Acceleration 1-D Motion for Calculus Students (90 Minutes)

Size: px
Start display at page:

Download "Acceleration 1-D Motion for Calculus Students (90 Minutes)"

Transcription

1 Acceleration 1-D Motion for Calculus Students (90 Minutes) Learning Goals: Using graphs and functions, the student will explore the various types of acceleration, as well as how acceleration relates to position, velocity, and speed. Prior Knowledge: Students should be familiar with the concept of 1-D motion, graphs of time versus position, and graphs of time versus velocity and speed. Students should also be able to take derivatives, find critical points, and use concavity to describe functions. NCDPI/AP Objectives: Competency Goal 2: The learner will use derivatives to solve problems. 2.03: Interpret the derivative as a function: translate between verbal and algebraic descriptions of equations involving derivatives. 2.05: Interpret the second derivative: identify the corresponding characteristics of the graphs of ƒ, ƒ', and ƒ". 2.06: Apply the derivative in graphing and modeling contexts: interpret the derivative as a rate of change in varied applied contexts, including velocity, speed, and acceleration. Materials Needed: One large toy-car or truck (big enough for the class to see) Masking tape Graphing calculators for each student (or at least one for each group) Worksheet copies for each student Whiteboard/markers Think-Pair-Share Warm-up: Write the following example on the board or overhead for students to begin as they walk in. Question: Find the inflection points and intervals of positive and negative concavity of the position function,. Use a graph to support your answer. Simply looking at the position graph, what do you think might be the significance of d (t)? Why? Answer: The position function d(t) has an inflection point at t = 6. At that instance, d(t) changes from concave down to concave up. This means that d (t) changes from negative to positive at t = 6. The significance of d (t) is that it gives us the acceleration of an object. The students should spend 5 minutes working on the problem alone. Then, give them a few minutes to discuss their answers with a designated partner. Finally, a pair should be chosen to present or read aloud their answers. The share aspect should include some discussion of d (t),

2 and it s likely that one of the students will guess that d (t) represents acceleration. This is the ideal bridge into the formal lesson. Instructional Activities: Lecture: Begin the lesson with a simple lecture on basic concepts that students will use for their group activities. The students will fill in the notes on their worksheet. Before writing out the punch-line of each statement, ask for a student to volunteer an answer for what to write. Acceleration is the rate at which velocity is changing. Thus, a(t) = v (t) = d (t). If velocity is measured in m/s, then acceleration would be in m/. The critical points of v(t) indicate possible changes in the sign of acceleration. Before moving on to a demonstration, write the following example on the board for students to complete as independent practice. Give the students a few minutes by themselves, and then ask for a volunteer to come to the board and explain their answer. Question: Find where the acceleration is changing if the velocity of an object is given by: v(t) = 4t 2. Answer: When t = (2/3), acceleration changes from negative to positive. Demonstration: Before beginning the group activities, perform a simple demonstration in front of the entire class. Inform the students that acceleration isn t as intuitive as they might think. For example, what does it mean for an object to have negative velocity and positive acceleration? Is the object actually speeding up? You ll do a demonstration of 5 various types of acceleration, and the students will model each of these soon. Place a straight piece of masking tape on the floor or on a table. Tell the students that this will be our line of motion. Ask for a student or two come up to help stop the cars. o To the best of your ability, roll the car at a constant speed in any direction; a(t) = 0 o Roll the car in the right direction so that it s speeding up; +v(t), +a(t) o Roll the car in the right direction so that it slows down immediately; +v(t), a(t) o Roll the car in the left direction so that it s speeding up; v(t), a(t) o Roll the car in the left direction so that it s slowing down immediately; v(t), +a(t) Group Activities, Part 1: Tell the students it s time to form groups so they can consider these types of acceleration more seriously. Following the lesson-plan, I ve included a page of slips to

3 be copied (according to the number of students) and then cut out. Hand one slip to each student, and then tell the students to find their fellow group members. The functions are listed below: Group 1: v(t) = 6t a(t) = 6 Group 2: v(t) = -8t a(t) = -8 Group 3: v(t) = a(t) = Group 4: v(t) = a(t) = Group 5: 8t v(t) = 8 a(t) = 0 The students should work in groups on Part 1 of their worksheet for about 15 minutes, while you circulate and answer questions. Group Activities, Part 2 Jigsaw: After the groups have finished, scramble the groups so that each new group has exactly one member from each possible function. Now, for the next 20 minutes, the students should go over their answers as a team and fill out the rest of the worksheet, except for the last practice section. Each member should have a turn explaining their previous group s work. Whole-Class Discussion: After the groups have finished for the second time, the class should come back together for a discussion and to redo the demonstration from the beginning of the lesson. On an overhead or on the board, have a blank copy of the table. Now, ask for a volunteer from each group to explain their function and to fill in the table. After they ve filled it in, have them use the toy-car to model the object s path; this should make the conjecture about the relationship between velocity, acceleration, and speed more concrete. Position Function Is d(t) concave up, down, or neither? Velocity sign Object s speed increasing? Up + Yes + Down _ Yes _ Up _ No + Acceleration sign

