A SPECIAL SOLUTION OF CONSTANT COEFFICIENTS PARTIAL DERIVATIVE EQUATIONS WITH FOURIER TRANSFORM METHOD

Size: px
Start display at page:

Download "A SPECIAL SOLUTION OF CONSTANT COEFFICIENTS PARTIAL DERIVATIVE EQUATIONS WITH FOURIER TRANSFORM METHOD"

Transcription

1 Advanced Mathematical Models & Applications Vol.3, No., 208, pp A SPECIAL SOLUTION OF CONSTANT COEFFICIENTS PARTIAL DERIVATIVE EQUATIONS WITH FOURIER TRANSFORM METHOD Murat Düz * Department of Mathematics Faculty of Science Karabuk University, Karabuk, Turkey Abstract. In this study, we apply Fourier Transform method for general n.th order constant coefficients partial differential equations. We obtained a formula for this kind equations. Keywords: Fourier transform, partial differential equations. AMS Subject Classification: Primary 35G05; Secondary 42A38. Corresponding Author: Murat Düz, Karabuk University, Department of Mathematics Faculty of Science, Karabuk, Turkey, mduz@karabuk.edu.tr Manuscript received: ; Revised ; Accepted Introduction Partial differential equations are used in many areas of engineering and basic sciences. For example, the heat equation, on wave equation and the Laplace equation are some of the well-known partial differential equation used in these fields. There are some methods for solution of partial differential equations. Lagrange method, undetermined coefficients method, inverse operator method are some of the methods used to find special solutions of constant coefficient partial differential equation. Apart from these methods, partial differential equations can also be solved with Adomian decomposition, differential transformation, variational iteration methods (Ayaz, 2003; Chen & Ho, 999; Patil & Kolte, 205). These equations also can be solved with aid of integral transforms. Integral transform is a mapping from functions to functions that takes the following form b g α f t. K α, t dt, () a where K α, t is called the kernel of transform. In (), f t is input fuction and g α is output function. Integral transforms have been used in solving many problems in applied mathematics, mathematical physics and engineering sciences. The best two known integral transforms are the Laplace transform and Fourier transform. The Fourier Transform, one of the gifts of Jean-Baptiste Joseph Fourier to the world of science, is an integral transform used in many areas of engineering. It has been very useful for analyzing harmonic signals or signals which are known need for local information. Moreover the Fourier transform analysis has also been very useful in many other areas such as quantum mechanics, wave motion etc. (Andrews & Shivamoggi, 988; Bracewell, 965; Bogges & Narcowich, 2009; Denbath & Bhattad, 205; Murray 974). Furthermore it has been useful in mathematics such as generalized integrals, integral equations, ordinary differential equations, partial differential equations can be solved by 85

2 ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.3, N., 208 using the Fourier transform (Düz, 208). Sums of some infinite series can be calculated by using Fourier series. For example value of 0 sinx x dxwith Fourier transform or sum of n which is infinite series with Fourier series can be calculated. n 2 Another example of its applications could be that: voice of every human can be expressed as the sum of sine and cosine. Since the electromagnetic spectrum of the frequency of each voice is different, the frequency of each sine and cosine sum will be different. In this way, a voice record can be found belongs to whom using the Fourier transform. In fact, our ear automatically runs this process instead of us (Düz, 208). In this study we get a formula for a special solution of n-th order partial derivative equations which have constant coefficients with the aid Fourier transform. The validity of the obtained formula has been seen by examples. 2. Basic Definition and Theorems Definition. Fourier transform of f t F f t is defined. Since integral (2) is function of w is written. Definition 2. If F f t F w F w ; where f t and it is showed by f t F F w. F f t F w f t. e iwt dt (2) then f t is called inverse Fourier transform of F w. e iwt dt Theorem. The Fourier Transform is linear,let c, c 2 R. Then F c. f t + c 2. f 2 t c. F f t + c 2 F f 2 t. Theorem 2. (Andrews and Shivamoggi, 988) Let f t be continuous or partly continuous in the interval, and f t, f t, f t,, f n t 0 for t. If f t, f t, f t,, f n t are absolutely integrable in the interval,, then F f n t iw n F w. Definition 3. The Dirac delta function can be rigorously thought of as a function on real line which is zero everywhere except at the origin, where it is infinite, δ t 0, t 0, t 0. The Dirac delta function has some properties (Bracewell, 965), that δ t dt, f t. δ t t 0 dt f t 0 f t. δ n t t 0 dt n. f n t 0., 86

3 M. DÜZ: A SPECIAL SOLUTION OF CONSTANT COEFFICIENTS PARTIAL DERIVATIVE Theorem 3. (Andrews & Shivamoggi, 988; Bogges & Narcowich, 2009; Bracewell, 965) The Fourier transform of the Dirac Delta function is.that is F δ t. Theorem 4. (Andrews & Shivamoggi, 988; Bogges & Narcowich, 2009) w w 0 n. δ n w w 0 n. n! δ w w 0. (3) Here δ w w 0 is defined as following δ w w 0 0, w w 0, w w 0. Theorem 5. (Andrews & Shivamoggi, 988; Bogges & Narcowich, 2009) δ w w 0 f w w w n dw d n f w 0 n! dw n w w 0 Proof. From Theorem 4 we know that: Therefore we get δ w w 0 f w w w 0 n dw w w 0 n. δ n w w 0 n. n! δ w w 0. n n! δ n w w 0 f w dw n! d n f w dw n w w 0. Theorem 6. Andrews &Shivamoggi, 988; Bogges & Narcowich, 2009; Bracewell 965) Fourier transforms of some functions are following i)f. δ w ; ii) F t n. i n. δ n w ; iii) F y (n) (iw) n. F y ; iv)f t n. y i n dn F y dw n ; v)f e at δ w + ia ; vi)if F y Y w, tan F e w 0.t. f t Y w + iw 0. Lemma. Let f(x, y) be continuous or partly continuous in the interval, and f x, y, 2 f x, y, f x, y,, n f x, y 0 for x. x x 2 xn If f x, y, 2 f x, y, f x, y,, n f x, y are absolutely integrable in x x 2 xn interval,, then Fourier transforms of partial derivatives n th order of f x, y are following. Proof. i) F n f y n n f i)f n f y n n F(w, y) y n, ii) F n f x n iw n F w, y.. y n e iwx dx 87

