational and Applied Mathematics. On positive solutions for fourth-order boundary value problem with impulse

Journal of Computational and Applied Mathematics. On positive solutions for fourth-order boundary value problem with impulse Journl of Computtionl nd Applied Mthemtics 225 (2009) 356 36 Contents lists vilble t ScienceDirect Journl of Computtionl nd Applied Mthemtics journl homepge: www.elsevier.com/locte/cm On positive solutions

More information

MEAN VALUE PROBLEMS OF FLETT TYPE FOR A VOLTERRA OPERATOR

MEAN VALUE PROBLEMS OF FLETT TYPE FOR A VOLTERRA OPERATOR Electronic Journl of Differentil Equtions, Vol. 213 (213, No. 53, pp. 1 7. ISSN: 172-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu MEAN VALUE PROBLEMS OF FLETT

More information

Oscillatory Behavior of Solutions for Forced Second Order Nonlinear Functional Integro-Dynamic Equations on Time Scales

Oscillatory Behavior of Solutions for Forced Second Order Nonlinear Functional Integro-Dynamic Equations on Time Scales J. An. Num. Theor. 4, No. 2, 5- (26) 5 Journl of Anlysis & Number Theory An Interntionl Journl http://dx.doi.org/.8576/jnt/424 Oscilltory Behvior of Solutions for Forced Second Order Nonliner Functionl

More information

Math 554 Integration

Math 554 Integration Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

More information

A Bernstein polynomial approach for solution of nonlinear integral equations

A Bernstein polynomial approach for solution of nonlinear integral equations Avilble online t wwwisr-publictionscom/jns J Nonliner Sci Appl, 10 (2017), 4638 4647 Reserch Article Journl Homepge: wwwtjnscom - wwwisr-publictionscom/jns A Bernstein polynomil pproch for solution of

More information

ON A GENERALIZED STURM-LIOUVILLE PROBLEM

ON A GENERALIZED STURM-LIOUVILLE PROBLEM Foli Mthemtic Vol. 17, No. 1, pp. 17 22 Act Universittis Lodziensis c 2010 for University of Łódź Press ON A GENERALIZED STURM-LIOUVILLE PROBLEM GRZEGORZ ANDRZEJCZAK AND TADEUSZ POREDA Abstrct. Bsic results

More information

The Bochner Integral and the Weak Property (N)

The Bochner Integral and the Weak Property (N) Int. Journl of Mth. Anlysis, Vol. 8, 2014, no. 19, 901-906 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/10.12988/ijm.2014.4367 The Bochner Integrl nd the Wek Property (N) Besnik Bush Memetj University

More information

1.9 C 2 inner variations

1.9 C 2 inner variations 46 CHAPTER 1. INDIRECT METHODS 1.9 C 2 inner vritions So fr, we hve restricted ttention to liner vritions. These re vritions of the form vx; ǫ = ux + ǫφx where φ is in some liner perturbtion clss P, for

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

Parametrized inequality of Hermite Hadamard type for functions whose third derivative absolute values are quasi convex

Parametrized inequality of Hermite Hadamard type for functions whose third derivative absolute values are quasi convex Wu et l. SpringerPlus (5) 4:83 DOI.8/s44-5-33-z RESEARCH Prmetrized inequlity of Hermite Hdmrd type for functions whose third derivtive bsolute vlues re qusi convex Shn He Wu, Bnyt Sroysng, Jin Shn Xie

More information

INTEGRAL INEQUALITIES SIMILAR TO GRONWALL INEQUALITY

INTEGRAL INEQUALITIES SIMILAR TO GRONWALL INEQUALITY Electronic Journl of Differentil Equtions, Vol. 2007(2007, No. 176, pp. 1 14. ISSN: 1072-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu (login: ftp INTEGRAL INEQUALITIES

More information

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012 Lecture 6: Line Integrls INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Anlysis Autumn 2012 August 8, 2012 Lecture 6: Line Integrls Lecture 6: Line Integrls Lecture 6: Line Integrls Integrls of complex