4 Down + No _ 8t Neither + No 0 Finally, ask for volunteers to answer the questions about concavity, acceleration, and speed at the end of the worksheet. If the velocity function is constant, then the acceleration function is zero. If the position function is concave up, then acceleration is positive, and if the position function is concave down, then acceleration is negative. For an object s speed to be increasing, then the velocity and acceleration functions must have the same signs they should both be positive or both be negative. Independent Practice: Students should work on the last problem of the worksheet on their own for the remainder of the period. Before the end of class, be sure to go over the answers. Question: The position function of an object is given by. In what intervals is velocity negative? When t is within (-, 1) and (1, ). In what intervals is acceleration negative? When t is within (1, ). In what intervals is the object s speed increasing? Using the notion that velocity and acceleration should have the same sign, the speed is increasing when t is within (1, Closure: Inform the students that they ve delved quite deeply into the concepts of acceleration, and that they ve seen how position, velocity, speed, and acceleration work together! They re now prepared to move on to other exciting applications of derivatives, and eventually 2-D kinematics. Homework: The worksheet or textbook problems of your choice!

5 1-D Motion - Acceleration Name: Student Notesheet Warm-up: Find the inflection points and intervals of positive and negative concavity of the position function,. Use a graph to support your answer. Simply looking at the position graph, what do you think might be the significance of d (t)? Why? Answer: Acceleration is the rate at which is changing. Thus, a(t) = =. If velocity is measured in m/s, then acceleration would be. The of v(t) indicate possible changes in the sign of. Example: Find where the acceleration is changing if the velocity of an object is given by: v(t) = 4t 2. Groups, Part 1: Assigned function - d(t): v(t): a(t): Is the position graph concave up, concave down, or neither?

6 For t > 0, is velocity always positive or negative? Is the particle s speed increasing or decreasing? For t > 0, is acceleration positive, negative, or zero? Groups, Part 2: Position Is d(t) concave up, Velocity sign Object s speed Acceleration Function down, or neither? increasing? sign 8t

7 Questions to Consider: If velocity is constant, then acceleration is. What s the relationship between the concavity of d(t) and acceleration? Based on your observations of the sign value of velocity and acceleration, make a conjecture about what s necessary for an object s speed to be increasing: Independent Practice: The position function of an object is given by. a. In what intervals is the velocity decreasing? b. In what intervals is acceleration negative? c. Using parts (a) and (b), in what intervals is the object s speed increasing?

8 Group 1: Group 2: Group 3: Group 4: Group 5: 8t

Mathematics Success Grade 8

Mathematics Success Grade 8 T538 Mathematics Success Grade 8 [OBJECTIVE] The student will compare functions represented algebraically, graphically, with verbal descriptions or in tables and identify functions as linear or non-linear.

More information

Recitation Questions 1D Motion (part 2)

Recitation Questions 1D Motion (part 2) Recitation Questions 1D Motion (part 2) 23 January Question 1: a braking car A car is traveling at 30 m/s and applies its brakes to slow down to 10 m/s. If it is able to decelerate at 5 m/s 2, how far

More information

Recitation Questions 1D Motion (part 1)

Recitation Questions 1D Motion (part 1) Recitation Questions 1D Motion (part 1) 18 January Question 1: Two runners (This problem is simple, but it has the same template as most of the problems that you ll be doing for this unit. Take note of

More information

Eureka Lessons for 6th Grade Unit FIVE ~ Equations & Inequalities

Eureka Lessons for 6th Grade Unit FIVE ~ Equations & Inequalities Eureka Lessons for 6th Grade Unit FIVE ~ Equations & Inequalities These 2 lessons can easily be taught in 2 class periods. If you like these lessons, please consider using other Eureka lessons as well.

More information

Lesson 12: Position of an Accelerating Object as a Function of Time

Lesson 12: Position of an Accelerating Object as a Function of Time Lesson 12: Position of an Accelerating Object as a Function of Time 12.1 Hypothesize (Derive a Mathematical Model) Recall the initial position and clock reading data from the previous lab. When considering

More information

Moment of Inertia: Rotational Energy

Moment of Inertia: Rotational Energy Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Moment of Inertia: Rotational Energy Name Partners Pre-Lab You are required to finish this section before coming to the lab; it will

More information

Newton s Second Law Knex cars. Vanderbilt Student Volunteers for Science VINSE/VSVS Rural Training Presentation

Newton s Second Law Knex cars. Vanderbilt Student Volunteers for Science VINSE/VSVS Rural Training Presentation Newton s Second Law Knex cars Vanderbilt Student Volunteers for Science 2018-2019 VINSE/VSVS Rural Training Presentation Important!!! Please use this resource to reinforce your understanding of the lesson!

More information

Student Activity: Finding Factors and Prime Factors

Student Activity: Finding Factors and Prime Factors When you have completed this activity, go to Status Check. Pre-Algebra A Unit 2 Student Activity: Finding Factors and Prime Factors Name Date Objective In this activity, you will find the factors and the

More information

Topic: Solving systems of equations with linear and quadratic inequalities

Topic: Solving systems of equations with linear and quadratic inequalities Subject & Grade: Mathematics, 9 th Grade Topic: Solving systems of equations with linear and quadratic inequalities Aim: How would you find the solution set of a linear and quadratic inequality? Materials:.