4 ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.3, N., 208 n y n f x, y. e iwx dx ii) Let's do proof with induction. For n lim a F f x lim b e iwx f x, y Thus lemma is true for n. a n F(w, y) y n f e iwx dx x b + iw f x, y. e iwx dx iwf w, y. We assume that lemma is true for n m. Let s F m f x m iw m F w, y. We must show that lemma is true n m +. F m+ f xm + m+ f x m +. e iwx dx. If we apply partial integration method than we get that F m+ f xm + lim a Thus proof of ii) is completed. lim m b f b e iwx x m a + iw m f x m. e iwx dx iwf m f x m iw. iw m F w, t iw m+ F w, y. Theorem 7. Fourier transforms of partial derivatives (n + m).th order of f(x, y)are following. Proof. F m +n f x n y F m+n f x n y m n m iw F w, y. (4) m m y n+m f x n y m. e iwx dx m y m m y m n f x n. e iwx dx m y m F n f x n iw n F(w, y) iw n m F(w, y) y m. 88

5 M. DÜZ: A SPECIAL SOLUTION OF CONSTANT COEFFICIENTS PARTIAL DERIVATIVE 3. Solution of constant coefficients partial derivative equations from n-th order Theorem 8. Let A i,j are real constants i n, j n, i + j n, u u(x, y) is a polynomial of x, y. Then a solution of is where A n,0 x n + A n, +A n,0 n u x n + A n 2, x n y + A n 2,2 x n 2 y A 0,n y n + n u x n 2 y + A n u n 3,2 x n 3 y A 0,n u + + A,0 x + A u 0, y + A 0,0u F x, y F F x, y u F L D L D A 0,n D n + iw A,n + A 0,n D n + i A 2,n 2 + iw A,n 2 + A 0,n 2 D n A n,0 iw n + A n,0 iw n + + A,0 iw + A 0,0., n u y n + Proof. The equation in the theorem can been written by using sum symbol as following. n k0 A n k,k x n k y k + n k0 A n k,k + A 0,0 u F x, y. n u u x n k y k + + A k,k x k y k k0 We let's use Fourier transform for above equality n k0 A n k,k F x n k y k F F x, y. n + A n k,k F k0 n u x n k y k + + A 0,0 F u From theorem 7 (or equality 4) we get following equality. n k0 A n k,k (iw) n k k U y k + n k0 A n k,k (iw) n k k U y k + A k,k iw k k U y k + A 0,0U F F x, y. k0 Here U U(w, y) is fourier transform of u x, y. We can write above equality as following + 89

6 ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.3, N., 208 A n,0 (iw) n U n U + A n, (iw) y + A n 2,2(iw) n 2 2 U y A n U 0,n y n + +A n,0 iw n U n 2 U + A n 2, iw y + A n U 0,n y n + where D n n y n. + + A,0 ik U + A 0, U y + A 0,0U F(F x, y ). A 0,n D n U + iw A,n + A 0,n D n U + A n 3,2 iw n 3 2 U y i A 2,n 2 + iw A,n 2 + A 0,n 2 D n 2 U + + A n,0 iw n + A n,0 iw n + + A,0 iw + A 0,0 U F F x, y, A 0,n D n + iw A,n + A 0,n D n + i A 2,n 2 + iw A,n 2 + A 0,n 2 D n A n,0 iw n + A n,0 iw n + + A,0 iw + A 0,0 U F F x, y. Therefore, solution is obtained as following L D A 0,n D n + ik A,n + A 0,n D n + ik 2 A 2,n 2 + ik A,n 2 + A 0,n 2 D n A n,0 ik n + A n,0 ik n + + A,0 ik + A 0,0, U w, y F(F x, y ) L D u x, y F U w, y., 4. Conclusion Let A, B, Cbe real constants, F F x, y be a polynomial of x, y. Then a solution of is u x, y F A u u + B + Cu F(x, y) x y e Aiw +C y F w, y B e Aiw +C y dy, 90

7 M. DÜZ: A SPECIAL SOLUTION OF CONSTANT COEFFICIENTS PARTIAL DERIVATIVE where F w, y is fourier transform of F(x, y). Example. Find a special solution of following equation. u x + 2u y 5u 2e 5x. Solution. Fourier transform of the solution of above equation from conclusion is that Therefore U x, y 2.. δ(w + 5i) iw 5 iw 5. e 2 y dy e 2 y 2 4π δ w + 5i. iw 5 u x, y 2 i 4π iw 5 δ w + 5i. eiwx dw w eiwx w 5i 2x. e 5x. Example 2. Find a special solution of following equation u x + u y u 2xe y. Solution. Fourier transform of the solution of above equation from conclusion is that Therefore U x, y e iw y 4πie y δ w. e iw y dy u x, y 4πi iw δ w. e y. 4π u δ w. e y. e iwx dw 2e y δ w. eiwx dw 2e y 2 e iwx 2! w 0. x 2 e y Example 3. (Patil & Kolte, 2008) Find a special of following equation. u xx + 6u yy x 2 y 2. Solution. From theorem coeffients of equation are n 2, A 2,0, A, 0, A 0,2, A,0 A 0, A 0,0 0. Therefore we can write that: 9