More information

A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES. 1. Introduction

A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES. 1. Introduction Ttr Mt. Mth. Publ. 44 (29), 159 168 DOI: 1.2478/v1127-9-56-z t m Mthemticl Publictions A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES Miloslv Duchoň Peter Mličký ABSTRACT. We present Helly

More information

MA Handout 2: Notation and Background Concepts from Analysis

MA Handout 2: Notation and Background Concepts from Analysis MA350059 Hndout 2: Nottion nd Bckground Concepts from Anlysis This hndout summrises some nottion we will use nd lso gives recp of some concepts from other units (MA20023: PDEs nd CM, MA20218: Anlysis 2A,

More information

(4.1) D r v(t) ω(t, v(t))

(4.1) D r v(t) ω(t, v(t)) 1.4. Differentil inequlities. Let D r denote the right hnd derivtive of function. If ω(t, u) is sclr function of the sclrs t, u in some open connected set Ω, we sy tht function v(t), t < b, is solution

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

Research Article Existence of Nontrivial Solutions and Sign-Changing Solutions for Nonlinear Dynamic Equations on Time Scales

Research Article Existence of Nontrivial Solutions and Sign-Changing Solutions for Nonlinear Dynamic Equations on Time Scales Discrete Dynmics in Nture nd Society Volume 2011, Article ID 604170, 22 pges doi:10.1155/2011/604170 Reserch Article Existence of Nontrivil Solutions nd Sign-Chnging Solutions for Nonliner Dynmic Equtions

More information

A Convergence Theorem for the Improper Riemann Integral of Banach Space-valued Functions

A Convergence Theorem for the Improper Riemann Integral of Banach Space-valued Functions Interntionl Journl of Mthemticl Anlysis Vol. 8, 2014, no. 50, 2451-2460 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/10.12988/ijm.2014.49294 A Convergence Theorem for the Improper Riemnn Integrl of Bnch

More information

A short introduction to local fractional complex analysis

A short introduction to local fractional complex analysis A short introduction to locl rctionl complex nlysis Yng Xio-Jun Deprtment o Mthemtics Mechnics, hin University o Mining Technology, Xuhou mpus, Xuhou, Jingsu, 228, P R dyngxiojun@63com This pper presents

More information

LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR DIFFERENTIAL EQUATIONS

LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR DIFFERENTIAL EQUATIONS Electronic Journl of Differentil Equtions, Vol. 2017 (2017), No. 139, pp. 1 14. ISSN: 1072-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR

More information

arxiv: v1 [math.ca] 7 Mar 2012

arxiv: v1 [math.ca] 7 Mar 2012 rxiv:1203.1462v1 [mth.ca] 7 Mr 2012 A simple proof of the Fundmentl Theorem of Clculus for the Lebesgue integrl Mrch, 2012 Rodrigo López Pouso Deprtmento de Análise Mtemátic Fcultde de Mtemátics, Universidde

More information

arxiv: v1 [math.ra] 1 Nov 2014

arxiv: v1 [math.ra] 1 Nov 2014 CLASSIFICATION OF COMPLEX CYCLIC LEIBNIZ ALGEBRAS DANIEL SCOFIELD AND S MCKAY SULLIVAN rxiv:14110170v1 [mthra] 1 Nov 2014 Abstrct Since Leibniz lgebrs were introduced by Lody s generliztion of Lie lgebrs,

More information

Lyapunov-type inequalities for Laplacian systems and applications to boundary value problems

Lyapunov-type inequalities for Laplacian systems and applications to boundary value problems Avilble online t www.isr-publictions.co/jns J. Nonliner Sci. Appl. 11 2018 8 16 Reserch Article Journl Hoepge: www.isr-publictions.co/jns Lypunov-type inequlities for Lplcin systes nd pplictions to boundry

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry dierentil eqution (ODE) du f(t) dt with initil condition u() : Just

More information

INNER PRODUCT INEQUALITIES FOR TWO EQUIVALENT NORMS AND APPLICATIONS

INNER PRODUCT INEQUALITIES FOR TWO EQUIVALENT NORMS AND APPLICATIONS INNER PRODUCT INEQUALITIES FOR TWO EQUIVALENT NORMS AND APPLICATIONS S. S. DRAGOMIR Abstrct. Some inequlities for two inner products h i nd h i which generte the equivlent norms kk nd kk with pplictions