More information

MACROLAB LESSON 1 Time, Speed, and Distance Teacher Guide

MACROLAB LESSON 1 Time, Speed, and Distance Teacher Guide MACROLAB LESSON 1 Time, Speed, and Distance Teacher Guide Overview Students will use Sphero to show that there is a linear relationship between time, speed, and distance. They will program Sphero to move

More information

Looking Ahead to Chapter 10

Looking Ahead to Chapter 10 Looking Ahead to Chapter Focus In Chapter, you will learn about polynomials, including how to add, subtract, multiply, and divide polynomials. You will also learn about polynomial and rational functions.

More information

Assumed the acceleration was constant and that the receiver could be modeled as a point particle.

Assumed the acceleration was constant and that the receiver could be modeled as a point particle. PUM Physics II - Kinematics Lesson 16 Solutions Page 1 of 7 16.1 Regular Problem v o = 10 m/s v = -2.0 m/s t = 0.020 s v = v o + at -2.0 m/s = (10 m/s) + a(0.020 s) a = (-12 m/s)/(0.020 s) = -600 m/s 2

More information

Shenandoah University. (PowerPoint) LESSON PLAN *

Shenandoah University. (PowerPoint) LESSON PLAN * Shenandoah University (PowerPoint) LESSON PLAN * NAME DATE 10/28/04 TIME REQUIRED 90 minutes SUBJECT Algebra I GRADE 6-9 OBJECTIVES AND PURPOSE (for each objective, show connection to SOL for your subject

More information

Lesson Plan Book-stacking Activity

Lesson Plan Book-stacking Activity T o g o d i r e c t l y t o a l e s s o n, c l i c k o n e o f t h e f o l l o w i n g l i n k s : B o o k - s t a c k i n g A c t i v i t y B a l l o o n A c t i v i t y H y d r o g e n G a s L a b F

More information

Appearances Can Be Deceiving!

Appearances Can Be Deceiving! Appearances Can Be Deceiving! Overview: Students explore the relationship between angular width, actual size, and distance by using their finger, thumb and fist as a unit of angular measurement in this

More information

Physics Motion Math. (Read objectives on screen.)

Physics Motion Math. (Read objectives on screen.) Physics 302 - Motion Math (Read objectives on screen.) Welcome back. When we ended the last program, your teacher gave you some motion graphs to interpret. For each section, you were to describe the motion

More information

A Walk Across the Solar System

A Walk Across the Solar System A Walk Across the Solar System Subject Area: Earth Science and Mathematics Grade Level: Grades 4 and 8 Lesson Objective: Duration: Students will help create a model of the solar system in which the scale

More information

Motion II. Goals and Introduction

Motion II. Goals and Introduction Motion II Goals and Introduction As you have probably already seen in lecture or homework, and if you ve performed the experiment Motion I, it is important to develop a strong understanding of how to model

More information

Instructor Notes for Module 5

Instructor Notes for Module 5 Instructor Notes for Module 5 M5 I1 and I The Bottle Problem Modeling Co-Varying Relationships Learning outcomes: Student will be able to: Given bottles of various shapes, sketch a graph of the co-varying

More information

Instructor Notes for Module 5

Instructor Notes for Module 5 Instructor Notes for Module 5 M5_I3 Transformations of Polynomial Functions The Pre-class assignment for this section (PC3) on IMathAS consists of problem #1 on p. 195 in the workbook and a discussion

More information

Lesson 3-7: Absolute Value Equations Name:

Lesson 3-7: Absolute Value Equations Name: Lesson 3-7: Absolute Value Equations Name: In this activity, we will learn to solve absolute value equations. An absolute value equation is any equation that contains an absolute value symbol. To start,

More information

DATE: Algebra 2. Unit 1, Lesson 2: n th roots and when are n th roots real or not real?

DATE: Algebra 2. Unit 1, Lesson 2: n th roots and when are n th roots real or not real? Algebra 2 DATE: Unit 1, Lesson 2: n th roots and when are n th roots real or not real? Objectives - Students are able to evaluate perfect n th roots. - Students are able to estimate non-perfect n th roots

More information

Motion Unit Review 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a

Motion Unit Review 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a Motion Unit Review 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer. C potential difference

More information

Investigating Similar Triangles and Understanding Proportionality: Lesson Plan

Investigating Similar Triangles and Understanding Proportionality: Lesson Plan Investigating Similar Triangles and Understanding Proportionality: Lesson Plan Purpose of the lesson: This lesson is designed to help students to discover the properties of similar triangles. They will

More information

Mathematics Level D: Lesson 2 Representations of a Line

Mathematics Level D: Lesson 2 Representations of a Line Mathematics Level D: Lesson 2 Representations of a Line Targeted Student Outcomes Students graph a line specified by a linear function. Students graph a line specified by an initial value and rate of change

More information

Driveway Races Acceleration

Driveway Races Acceleration Driveway Races Acceleration You may notice that when things move they rarely move at the same speed all the time. Especially when you drive, you can see right away that your speed is constantly changing.