8 ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.3, N., 208 U w, y y2.. i 2 δ w 6D 2 + i y2.. δ w 6D 2 +. δ w. δ w 6D 2 + (y2 ) + 6D2 (y 2 ). δ w 6D D4 w 4 (y 2 ). y2. δ w From inverse fourier transform u x, y 64πδ w w 4. y 2 δ w. e iwx dw 4πy 2 δ w w 4. e iwx dw 4πy 2 4 e iwx 4! w 4 w 0 y2 x x6 45. Example 4. Find a special of following equation. 64πδ w w 4 28πδ w w 6 u xx u xy 2u yy y e x.. e iwx dw. e iwx dw 28π 6 e iwx 6! w 6 w 0 Solution. From the theorem coefficients of equation are A 2,0, A,, A 0,2 2, A,0 A 0, A 0,0 0. Therefore fourier transform of solution are that: U w, y F y e x 2D 2 iwd + i + id w + 2D2 y.. δ w + i. δ w + i id w 2D2 + id w + 2D2 2 + y. δ w + i y i w. δ w + i. y u x, y F. δ w + i. y U w, y F + +. i. δ w + i w 3.. i. δ w + i w 3 92

9 M. DÜZ: A SPECIAL SOLUTION OF CONSTANT COEFFICIENTS PARTIAL DERIVATIVE. δ w + i. y. e iwx dw +. i. δ w + i w 3 e iwx dw y e x + e x y. e x. References Andrews, L.C., Shivamoggi, B.K. (988). Integral Transforms for Engineering, SPIE Press. Ayaz, F. (2003). On the two-dimensional differential transform method. Applied Mathematics and Computation, 43, Bildik, N., Konuralp, A., Orakçı, Beka, F., Küçükarslan, S. (2006). Solution of different type of the partial differential equation by differential transform method and Adomian's decomposition method. Applied Mathematics and Computation, 72(), Bogges, A., Narcowich, F.J. (2009). A first Course in Wavelets with Fourier Analysis, 2nd Edition. Wiley. Bracewell, R.N. (965). The Fourier Transfıorm and Its Applications. Boston: McGraw- HillBook Campany. Chen, C.K., Ho, S.H. (999). Solving partial differential equtions by two-dimensional differential transform method. Applied Mathematics and Computation, 06, Denbath, L., Bhattad, D. (205). Integral Transforms and Their Applications. CRC Press Taylor Francis Group Network. Düz, M. (208). Solution of complex differential equations by using Fourier transform. International Journal of Applied Mathematics, 3(), Murray, R.S. (974). Fourier Analysis. Schaum's Outline Series, McGraw Hill. Patil, P., Kolte, A. (205). Solution of Partial Differential Equation by Undetermined Coefficients Method. International Journal of Engineering and Innovative Technology, 4(9),

Suggested solutions, TMA4125 Calculus 4N

Suggested solutions, TMA4125 Calculus 4N Suggested solutions, TMA5 Calculus N Charles Curry May 9th 07. The graph of g(x) is displayed below. We have b n = = = 0 [ nπ = nπ ( x) nπx dx nπx dx cos nπx ] x nπx dx [ nπx x cos nπ ] ( cos nπ + cos

More information

Introduction to Decision Sciences Lecture 6

Introduction to Decision Sciences Lecture 6 Introduction to Decision Sciences Lecture 6 Andrew Nobel September 21, 2017 Functions Functions Given: Sets A and B, possibly different Definition: A function f : A B is a rule that assigns every element

More information

Numerical Solution of Duffing Equation by the Differential Transform Method

Numerical Solution of Duffing Equation by the Differential Transform Method Appl. Math. Inf. Sci. Lett. 2, No., -6 (204) Applied Mathematics & Information Sciences Letters An International Journal http://dx.doi.org/0.2785/amisl/0200 Numerical Solution of Duffing Equation by the

More information

Section Taylor and Maclaurin Series

Section Taylor and Maclaurin Series Section.0 Taylor and Maclaurin Series Ruipeng Shen Feb 5 Taylor and Maclaurin Series Main Goal: How to find a power series representation for a smooth function us assume that a smooth function has a power

More information

Tutorial. The two- dimensional Fourier transform. θ =. For example, if f( x, y) = cos[2 π( xcosθ + ysin θ)]

Tutorial. The two- dimensional Fourier transform. θ =. For example, if f( x, y) = cos[2 π( xcosθ + ysin θ)] Tutorial Many of the linear transforms in common use have a direct connection with either the Fourier or the Laplace transform [- 7]. The closest relationship is with the generalizations of the Fourier

More information

This practice exam is intended to help you prepare for the final exam for MTH 142 Calculus II.

This practice exam is intended to help you prepare for the final exam for MTH 142 Calculus II. MTH 142 Practice Exam Chapters 9-11 Calculus II With Analytic Geometry Fall 2011 - University of Rhode Island This practice exam is intended to help you prepare for the final exam for MTH 142 Calculus

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

11.10a Taylor and Maclaurin Series

11.10a Taylor and Maclaurin Series 11.10a 1 11.10a Taylor and Maclaurin Series Let y = f(x) be a differentiable function at x = a. In first semester calculus we saw that (1) f(x) f(a)+f (a)(x a), for all x near a The right-hand side of

More information

1 Review of di erential calculus

1 Review of di erential calculus Review of di erential calculus This chapter presents the main elements of di erential calculus needed in probability theory. Often, students taking a course on probability theory have problems with concepts

More information

Lecture 10. (2) Functions of two variables. Partial derivatives. Dan Nichols February 27, 2018

Lecture 10. (2) Functions of two variables. Partial derivatives. Dan Nichols February 27, 2018 Lecture 10 Partial derivatives Dan Nichols nichols@math.umass.edu MATH 233, Spring 2018 University of Massachusetts February 27, 2018 Last time: functions of two variables f(x, y) x and y are the independent

