Preliminary Reports on Spacecraft Charging Property Measurement of Degraded Space Material

Size: px
Start display at page:

Download "Preliminary Reports on Spacecraft Charging Property Measurement of Degraded Space Material"

Transcription

1 Preliminary Reports on Spacecraft Charging Property Measurement of Degraded Space Material Mengu Cho (1), Kazuhiro Toyoda (1), Minoru Iwata (1), Hirokazu Masui (1), Teppei Okumura (1), Md. Arifur R. Khan (1) and Noor Danish Ahrar Mundari (1). (1) Kyushu Institute of Technology, Kitakyushu , Japan, , ABSTRACT Thorough investigation of spacecraft charging at an early stage of satellite design is desirable to prevent the fatal anomaly in orbit. Charging properties, such as secondary electron yield, photo-electron emission yield, conductivity of spacecraft surface materials are the important parameters to predict charging in orbit via a computer simulation. The material property database determines the accuracy of the charging simulation. As every material exposed to space environment changes its properties, the properties after environment exposure is as import as the properties of the virgin state. The present paper introduces a project carried out at Kyushu Institute of Technology to study how and why the charging property of surface materials exposed to simulated space environment changes. Facilities to simulate material exposure to atomic oxygen, UV and thermal cycling along with a facility to measure the secondary electron yield, photo-electron yield and conductivity have been built. This paper provides an update of the ongoing project along with introduction of the research facility and preliminary results. 1. Introduction Spacecraft charging is a serious issue for safety of spacecraft operation. Electrostatic charging caused by charging of spacecraft insulator may lead to fatal anomaly of a satellite. Thorough investigation of spacecraft charging at an early stage of satellite design is desirable. Spacecraft charging analysis tool, such as MUSCAT (1), SPIS (2), NASCAP-2K (3) can give the satellite designers insight into the risk of charging in orbit. One of the most important parameters in the charging simulation is charging properties, such as secondary electron yield, photo-electron emission yield, conductivity of spacecraft surface materials. Currently campaigns to measure the charging properties of various materials are underway in several countries to improve the material database of each charging simulation code. One of the critical issues in the material property database is the fact that every material exposed to space changes its properties. Although this fact has been recognized for long time, preparing the material samples for the measurement is not an easy task and there was little effort to measure the charging property of degraded space materials. maximum differential voltage V (V) coverglass bulk conductivity (1/ m) Fig.1: Maximum differential voltage calculated by NASCAP/GEO for various values of coverglass bulk conductivity under the worst GEO plasma condition. (Ref.4) Figure 1 shows an example of how the charging property affects the charging simulation result. In Ref.4 charging of a GEO telecommunication satellite was calculated using NASCAP/GEO. In order to study the dependence of the results on the material properties, we changed the coverglass bulk conductivity as shown in Fig.1 and checked how the maximum difference voltage on satellite surface, which is usually at the outermost coverglass of the solar paddle, changed. The result

2 changed drastically as the bulk conductivity changed by three orders of magnitude from to (1/ m). Therefore, even if the charging simulation predicts very little charging condition at BOL (beginning of life) condition because of high conductivity, serious charging may occur at EOL (end of life) due to increased conductivity due to environmental exposure. Of course, the opposite situation may occur if the conductivity increases after the environmental exposure. Kyushu Institute of Technology launched a project to study how and why the charging property of surface materials exposed to simulated space environment changes. KIT has built facilities to simulate material exposure to atomic oxygen, UV and thermal cycling along with a facility to measure the secondary electron yield and conductivity. In the present paper, we will introduce each facility and preliminary results. Figure 2 Schematic picture of AO facility. 2. Atomic oxygen facility Figure 2 and 3 shows a schematic picture and photograph of AO facility. It is based on so-called PSI method (5). A pulsed CO2 laser, maximum of 5J, is shot toward the nozzle. At the same time, the pulse valve opens introducing oxygen molecule gas into the nozzle. The oxygen molecules are dissociated and accelerated via nozzle expansion in the same principle of pulse laser propulsion. Production of atomic oxygen was confirmed by measuring optical emission spectrum of the gas flow where a strong emission at 777nm was observed. The quadrupole mass spectrum analyzer that are separated by 1.9m from the nozzle detects the incoming AO pulse. From the time difference between the laser shot and the arrival time of oxygen atoms, we can derive the velocity. Figure 4 shows the velocity distribution observed at the mass-spectrometer. The velocity is peaked at 8km/s simulating the AO flow in LEO. To irradiate the sample selectively by the 8km/s oxygen atoms, we will install a chopper system inside the chamber. Currently, we are characterizing the AO fluence from the mass loss of Polyimide placed on top of QCM inside the chamber. Along with the witness sample, we will expose samples to the AO flow and start making the degraded sample. Figure 3 Photograph of AO facility. Figure 4. Velocity distribution of AO pulse 3. UV exposure facility Figure 5 shows a photograph of UV exposure facility.