More information

PHY131H1F Introduction to Physics I Class 2

PHY131H1F Introduction to Physics I Class 2 PHY131H1F Introduction to Physics I Class 2 Today: Chapter 1. Motion Diagrams Particle Model Vector Addition, Subtraction Position, velocity, and acceleration Position vs. time graphs Garden-Variety Clicker

More information

Indirect Measurement Technique: Using Trigonometric Ratios Grade Nine

Indirect Measurement Technique: Using Trigonometric Ratios Grade Nine Ohio Standards Connections Measurement Benchmark D Use proportional reasoning and apply indirect measurement techniques, including right triangle trigonometry and properties of similar triangles, to solve

More information

Math 31 Lesson Plan. Day 2: Sets; Binary Operations. Elizabeth Gillaspy. September 23, 2011

Math 31 Lesson Plan. Day 2: Sets; Binary Operations. Elizabeth Gillaspy. September 23, 2011 Math 31 Lesson Plan Day 2: Sets; Binary Operations Elizabeth Gillaspy September 23, 2011 Supplies needed: 30 worksheets. Scratch paper? Sign in sheet Goals for myself: Tell them what you re going to tell

More information

Foundations for Functions

Foundations for Functions Activity: TEKS: Overview: Materials: Regression Exploration (A.2) Foundations for functions. The student uses the properties and attributes of functions. The student is expected to: (D) collect and organize

More information

AP Calculus Worksheet: Chapter 2 Review Part I

AP Calculus Worksheet: Chapter 2 Review Part I AP Calculus Worksheet: Chapter 2 Review Part I 1. Given y = f(x), what is the average rate of change of f on the interval [a, b]? What is the graphical interpretation of your answer? 2. The derivative

More information

Lesson 28: Another Computational Method of Solving a Linear System

Lesson 28: Another Computational Method of Solving a Linear System Lesson 28: Another Computational Method of Solving a Linear System Student Outcomes Students learn the elimination method for solving a system of linear equations. Students use properties of rational numbers

More information

PHYSICS: the study of matter and its motion through space and time, along with related concepts such as energy and force.

PHYSICS: the study of matter and its motion through space and time, along with related concepts such as energy and force. Car materials: 2 toilet paper rolls 8 water bottle caps 2 straws masking tape 2 4-inch bamboo skewers 5 paper clips 10 toothpicks PHYSICS: the study of matter and its motion through space and time, along

More information

Atoms. Grade Level: 4 6. Teacher Guidelines pages 1 2 Instructional Pages pages 3 5 Activity Pages pages 6 7 Homework Page page 8 Answer Key page 9

Atoms. Grade Level: 4 6. Teacher Guidelines pages 1 2 Instructional Pages pages 3 5 Activity Pages pages 6 7 Homework Page page 8 Answer Key page 9 Atoms Grade Level: 4 6 Teacher Guidelines pages 1 2 Instructional Pages pages 3 5 Activity Pages pages 6 7 Homework Page page 8 Answer Key page 9 Classroom Procedure: 1. Display the different items collected

More information

Understanding Part 2 of The Fundamental Theorem of Calculus

Understanding Part 2 of The Fundamental Theorem of Calculus Understanding Part of The Fundamental Theorem of Calculus Worksheet 8: The Graph of F () What is an Anti-Derivative? Give an eample that is algebraic: and an eample that is graphical: eample : Below is

More information

Standards for AP Calculus AB

Standards for AP Calculus AB I. Functions, Graphs and Limits Standards for AP Calculus AB A. Analysis of graphs. With the aid of technology, graphs of functions are often easy to produce. The emphasis is on the interplay between the

More information

Objective: Construct a paper clock by partitioning a circle into halves and quarters, and tell time to the half hour or quarter hour.

Objective: Construct a paper clock by partitioning a circle into halves and quarters, and tell time to the half hour or quarter hour. Lesson 13 Objective: Suggested Lesson Structure Fluency Practice Concept Development Student Debrief Total Time (10 minutes) (40 minutes) (10 minutes) (60 minutes) Fluency Practice (10 minutes) Rename

More information

BE SURE THAT YOU HAVE LOOKED AT, THOUGHT ABOUT AND TRIED THE SUGGESTED PROBLEMS ON THIS REVIEW GUIDE PRIOR TO LOOKING AT THESE COMMENTS!!!