More information

Math 113 (Calculus 2) Exam 4

Math 113 (Calculus 2) Exam 4 Math 3 (Calculus ) Exam 4 November 0 November, 009 Sections 0, 3 7 Name Student ID Section Instructor In some cases a series may be seen to converge or diverge for more than one reason. For such problems

More information

AP Calculus Testbank (Chapter 9) (Mr. Surowski)

AP Calculus Testbank (Chapter 9) (Mr. Surowski) AP Calculus Testbank (Chapter 9) (Mr. Surowski) Part I. Multiple-Choice Questions n 1 1. The series will converge, provided that n 1+p + n + 1 (A) p > 1 (B) p > 2 (C) p >.5 (D) p 0 2. The series

More information

Higher-order ordinary differential equations

Higher-order ordinary differential equations Higher-order ordinary differential equations 1 A linear ODE of general order n has the form a n (x) dn y dx n +a n 1(x) dn 1 y dx n 1 + +a 1(x) dy dx +a 0(x)y = f(x). If f(x) = 0 then the equation is called

More information

The solutions of time and space conformable fractional heat equations with conformable Fourier transform

The solutions of time and space conformable fractional heat equations with conformable Fourier transform Acta Univ. Sapientiae, Mathematica, 7, 2 (25) 3 4 DOI:.55/ausm-25-9 The solutions of time and space conformable fractional heat equations with conformable Fourier transform Yücel Çenesiz Department of

More information

As f and g are differentiable functions such that. f (x) = 20e 2x, g (x) = 4e 2x + 4xe 2x,

As f and g are differentiable functions such that. f (x) = 20e 2x, g (x) = 4e 2x + 4xe 2x, srinivasan (rs7) Sample Midterm srinivasan (690) This print-out should have 0 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Determine if

More information

ADOMIAN-TAU OPERATIONAL METHOD FOR SOLVING NON-LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS WITH PADE APPROXIMANT. A. Khani

ADOMIAN-TAU OPERATIONAL METHOD FOR SOLVING NON-LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS WITH PADE APPROXIMANT. A. Khani Acta Universitatis Apulensis ISSN: 1582-5329 No 38/214 pp 11-22 ADOMIAN-TAU OPERATIONAL METHOD FOR SOLVING NON-LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS WITH PADE APPROXIMANT A Khani Abstract In this

More information

(c) Find the equation of the degree 3 polynomial that has the same y-value, slope, curvature, and third derivative as ln(x + 1) at x = 0.

(c) Find the equation of the degree 3 polynomial that has the same y-value, slope, curvature, and third derivative as ln(x + 1) at x = 0. Chapter 7 Challenge problems Example. (a) Find the equation of the tangent line for ln(x + ) at x = 0. (b) Find the equation of the parabola that is tangent to ln(x + ) at x = 0 (i.e. the parabola has

More information

Section 5.8. Taylor Series

Section 5.8. Taylor Series Difference Equations to Differential Equations Section 5.8 Taylor Series In this section we will put together much of the work of Sections 5.-5.7 in the context of a discussion of Taylor series. We begin

More information

Electromagnetism HW 1 math review

Electromagnetism HW 1 math review Electromagnetism HW math review Problems -5 due Mon 7th Sep, 6- due Mon 4th Sep Exercise. The Levi-Civita symbol, ɛ ijk, also known as the completely antisymmetric rank-3 tensor, has the following properties:

More information

Let s Get Series(ous)

Let s Get Series(ous) Department of Mathematics, Computer Science, and Statistics Bloomsburg University Bloomsburg, Pennsylvania 785 Let s Get Series(ous) Summary Presenting infinite series can be (used to be) a tedious and

More information

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1. MTH4101 CALCULUS II REVISION NOTES 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) 1.1 Introduction Types of numbers (natural, integers, rationals, reals) The need to solve quadratic equations:

More information

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder.

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder. Lent 29 COMPLEX METHODS G. Taylor A star means optional and not necessarily harder. Conformal maps. (i) Let f(z) = az + b, with ad bc. Where in C is f conformal? cz + d (ii) Let f(z) = z +. What are the

More information

Mathematics for Chemists 2 Lecture 14: Fourier analysis. Fourier series, Fourier transform, DFT/FFT

Mathematics for Chemists 2 Lecture 14: Fourier analysis. Fourier series, Fourier transform, DFT/FFT Mathematics for Chemists 2 Lecture 14: Fourier analysis Fourier series, Fourier transform, DFT/FFT Johannes Kepler University Summer semester 2012 Lecturer: David Sevilla Fourier analysis 1/25 Remembering

More information

Series Solutions. 8.1 Taylor Polynomials

Series Solutions. 8.1 Taylor Polynomials 8 Series Solutions 8.1 Taylor Polynomials Polynomial functions, as we have seen, are well behaved. They are continuous everywhere, and have continuous derivatives of all orders everywhere. It also turns

More information

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis. 26 October - 20 November, 2009

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis. 26 October - 20 November, 2009 2065-33 Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis 26 October - 20 November, 2009 Introduction to two-dimensional digital signal processing Fabio Mammano University

More information

Examination paper for TMA4130 Matematikk 4N: SOLUTION

Examination paper for TMA4130 Matematikk 4N: SOLUTION Department of Mathematical Sciences Examination paper for TMA4 Matematikk 4N: SOLUTION Academic contact during examination: Morten Nome Phone: 9 84 97 8 Examination date: December 7 Examination time (from

More information

TMA4120, Matematikk 4K, Fall Date Section Topic HW Textbook problems Suppl. Answers. Sept 12 Aug 31/