More information

Some integral inequalities on time scales

Some integral inequalities on time scales Al Mth Mech -Engl Ed 2008 29(1:23 29 DOI 101007/s10483-008-0104- c Editoril Committee of Al Mth Mech nd Sringer-Verlg 2008 Alied Mthemtics nd Mechnics (English Edition Some integrl ineulities on time scles

More information

1.3 The Lemma of DuBois-Reymond

1.3 The Lemma of DuBois-Reymond 28 CHAPTER 1. INDIRECT METHODS 1.3 The Lemm of DuBois-Reymond We needed extr regulrity to integrte by prts nd obtin the Euler- Lgrnge eqution. The following result shows tht, t lest sometimes, the extr

More information

Fredholm Integral Equations of the First Kind Solved by Using the Homotopy Perturbation Method

Fredholm Integral Equations of the First Kind Solved by Using the Homotopy Perturbation Method Int. Journl of Mth. Anlysis, Vol. 5, 211, no. 19, 935-94 Fredholm Integrl Equtions of the First Kind Solved by Using the Homotopy Perturbtion Method Seyyed Mhmood Mirzei Deprtment of Mthemtics, Fculty

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE RGMIA Reserch Report Collection, Vol., No., 998 http://sci.vut.edu.u/ rgmi SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE S.S. DRAGOMIR Astrct. Some clssicl nd new integrl inequlities of Grüss type re presented.

More information

On some Hardy-Sobolev s type variable exponent inequality and its application

On some Hardy-Sobolev s type variable exponent inequality and its application Trnsctions of NAS of Azerbijn Issue Mthemtics 37 4 2 27. Series of Phsicl-Technicl nd Mthemticl Sciences On some Hrd-Sobolev s tpe vrible exponent inequlit nd its ppliction Frmn I. Mmedov Sli M. Mmmdli

More information

AMATH 731: Applied Functional Analysis Fall Additional notes on Fréchet derivatives

AMATH 731: Applied Functional Analysis Fall Additional notes on Fréchet derivatives AMATH 731: Applied Functionl Anlysis Fll 214 Additionl notes on Fréchet derivtives (To ccompny Section 3.1 of the AMATH 731 Course Notes) Let X,Y be normed liner spces. The Fréchet derivtive of n opertor

More information

Math 31S. Rumbos Fall Solutions to Assignment #16

Math 31S. Rumbos Fall Solutions to Assignment #16 Mth 31S. Rumbos Fll 2016 1 Solutions to Assignment #16 1. Logistic Growth 1. Suppose tht the growth of certin niml popultion is governed by the differentil eqution 1000 dn N dt = 100 N, (1) where N(t)

More information

PENALIZED LEAST SQUARES FITTING. Manfred von Golitschek and Larry L. Schumaker

PENALIZED LEAST SQUARES FITTING. Manfred von Golitschek and Larry L. Schumaker Serdic Mth. J. 28 2002), 329-348 PENALIZED LEAST SQUARES FITTING Mnfred von Golitschek nd Lrry L. Schumker Communicted by P. P. Petrushev Dedicted to the memory of our collegue Vsil Popov Jnury 4, 942

More information

Chapter 8: Methods of Integration

Chapter 8: Methods of Integration Chpter 8: Methods of Integrtion Bsic Integrls 8. Note: We hve the following list of Bsic Integrls p p+ + c, for p sec tn + c p + ln + c sec tn sec + c e e + c tn ln sec + c ln + c sec ln sec + tn + c ln

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

Existence of Solutions to First-Order Dynamic Boundary Value Problems

Existence of Solutions to First-Order Dynamic Boundary Value Problems Interntionl Journl of Difference Equtions. ISSN 0973-6069 Volume Number (2006), pp. 7 c Reserch Indi Publictions http://www.ripubliction.com/ijde.htm Existence of Solutions to First-Order Dynmic Boundry

More information