BE SURE THAT YOU HAVE LOOKED AT, THOUGHT ABOUT AND TRIED THE SUGGESTED PROBLEMS ON THIS REVIEW GUIDE PRIOR TO LOOKING AT THESE COMMENTS!!! Review Guide for MAT0 Final Eam Part I. Thursday December 7 th during regular class time Part is worth 50% of your Final Eam grade. Syllabus approved calculators can be used on this part of the eam but

More information

2, or x 5, 3 x 0, x 2

2, or x 5, 3 x 0, x 2 Pre-AP Algebra 2 Lesson 2 End Behavior and Polynomial Inequalities Objectives: Students will be able to: use a number line model to sketch polynomials that have repeated roots. use a number line model

More information

LAB 2: INTRODUCTION TO MOTION

LAB 2: INTRODUCTION TO MOTION Lab 2 - Introduction to Motion 3 Name Date Partners LAB 2: INTRODUCTION TO MOTION Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise Objectives To explore how various motions are represented

More information

Enhanced Instructional Transition Guide

Enhanced Instructional Transition Guide Enhanced Instructional Transition Guide / Unit 05: Suggested Duration: 9 days Unit 05: Algebraic Representations and Applications (13 days) Possible Lesson 01 (4 days) Possible Lesson 02 (9 days) POSSIBLE

More information

Heat Transfer Lesson Plan

Heat Transfer Lesson Plan Heat Transfer Lesson Plan I. Benchmarks: P.EN.M.4 Energy Transfer- Energy is transferred from a source to a receiver by radiation, conduction, and convection. When energy is transferred from one system

More information

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA CALCULUS AB SECTION I, Part A Time 55 minutes Number of questions 8 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM. Directions: Solve each of the following problems,

More information

Math 31 Lesson Plan. Day 16: Review; Start Section 8. Elizabeth Gillaspy. October 18, Supplies needed: homework. Colored chalk. Quizzes!

Math 31 Lesson Plan. Day 16: Review; Start Section 8. Elizabeth Gillaspy. October 18, Supplies needed: homework. Colored chalk. Quizzes! Math 31 Lesson Plan Day 16: Review; Start Section 8 Elizabeth Gillaspy October 18, 2011 Supplies needed: homework Colored chalk Quizzes! Goals for students: Students will: improve their understanding of

More information

NAME: DATE: SECTION: MRS. KEINATH

NAME: DATE: SECTION: MRS. KEINATH 1 Vocabulary and Formulas: Correlation coefficient The correlation coefficient, r, measures the direction and strength of a linear relationship between two variables. Formula: = 1 x i x y i y r. n 1 s

More information

UDL Lesson Plan Topic: Molecular Structure/VSEPR Theory Date: 2/17/11

UDL Lesson Plan Topic: Molecular Structure/VSEPR Theory Date: 2/17/11 UDL Lesson Plan Topic: Molecular Structure/VSEPR Theory Date: 2/17/11 NSES: STS A to E, ASE A to E, SCS A Grade level: 10 th -12 th Grade SOL: CH.1 The student will investigate and understand that experiments

More information

SFUSD Mathematics Core Curriculum Development Project

SFUSD Mathematics Core Curriculum Development Project 1 SFUSD Mathematics Core Curriculum Development Project 2014 2015 Creating meaningful transformation in mathematics education Developing learners who are independent, assertive constructors of their own

More information

MSU Urban STEM Lesson Title Marble s At Work. Name Donna Calder. Grade Level: 4 8. Content Area Topic: Science(Energy)

MSU Urban STEM Lesson Title Marble s At Work. Name Donna Calder. Grade Level: 4 8. Content Area Topic: Science(Energy) MSU Urban STEM Lesson Title Marble s At Work Name Donna Calder Grade Level: 4 8 Content Area Topic: Science(Energy) Content Area Standard(s): MS PS3 1 Construct and interpret graphical displays of data

More information

Key Performance Task

Key Performance Task COURSE UNIT PERIOD PAGE SPH3U Energy Conservation of Mechanical Energy 1 of 2 Overall Expectation D2. investigate energy transformations and the law of conservation of energy, and solve related problems

More information

Math 7 Notes Unit Two: Integers

Math 7 Notes Unit Two: Integers Math 7 Notes Unit Two: Integers Syllabus Objective: 2.1 The student will solve problems using operations on positive and negative numbers, including rationals. Integers the set of whole numbers and their

More information

Conservation of Momentum: Marble Collisions Student Version

Conservation of Momentum: Marble Collisions Student Version Conservation of Momentum: Marble Collisions Student Version In this lab you will roll a marble down a ramp, and at the bottom of the ramp the marble will collide with another marble. You will measure the

More information

Technical Calculus I Homework. Instructions

Technical Calculus I Homework. Instructions Technical Calculus I Homework Instructions 1. Each assignment is to be done on one or more pieces of regular-sized notebook paper. 2. Your name and the assignment number should appear at the top of the

More information

Rolling marble lab. B. Pre-Lab Questions a) When an object is moving down a ramp, is its speed increasing, decreasing, or staying the same?