TMA4120, Matematikk 4K, Fall Date Section Topic HW Textbook problems Suppl. Answers. Sept 12 Aug 31/ TMA420, Matematikk 4K, Fall 206 LECTURE SCHEDULE AND ASSIGNMENTS Date Section Topic HW Textbook problems Suppl Answers Aug 22 6 Laplace transform 6:,7,2,2,22,23,25,26,4 A Sept 5 Aug 24/25 62-3 ODE, Heaviside

More information

Partial differential equations (ACM30220)

Partial differential equations (ACM30220) (ACM3. A pot on a stove has a handle of length that can be modelled as a rod with diffusion constant D. The equation for the temperature in the rod is u t Du xx < x

More information

Partial Derivatives October 2013

Partial Derivatives October 2013 Partial Derivatives 14.3 02 October 2013 Derivative in one variable. Recall for a function of one variable, f (a) = lim h 0 f (a + h) f (a) h slope f (a + h) f (a) h a a + h Partial derivatives. For a

More information

1 + z 1 x (2x y)e x2 xy. xe x2 xy. x x3 e x, lim x log(x). (3 + i) 2 17i + 1. = 1 2e + e 2 = cosh(1) 1 + i, 2 + 3i, 13 exp i arctan

1 + z 1 x (2x y)e x2 xy. xe x2 xy. x x3 e x, lim x log(x). (3 + i) 2 17i + 1. = 1 2e + e 2 = cosh(1) 1 + i, 2 + 3i, 13 exp i arctan Complex Analysis I MT333P Problems/Homework Recommended Reading: Bak Newman: Complex Analysis Springer Conway: Functions of One Complex Variable Springer Ahlfors: Complex Analysis McGraw-Hill Jaenich:

More information

DIFFERENTIAL CRITERIA FOR POSITIVE DEFINITENESS

DIFFERENTIAL CRITERIA FOR POSITIVE DEFINITENESS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume, Number, Pages S -9939(XX)- DIFFERENTIAL CRITERIA FOR POSITIVE DEFINITENESS J. A. PALMER Abstract. We show how the Mellin transform can be used to

More information

Math 1310 Final Exam

Math 1310 Final Exam Math 1310 Final Exam December 11, 2014 NAME: INSTRUCTOR: Write neatly and show all your work in the space provided below each question. You may use the back of the exam pages if you need additional space

More information

Approximate Solution of BVPs for 4th-Order IDEs by Using RKHS Method

Approximate Solution of BVPs for 4th-Order IDEs by Using RKHS Method Applied Mathematical Sciences, Vol. 6, 01, no. 50, 453-464 Approximate Solution of BVPs for 4th-Order IDEs by Using RKHS Method Mohammed Al-Smadi Mathematics Department, Al-Qassim University, Saudi Arabia

More information

Final Exam May 4, 2016

Final Exam May 4, 2016 1 Math 425 / AMCS 525 Dr. DeTurck Final Exam May 4, 2016 You may use your book and notes on this exam. Show your work in the exam book. Work only the problems that correspond to the section that you prepared.

More information

Example: Limit definition. Geometric meaning. Geometric meaning, y. Notes. Notes. Notes. f (x, y) = x 2 y 3 :

Example: Limit definition. Geometric meaning. Geometric meaning, y. Notes. Notes. Notes. f (x, y) = x 2 y 3 : Partial Derivatives 14.3 02 October 2013 Derivative in one variable. Recall for a function of one variable, f (a) = lim h 0 f (a + h) f (a) h slope f (a + h) f (a) h a a + h Partial derivatives. For a

More information

CALCULUS JIA-MING (FRANK) LIOU

CALCULUS JIA-MING (FRANK) LIOU CALCULUS JIA-MING (FRANK) LIOU Abstract. Contents. Power Series.. Polynomials and Formal Power Series.2. Radius of Convergence 2.3. Derivative and Antiderivative of Power Series 4.4. Power Series Expansion

More information

Taylor and Maclaurin Series. Approximating functions using Polynomials.

Taylor and Maclaurin Series. Approximating functions using Polynomials. Taylor and Maclaurin Series Approximating functions using Polynomials. Approximating f x = e x near x = 0 In order to approximate the function f x = e x near x = 0, we can use the tangent line (The Linear

More information

Math 126: Course Summary

Math 126: Course Summary Math 126: Course Summary Rich Schwartz August 19, 2009 General Information: Math 126 is a course on complex analysis. You might say that complex analysis is the study of what happens when you combine calculus

More information

Mathematics of Physics and Engineering II: Homework problems

Mathematics of Physics and Engineering II: Homework problems Mathematics of Physics and Engineering II: Homework problems Homework. Problem. Consider four points in R 3 : P (,, ), Q(,, 2), R(,, ), S( + a,, 2a), where a is a real number. () Compute the coordinates

More information

Chapter 7: Techniques of Integration

Chapter 7: Techniques of Integration Chapter 7: Techniques of Integration MATH 206-01: Calculus II Department of Mathematics University of Louisville last corrected September 14, 2013 1 / 43 Chapter 7: Techniques of Integration 7.1. Integration

More information

Existence and uniqueness: Picard s theorem

Existence and uniqueness: Picard s theorem Existence and uniqueness: Picard s theorem First-order equations Consider the equation y = f(x, y) (not necessarily linear). The equation dictates a value of y at each point (x, y), so one would expect

More information

Chapter 4 Sequences and Series

Chapter 4 Sequences and Series Chapter 4 Sequences and Series 4.1 Sequence Review Sequence: a set of elements (numbers or letters or a combination of both). The elements of the set all follow the same rule (logical progression). The

More information

TAYLOR AND MACLAURIN SERIES

TAYLOR AND MACLAURIN SERIES TAYLOR AND MACLAURIN SERIES. Introduction Last time, we were able to represent a certain restricted class of functions as power series. This leads us to the question: can we represent more general functions