Rolling marble lab. B. Pre-Lab Questions a) When an object is moving down a ramp, is its speed increasing, decreasing, or staying the same? IP 614 Rolling marble lab Name: Block: Date: A. Purpose In this lab you are going to see, first hand, what acceleration means. You will learn to describe such motion and its velocity. How does the position

More information

Warm Up. Fourth Grade Released Test Question: 1) Which of the following has the greatest value? 2) Write the following numbers in expanded form: 25:

Warm Up. Fourth Grade Released Test Question: 1) Which of the following has the greatest value? 2) Write the following numbers in expanded form: 25: Warm Up Fourth Grade Released Test Question: 1) Which of the following has the greatest value? A 12.1 B 0.97 C 4.23 D 5.08 Challenge: Plot these numbers on an open number line. 2) Write the following numbers

More information

Graphing and Physical Quantities

Graphing and Physical Quantities Show all work on a separate sheet of paper. 3.1 Observe and Describe Graphing and Physical Quantities Taylor recorded the position of a motorized toy car using the origin as her reference point. She wrote

More information

Unit 4 Patterns and Algebra

Unit 4 Patterns and Algebra Unit 4 Patterns and Algebra In this unit, students will solve equations with integer coefficients using a variety of methods, and apply their reasoning skills to find mistakes in solutions of these equations.

More information

a. Do you think the function is linear or non-linear? Explain using what you know about powers of variables.

a. Do you think the function is linear or non-linear? Explain using what you know about powers of variables. 8.5.8 Lesson Date: Graphs of Non-Linear Functions Student Objectives I can examine the average rate of change for non-linear functions and learn that they do not have a constant rate of change. I can determine

More information

PHYSICS LAB: CONSTANT MOTION

PHYSICS LAB: CONSTANT MOTION PHYSICS LAB: CONSTANT MOTION Introduction Experimentation is fundamental to physics (and all science, for that matter) because it allows us to prove or disprove our hypotheses about how the physical world

More information

Lesson 11: The Special Role of Zero in Factoring

Lesson 11: The Special Role of Zero in Factoring Lesson 11: The Special Role of Zero in Factoring Student Outcomes Students find solutions to polynomial equations where the polynomial expression is not factored into linear factors. Students construct

More information

IB Math SL Year 2 Name Date Lesson 10-4: Displacement, Velocity, Acceleration Revisited

IB Math SL Year 2 Name Date Lesson 10-4: Displacement, Velocity, Acceleration Revisited Name Date Lesson 10-4: Displacement, Velocity, Acceleration Revisited Learning Goals: How do you apply integrals to real-world scenarios? Recall: Linear Motion When an object is moving, a ball in the air

More information

What does the lab partner observe during the instant the student pushes off?

What does the lab partner observe during the instant the student pushes off? Motion Unit Review State Test Questions 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer.

More information

Downhill Races Acceleration

Downhill Races Acceleration Downhill Races Acceleration You may notice that when things move they rarely move at the same speed all the time. Especially when you drive, you can see right away that your speed is constantly changing.

More information

Lesson 7: Watch Your Step!

Lesson 7: Watch Your Step! In previous lessons, we have looked at techniques for solving equations, a common theme throughout algebra. In this lesson, we examine some potential dangers where our intuition about algebra may need

More information

Formative Assessment: Uniform Acceleration

Formative Assessment: Uniform Acceleration Formative Assessment: Uniform Acceleration Name 1) A truck on a straight road starts from rest and accelerates at 3.0 m/s 2 until it reaches a speed of 24 m/s. Then the truck travels for 20 s at constant

More information

Inquiry-based Curriculum Enhancement

Inquiry-based Curriculum Enhancement ICE Inquiry-based Curriculum Enhancement Lesson Plan: Species Interactions General Description This activity is designed to reinforce an understanding of basic concepts in ecology as well as the use of

More information

Materials and Handouts - Warm-Up - Answers to homework #1 - Keynote and notes template - Tic Tac Toe grids - Homework #2

Materials and Handouts - Warm-Up - Answers to homework #1 - Keynote and notes template - Tic Tac Toe grids - Homework #2 Calculus Unit 1, Lesson 2: Composite Functions DATE: Objectives The students will be able to: - Evaluate composite functions using all representations Simplify composite functions Materials and Handouts

More information

LAB 2 - ONE DIMENSIONAL MOTION

LAB 2 - ONE DIMENSIONAL MOTION Name Date Partners L02-1 LAB 2 - ONE DIMENSIONAL MOTION OBJECTIVES Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise To learn how to use a motion detector and gain more familiarity

More information

December 14, SWBAT understand and explain a velocity vs. time graph.

December 14, SWBAT understand and explain a velocity vs. time graph. December 14, 2016 Aims: SWBAT understand and explain a velocity vs. time graph. Agenda 1. Do Now 2. You Review 3. Class Practice 4. Independent Practice 5. Practicing our AIMS: Homework: M.10 Graphing

More information

Chapter 1: Force and Velocity

Chapter 1: Force and Velocity Chapter 1: Force and Velocity FM: 1.3.1 WARM-UP Students consider how diagrams use arrows and lines to represent force and velocity. (5 min) Signifying Changes in Motion Answer Here FM: 1.3.1 WARM-UP Students

More information

Instructional Unit: A. Approximate limits, derivatives, and definite integrals using numeric methods

Instructional Unit: A. Approximate limits, derivatives, and definite integrals using numeric methods Curriculum: AP Calculus AB-I Curricular Unit: Limits, Derivatives, and Integrals Instructional Unit: A. Approximate limits, derivatives, and definite integrals using numeric methods Description Section