More information

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE 1. Linear Partial Differential Equations A partial differential equation (PDE) is an equation, for an unknown function u, that

More information

Fourier transforms. c n e inπx. f (x) = Write same thing in an equivalent form, using n = 1, f (x) = l π

Fourier transforms. c n e inπx. f (x) = Write same thing in an equivalent form, using n = 1, f (x) = l π Fourier transforms We can imagine our periodic function having periodicity taken to the limits ± In this case, the function f (x) is not necessarily periodic, but we can still use Fourier transforms (related

More information

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH Faculty of Science and Engineering Department of Mathematics and Statistics END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MA4006 SEMESTER: Spring 2011 MODULE TITLE:

More information

Approximation of the Continuous Time Fourier Transform. Signals & Systems Lab 8

Approximation of the Continuous Time Fourier Transform. Signals & Systems Lab 8 Approximation of the Continuous Time Fourier Transform Signals & Systems Lab 8 Continuous Time Fourier Transform (CTFT) X f = x t e j2πft dt x t = X f e j2πft df Uncle Fourier Riemann Definite Integral

More information

Research Article Solution of (3 1)-Dimensional Nonlinear Cubic Schrodinger Equation by Differential Transform Method

Research Article Solution of (3 1)-Dimensional Nonlinear Cubic Schrodinger Equation by Differential Transform Method Mathematical Problems in Engineering Volume 212, Article ID 5182, 14 pages doi:1.1155/212/5182 Research Article Solution of ( 1)-Dimensional Nonlinear Cubic Schrodinger Equation by Differential Transform

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain.

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. For example f(x) = 1 1 x = 1 + x + x2 + x 3 + = ln(1 + x) = x x2 2

More information

NONLINEAR EQUATIONS AND TAYLOR S THEOREM

NONLINEAR EQUATIONS AND TAYLOR S THEOREM APPENDIX C NONLINEAR EQUATIONS AND TAYLOR S THEOREM C.1 INTRODUCTION In adjustment computations it is frequently necessary to deal with nonlinear equations. For example, some observation equations relate

More information

Solving systems of ordinary differential equations in unbounded domains by exponential Chebyshev collocation method

Solving systems of ordinary differential equations in unbounded domains by exponential Chebyshev collocation method NTMSCI 1, No 1, 33-46 2016) 33 Journal of Abstract and Computational Mathematics http://wwwntmscicom/jacm Solving systems of ordinary differential equations in unbounded domains by exponential Chebyshev

More information

1 Distributions (due January 22, 2009)

1 Distributions (due January 22, 2009) Distributions (due January 22, 29). The distribution derivative of the locally integrable function ln( x ) is the principal value distribution /x. We know that, φ = lim φ(x) dx. x ɛ x Show that x, φ =

More information

Math 104: l Hospital s rule, Differential Equations and Integration

Math 104: l Hospital s rule, Differential Equations and Integration Math 104: l Hospital s rule, and Integration Ryan Blair University of Pennsylvania Tuesday January 22, 2013 Math 104:l Hospital s rule, andtuesday Integration January 22, 2013 1 / 8 Outline 1 l Hospital

More information

Analysis II: Basic knowledge of real analysis: Part V, Power Series, Differentiation, and Taylor Series

Analysis II: Basic knowledge of real analysis: Part V, Power Series, Differentiation, and Taylor Series .... Analysis II: Basic knowledge of real analysis: Part V, Power Series, Differentiation, and Taylor Series Kenichi Maruno Department of Mathematics, The University of Texas - Pan American March 4, 20

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt

More information

A Note on the Differential Equations with Distributional Coefficients

A Note on the Differential Equations with Distributional Coefficients MATEMATIKA, 24, Jilid 2, Bil. 2, hlm. 115 124 c Jabatan Matematik, UTM. A Note on the Differential Equations with Distributional Coefficients Adem Kilicman Department of Mathematics, Institute for Mathematical

More information

Engg. Math. I. Unit-I. Differential Calculus

Engg. Math. I. Unit-I. Differential Calculus Dr. Satish Shukla 1 of 50 Engg. Math. I Unit-I Differential Calculus Syllabus: Limits of functions, continuous functions, uniform continuity, monotone and inverse functions. Differentiable functions, Rolle

More information

Løsningsførslag i 4M

Løsningsførslag i 4M Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side 1 av 6 Løsigsførslag i 4M Oppgave 1 a) A sketch of the graph of the give f o the iterval [ 3, 3) is as follows: The Fourier

More information

Chapter III Beyond L 2 : Fourier transform of distributions

Chapter III Beyond L 2 : Fourier transform of distributions Chapter III Beyond L 2 : Fourier transform of distributions 113 1 Basic definitions and first examples In this section we generalize the theory of the Fourier transform developed in Section 1 to distributions.

More information

A First Course in Wavelets with Fourier Analysis

A First Course in Wavelets with Fourier Analysis * A First Course in Wavelets with Fourier Analysis Albert Boggess Francis J. Narcowich Texas A& M University, Texas PRENTICE HALL, Upper Saddle River, NJ 07458 Contents Preface Acknowledgments xi xix 0

More information

Mathematics of Physics and Engineering II: Homework answers You are encouraged to disagree with everything that follows. P R and i j k 2 1 1

Mathematics of Physics and Engineering II: Homework answers You are encouraged to disagree with everything that follows. P R and i j k 2 1 1 Mathematics of Physics and Engineering II: Homework answers You are encouraged to disagree with everything that follows Homework () P Q = OQ OP =,,,, =,,, P R =,,, P S = a,, a () The vertex of the angle

More information

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 Chapter 11 Taylor Series Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 First-Order Approximation We want to approximate function f by some simple function. Best possible approximation

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12 First Name: Student-No: Last Name: Section: Grade: The remainder of this page has been left blank for your workings. Midterm D: Page of 2 Indefinite Integrals. 9 marks Each part is worth marks. Please

More information

NORTH MAHARASHTRA UNIVERSITY JALGAON.