More information

2. Two binary operations (addition, denoted + and multiplication, denoted

2. Two binary operations (addition, denoted + and multiplication, denoted Chapter 2 The Structure of R The purpose of this chapter is to explain to the reader why the set of real numbers is so special. By the end of this chapter, the reader should understand the difference between

More information

During the second part of the trip then we travelled at 50 km/hr for hour so x = v avg t =

During the second part of the trip then we travelled at 50 km/hr for hour so x = v avg t = PH 2213 : Chapter 02 Homework Solutions Problem 2.6 : You are driving home from school steadily at 90 km/hr for 130 km. It then begins to rain and you slow to 50 km/hr. You arrive home after driving 3

More information

Graphing Motion (Part 1 Distance)

Graphing Motion (Part 1 Distance) Unit Graphing Motion (Part 1 Distance) Directions: Work in your group (2 or 3 people) on the following activity. Choose ONE group member to be the subject (the person who walks to/from motion detector).

More information

Essential Question: What is a complex number, and how can you add, subtract, and multiply complex numbers? Explore Exploring Operations Involving

Essential Question: What is a complex number, and how can you add, subtract, and multiply complex numbers? Explore Exploring Operations Involving Locker LESSON 3. Complex Numbers Name Class Date 3. Complex Numbers Common Core Math Standards The student is expected to: N-CN. Use the relation i = 1 and the commutative, associative, and distributive

More information

Lesson 4: Fast Earnie Lives Newton s Laws And So Do You!

Lesson 4: Fast Earnie Lives Newton s Laws And So Do You! Page 1 Lesson 4: Fast Earnie Lives Newton s Laws And So Do You! Physical Science: Forces and Motion Fast Earnie, and racecar drivers in general, have a need for speed, but without Newton s Laws none of

More information

Syllabus for BC Calculus

Syllabus for BC Calculus Syllabus for BC Calculus Course Overview My students enter BC Calculus form an Honors Precalculus course which is extremely rigorous and we have 90 minutes per day for 180 days, so our calculus course

More information

Molecules and Matter. Grade Level: 4 6

Molecules and Matter. Grade Level: 4 6 Molecules and Matter Grade Level: 4 6 Teacher Guidelines pages 1 2 Instructional Pages pages 3 4 Partner Project page 5 Crossword Puzzle page 6 Answer Key page 7 Classroom Procedure 1. Without introduction,

More information

Understanding and Using Variables

Understanding and Using Variables Algebra is a powerful tool for understanding the world. You can represent ideas and relationships using symbols, tables and graphs. In this section you will learn about Understanding and Using Variables

More information

Solving Systems of Linear Equations Graphing

Solving Systems of Linear Equations Graphing Solving Systems of Linear Equations Graphing Outcome (lesson objective) Students will accurately solve a system of equations by graphing. Student/Class Goal Students thinking about continuing their academic

More information

Mathematics E-15 Seminar on Limits Suggested Lesson Topics

Mathematics E-15 Seminar on Limits Suggested Lesson Topics Mathematics E-15 Seminar on Limits Suggested Lesson Topics Lesson Presentation Guidelines Each lesson should last approximately 45 minutes. This will leave us with some time at the end for constructive

More information

Grade 5 Number Strings

Grade 5 Number Strings Grade 5 Purpose: To use number relationships to solve problems and to learn number facts To use known facts and relationships to determine unknown facts To develop and test conjectures To make generalizations

More information

Advanced Placement Calculus I - What Your Child Will Learn

Advanced Placement Calculus I - What Your Child Will Learn Advanced Placement Calculus I - What Your Child Will Learn I. Functions, Graphs, and Limits A. Analysis of graphs With the aid of technology, graphs of functions are often easy to produce. The emphasis

More information

PHYSICS LAB: CONSTANT MOTION

PHYSICS LAB: CONSTANT MOTION PHYSICS LAB: CONSTANT MOTION Introduction Experimentation is fundamental to physics (and all science, for that matter) because it allows us to prove or disprove our hypotheses about how the physical world

More information

DISCOVERING CALCULUS WITH THE TI- NSPIRE CAS CALCULATOR

DISCOVERING CALCULUS WITH THE TI- NSPIRE CAS CALCULATOR John Carroll University Carroll Collected Masters Essays Theses, Essays, and Senior Honors Projects Summer 017 DISCOVERING CALCULUS WITH THE TI- NSPIRE CAS CALCULATOR Meghan A. Nielsen John Carroll University,

More information

and Transitional Comprehensive Curriculum. Algebra II Unit 4: Radicals and the Complex Number System

and Transitional Comprehensive Curriculum. Algebra II Unit 4: Radicals and the Complex Number System 01-1 and 01-14 Transitional Comprehensive Curriculum Algebra II Unit 4: Radicals and the Complex Number System Time Frame: Approximately three weeks Unit Description This unit expands student understanding

More information

2.2 Average vs. Instantaneous Description

2.2 Average vs. Instantaneous Description 2 KINEMATICS 2.2 Average vs. Instantaneous Description Name: 2.2 Average vs. Instantaneous Description 2.2.1 Average vs. Instantaneous Velocity In the previous activity, you figured out that you can calculate

More information

Solutions to review problems MAT 125, Fall 2004

Solutions to review problems MAT 125, Fall 2004 Solutions to review problems MAT 125, Fall 200 1. For each of the following functions, find the absolute maimum and minimum values for f() in the given intervals. Also state the value where they occur.

More information

Lesson Plan by: Stephanie Miller

Lesson Plan by: Stephanie Miller Lesson: Pythagorean Theorem and Distance Formula Length: 45 minutes Grade: Geometry Academic Standards: MA.G.1.1 2000 Find the lengths and midpoints of line segments in one- or two-dimensional coordinate

More information

Lesson 3 Acceleration

Lesson 3 Acceleration Lesson 3 Acceleration Student Labs and Activities Page Launch Lab 45 Content Vocabulary 46 Lesson Outline 47 MiniLab 49 Content Practice A 50 Content Practice B 51 Language Arts Support 52 Math Skills

More information

TIphysics.com. Physics. Bell Ringer: Determining the Relationship Between Displacement, Velocity, and Acceleration ID: 13308

TIphysics.com. Physics. Bell Ringer: Determining the Relationship Between Displacement, Velocity, and Acceleration ID: 13308 Bell Ringer: Determining the Relationship Between Displacement, Velocity, and Acceleration ID: 13308 Time required 15 minutes Topic: Kinematics Construct and interpret graphs of displacement, velocity,

More information

Welcome Accelerated Algebra 2! Updates: U8Q1 will be 4/24 Unit Circle Quiz will be 4/24 U8T will be 5/1

Welcome Accelerated Algebra 2! Updates: U8Q1 will be 4/24 Unit Circle Quiz will be 4/24 U8T will be 5/1 Welcome Accelerated Algebra 2! Tear-Out: Pg. 487-492 (Class notes) Updates: U8Q1 will be 4/24 Unit Circle Quiz will be 4/24 U8T will be 5/1 Agenda (1) Warm-Up (2) Review U8H1 (3) Finish Trig Review (4)

More information

Radnor High School Course Syllabus Advanced Placement Calculus BC 0460

Radnor High School Course Syllabus Advanced Placement Calculus BC 0460 Radnor High School Modified April 24, 2012 Course Syllabus Advanced Placement Calculus BC 0460 Credits: 1 Grades: 11, 12 Weighted: Yes Prerequisite: Recommended by Department Length: Year Format: Meets

More information

Gravity: How fast do objects fall? Teacher Advanced Version (Grade Level: 8 12)

Gravity: How fast do objects fall? Teacher Advanced Version (Grade Level: 8 12) Gravity: How fast do objects fall? Teacher Advanced Version (Grade Level: 8 12) *** Experiment with Audacity and Excel to be sure you know how to do what s needed for the lab*** Kinematics is the study

More information

Objective: Construct a paper clock by partitioning a circle and tell time to the hour. (10 minutes)

Objective: Construct a paper clock by partitioning a circle and tell time to the hour. (10 minutes) Lesson 10 1 Lesson 10 Objective: Construct a paper clock by partitioning a circle and tell time to the Suggested Lesson Structure Fluency Practice Application Problem Concept Development Student Debrief

More information

Conservation of Momentum: Marble Collisions Advanced Version

Conservation of Momentum: Marble Collisions Advanced Version Conservation of Momentum: Marble Collisions Advanced Version In this lab you will roll a marble down a ramp, and at the bottom of the ramp the marble will collide with another marble. You will measure

More information

From rest, a rock is dropped and falls for 3.0 seconds before hitting the ground. What is its velocity right before it hits the ground?

From rest, a rock is dropped and falls for 3.0 seconds before hitting the ground. What is its velocity right before it hits the ground? Physics Lecture #6: Falling Objects A falling object accelerates as it falls. A bowling ball dropped on your foot will hurt more if it is dropped from a greater height since it has more time to increase

More information

2/18/2019. Position-versus-Time Graphs. Below is a motion diagram, made at 1 frame per minute, of a student walking to school.

2/18/2019. Position-versus-Time Graphs. Below is a motion diagram, made at 1 frame per minute, of a student walking to school. Position-versus-Time Graphs Below is a motion diagram, made at 1 frame per minute, of a student walking to school. A motion diagram is one way to represent the student s motion. Another way is to make

More information

We can make a motion diagram of the student walking across the room:

We can make a motion diagram of the student walking across the room: Lecture 2 / Day 1 Motion and Kinematics Intro. Motion Diagrams Vector Subtraction Velocity We ve gone through the basics of measurement and using vectors now we re ready to get into Kinematics, which is

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 2-3 A.P. Physics B Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters - 3 * In studying for your test, make sure to study this review sheet along with your quizzes and homework assignments.

More information

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION. AP Physics Section 2-1 Reference Frames and Displacement

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION. AP Physics Section 2-1 Reference Frames and Displacement DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION AP Physics Section 2-1 Reference Frames and Displacement Model the velocity of the ball from the time it leaves my hand till the time it hits the ground?

More information