NORTH MAHARASHTRA UNIVERSITY JALGAON. NORTH MAHARASHTRA UNIVERSITY JALGAON. Syllabus for S.Y.B.Sc. (Mathematics) With effect from June 013. (Semester system). The pattern of examination of theory papers is semester system. Each theory course

More information

MULTISECTION METHOD AND FURTHER FORMULAE FOR π. De-Yin Zheng

MULTISECTION METHOD AND FURTHER FORMULAE FOR π. De-Yin Zheng Indian J. pure appl. Math., 39(: 37-55, April 008 c Printed in India. MULTISECTION METHOD AND FURTHER FORMULAE FOR π De-Yin Zheng Department of Mathematics, Hangzhou Normal University, Hangzhou 30036,

More information

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx Millersville University Name Answer Key Mathematics Department MATH 2, Calculus II, Final Examination May 4, 2, 8:AM-:AM Please answer the following questions. Your answers will be evaluated on their correctness,

More information

Bernoulli Numbers and their Applications

Bernoulli Numbers and their Applications Bernoulli Numbers and their Applications James B Silva Abstract The Bernoulli numbers are a set of numbers that were discovered by Jacob Bernoulli (654-75). This set of numbers holds a deep relationship

More information

Section 9.7 and 9.10: Taylor Polynomials and Approximations/Taylor and Maclaurin Series

Section 9.7 and 9.10: Taylor Polynomials and Approximations/Taylor and Maclaurin Series Section 9.7 and 9.10: Taylor Polynomials and Approximations/Taylor and Maclaurin Series Power Series for Functions We can create a Power Series (or polynomial series) that can approximate a function around

More information

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period:

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: WORKSHEET: Series, Taylor Series AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: 1 Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The

More information

SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES

SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES TAYLOR AND MACLAURIN SERIES Taylor Series of a function f at x = a is ( f k )( a) ( x a) k k! It is a Power Series centered at a. Maclaurin Series of a function

More information

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations An Introduction to Partial Differential Equations Ryan C. Trinity University Partial Differential Equations Lecture 1 Ordinary differential equations (ODEs) These are equations of the form where: F(x,y,y,y,y,...)

More information

f (n) (z 0 ) Theorem [Morera s Theorem] Suppose f is continuous on a domain U, and satisfies that for any closed curve γ in U, γ

f (n) (z 0 ) Theorem [Morera s Theorem] Suppose f is continuous on a domain U, and satisfies that for any closed curve γ in U, γ Remarks. 1. So far we have seen that holomorphic is equivalent to analytic. Thus, if f is complex differentiable in an open set, then it is infinitely many times complex differentiable in that set. This

More information

Solutions: Problem Set 4 Math 201B, Winter 2007

Solutions: Problem Set 4 Math 201B, Winter 2007 Solutions: Problem Set 4 Math 2B, Winter 27 Problem. (a Define f : by { x /2 if < x

More information

Name: ID.NO: Fall 97. PLEASE, BE NEAT AND SHOW ALL YOUR WORK; CIRCLE YOUR ANSWER. NO NOTES, BOOKS, CALCULATORS, TAPE PLAYERS, or COMPUTERS.

Name: ID.NO: Fall 97. PLEASE, BE NEAT AND SHOW ALL YOUR WORK; CIRCLE YOUR ANSWER. NO NOTES, BOOKS, CALCULATORS, TAPE PLAYERS, or COMPUTERS. MATH 303-2/6/97 FINAL EXAM - Alternate WILKERSON SECTION Fall 97 Name: ID.NO: PLEASE, BE NEAT AND SHOW ALL YOUR WORK; CIRCLE YOUR ANSWER. NO NOTES, BOOKS, CALCULATORS, TAPE PLAYERS, or COMPUTERS. Problem

More information

PHYS 502 Lecture 3: Fourier Series

PHYS 502 Lecture 3: Fourier Series PHYS 52 Lecture 3: Fourier Series Fourier Series Introduction In mathematics, a Fourier series decomposes periodic functions or periodic signals into the sum of a (possibly infinite) set of simple oscillating

More information

Fourier series: Fourier, Dirichlet, Poisson, Sturm, Liouville

Fourier series: Fourier, Dirichlet, Poisson, Sturm, Liouville Fourier series: Fourier, Dirichlet, Poisson, Sturm, Liouville Joseph Fourier (1768-1830) upon returning from Egypt in 1801 was appointed by Napoleon Prefect of the Department of Isères (where Grenoble

More information

Final exam (practice) UCLA: Math 31B, Spring 2017

Final exam (practice) UCLA: Math 31B, Spring 2017 Instructor: Noah White Date: Final exam (practice) UCLA: Math 3B, Spring 207 This exam has 8 questions, for a total of 80 points. Please print your working and answers neatly. Write your solutions in the

More information

Math 113 Winter 2005 Key

Math 113 Winter 2005 Key Name Student Number Section Number Instructor Math Winter 005 Key Departmental Final Exam Instructions: The time limit is hours. Problem consists of short answer questions. Problems through are multiple

More information

Introduction to Differential Equations

Introduction to Differential Equations Chapter 1 Introduction to Differential Equations 1.1 Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known

More information

Course Code: MTH-S101 Breakup: 3 1 0 4 Course Name: Mathematics-I Course Details: Unit-I: Sequences & Series: Definition, Monotonic sequences, Bounded sequences, Convergent and Divergent Sequences Infinite

More information

Lecture 4 Filtering in the Frequency Domain. Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2016

Lecture 4 Filtering in the Frequency Domain. Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2016 Lecture 4 Filtering in the Frequency Domain Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2016 Outline Background From Fourier series to Fourier transform Properties of the Fourier

More information

Taylor polynomial approach for systems of linear differential equations in normal form and residual error estimation

Taylor polynomial approach for systems of linear differential equations in normal form and residual error estimation NTMSCI 3, No 3, 116-128 (2015) 116 New Trends in Mathematical Sciences http://wwwntmscicom Taylor polynomial approach for systems of linear differential equations in normal form and residual error estimation

More information

1. (4 % each, total 20 %) Answer each of the following. (No need to show your work for this problem). 3 n. n!? n=1

1. (4 % each, total 20 %) Answer each of the following. (No need to show your work for this problem). 3 n. n!? n=1 NAME: EXAM 4 - Math 56 SOlutions Instruction: Circle your answers and show all your work CLEARLY Partial credit will be given only when you present what belongs to part of a correct solution (4 % each,

More information

Math 0230 Calculus 2 Lectures

Math 0230 Calculus 2 Lectures Math 00 Calculus Lectures Chapter 8 Series Numeration of sections corresponds to the text James Stewart, Essential Calculus, Early Transcendentals, Second edition. Section 8. Sequences A sequence is a

More information

MA22S3 Summary Sheet: Ordinary Differential Equations

MA22S3 Summary Sheet: Ordinary Differential Equations MA22S3 Summary Sheet: Ordinary Differential Equations December 14, 2017 Kreyszig s textbook is a suitable guide for this part of the module. Contents 1 Terminology 1 2 First order separable 2 2.1 Separable

More information

f (x) = k=0 f (0) = k=0 k=0 a k k(0) k 1 = a 1 a 1 = f (0). a k k(k 1)x k 2, k=2 a k k(k 1)(0) k 2 = 2a 2 a 2 = f (0) 2 a k k(k 1)(k 2)x k 3, k=3

f (x) = k=0 f (0) = k=0 k=0 a k k(0) k 1 = a 1 a 1 = f (0). a k k(k 1)x k 2, k=2 a k k(k 1)(0) k 2 = 2a 2 a 2 = f (0) 2 a k k(k 1)(k 2)x k 3, k=3 1 M 13-Lecture Contents: 1) Taylor Polynomials 2) Taylor Series Centered at x a 3) Applications of Taylor Polynomials Taylor Series The previous section served as motivation and gave some useful expansion.

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

n f(k) k=1 means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other words: n f(k) = f(1) + f(2) f(n). 1 = 2n 2.

n f(k) k=1 means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other words: n f(k) = f(1) + f(2) f(n). 1 = 2n 2. Handout on induction and written assignment 1. MA113 Calculus I Spring 2007 Why study mathematical induction? For many students, mathematical induction is an unfamiliar topic. Nonetheless, this is an important

More information

8 Singular Integral Operators and L p -Regularity Theory

8 Singular Integral Operators and L p -Regularity Theory 8 Singular Integral Operators and L p -Regularity Theory 8. Motivation See hand-written notes! 8.2 Mikhlin Multiplier Theorem Recall that the Fourier transformation F and the inverse Fourier transformation

More information

Multiple Choice Answers. MA 113 Calculus I Spring 2018 Exam 2 Tuesday, 6 March Question

Multiple Choice Answers. MA 113 Calculus I Spring 2018 Exam 2 Tuesday, 6 March Question MA 113 Calculus I Spring 2018 Exam 2 Tuesday, 6 March 2018 Name: Section: Last 4 digits of student ID #: This exam has 12 multiple choice questions (five points each) and 4 free response questions (ten

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) A.J.Hobson JUST THE MATHS UNIT NUMBER.5 DIFFERENTIATION APPLICATIONS 5 (Maclaurin s and Taylor s series) by A.J.Hobson.5. Maclaurin s series.5. Standard series.5.3 Taylor s series.5.4 Exercises.5.5 Answers to exercises

More information

Lecture Notes on. Differential Equations. Emre Sermutlu

Lecture Notes on. Differential Equations. Emre Sermutlu Lecture Notes on Differential Equations Emre Sermutlu ISBN: Copyright Notice: To my wife Nurten and my daughters İlayda and Alara Contents Preface ix 1 First Order ODE 1 1.1 Definitions.............................

More information

Taylor Series and Numerical Approximations

Taylor Series and Numerical Approximations Taylor Series and Numerical Approximations Hilary Weller h.weller@reading.ac.uk August 7, 05 An introduction to the concept of a Taylor series and how these are used in numerical analysis to find numerical

More information

Optimization using Calculus. Optimization of Functions of Multiple Variables subject to Equality Constraints

Optimization using Calculus. Optimization of Functions of Multiple Variables subject to Equality Constraints Optimization using Calculus Optimization of Functions of Multiple Variables subject to Equality Constraints 1 Objectives Optimization of functions of multiple variables subjected to equality constraints

More information

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 4, and Di Bartolo, Chap. 2. 2π nx i a. ( ) = G n.

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 4, and Di Bartolo, Chap. 2. 2π nx i a. ( ) = G n. Chapter. Electrostatic II Notes: Most of the material presented in this chapter is taken from Jackson, Chap.,, and 4, and Di Bartolo, Chap... Mathematical Considerations.. The Fourier series and the Fourier

More information

Two Degree non Homogeneous Differential Equations with Polynomial Coefficients

Two Degree non Homogeneous Differential Equations with Polynomial Coefficients Mathematica Aeterna, Vol. 1, 2011, no. 05, 297-304 Two Degree non Homogeneous Differential Equations with Polynomial Coefficients Nikos Bagis Aristotelian University of Thessaloniki Department of Computer

More information