3 The vacuum chamber is a cylinder of 40cm diameter. It can achieve a background pressure as low as 5x10-4 Pa. The chamber is equipped with a water-cooled Deutrium lamp that can emit UV from 115 to 400nm. The UV intensity distribution at the sample holder is shown in Fig.6. The intensity is given in the equivalent sun intensity. The maximum intensity is 79 times and the average over the irradiation area is 40 times the sun intensity. To avoid contamination on the MgF2 window in front of the lamp, a cryogenic plate surrounds the sample area. Figure 7 shows a photograph of the thermal cycling facility. It is made of two vacuum chambers connected by a gate valve with total length of 1,000mm approximately. A turbo-molecular pump can achieve the background pressure as low as 5x10-5 Pa. Each chamber has an internal diameter of 300mm. In the photograph, the left side is the high temperature chamber. It can heat a sample inside to a temperature as high as 500 o C using IR lamps. The right side is the low temperature chamber. It can cool a sample inside to a temperature as low as -40 o C using a cold plate or -150 o C using a shroud filled by liquid nitrogen. There is a rail mechanism between the two chambers that can move the sample back and forth. In this way, we can give a heat shock to the sample by suddenly changing the ambient temperature. Figure 5 Photograph of UV exposure facility Figure 7: Photograph of thermal cycling capability 4. Secondary electron coefficient measurement Figure 6 Distribution of UV intensity at the sample location Figure 8: Photograph of secondary electron measurement system 4. Thermal cycling facility

4 Figure 9: Schematic picture of sample holder to measure the secondary and back-scatter electrons. = (0V ) + I sample + I stage (0V ) The denominator represents the total incident current. Some of the terms are negative and some are positive. By taking the sum of all the terms, we can deduce the amount of electrons entering into the hole. When we bias the grid to a more negative, typically -50V, than the sample surface potential, only the back-scattered electrons can reach the grid or the collector. The secondary electrons, whose energy is typically of the order of ev, are all reflected back to the sample surface by the grid. The back-scattered electron current yield is given by ( 50V ) = + I sample + I stage ( 50V ) The secondary electron emission yield is given by subtracting the back-scattered electrons from the total emission, as =. Figure 10 shows an example of measurement. We have measured of Ti. Our measurement agrees fairly well with the data taken from Ref.6. The electron beam is stable up to 300eV. We will have to bias the sample to a negative value to measure the secondary electron emission yield at lower energy. Figure 10: Example of secondary electron emission yield measure. Reference values (6) are also shown. Figure 8 shows a photograph of the secondary electron measurement facility. We have converted an Auger electron microscope to the secondary electron measurement device. The microscope already has most of the necessary functions to measure the secondary electrons, leaving only a handful of modification items. Figure 9 shows a schematic picture of sample holder we made to measure the total secondary electron emission yield. This is based on Ref.6. Primary electrons enter from the top to the bottom through holes in the center of the dome-shaped collector and grid. When the grid has the same potential as the sample surface, all the electrons emitted from the sample can reach either the grid or the collector. These electrons are the combination of secondary and back-scattered electrons. We define the total electron emission yield by, 5. Conductivity measurement Figure 11 shows a schematic picture of test set-up used to measure the conductivity. The measurement is based on so-called the charge storage method (7). A dielectric sample sandwiched by two cupper plates is placed inside a vacuum chamber. The top cupper plate has a square opening to expose the dielectric sample to the electron beam coming from the ceiling of the chamber. We irradiate the sample by the energetic electrons to charge the sample surface to a negative potential of the order of kv. Once it is charged, we shut-off the electron beam. Then, the Trek surface potential probe as shown in Fig.11 or the photograph in Fig.12 routinely measures the sample surface. The probe is mounted on a X-Y stage and scans the potential distribution over the sample surface. Because the Trek probe is placed inside the vacuum, it will make an ideal high-impedance voltage probe. To avoid the zero-shift, a reference plate made of

5 a grounded cupper plate is also placed inside the chamber. The charge stored on the sample surface leaks either to the bottom holder via the bulk conductivity or to the top holder via the surface conductivity. Figure 13 shows the decay of surface potential measured at different parts on the sample surface. We measure the potential at every 10mm. We carry out a numerical simulation solving a two-dimensional diffusion equation to find the best combination of the surface and bulk conductivities that match the measurement result most. For the case shown in Fig.13, the surface conductivity is negligible. Therefore, we can deduce the bulk conductivity from a simple exponential law. Figure 13: Example of surface potential decay due to leakage current of the dielectric. Figure 11: Schematic picture of experiment set-up to measure the conductivity Figure 12: Photograph of sample layout inside the chamber 6. Conclusion In order to improve the accuracy of spacecraft charging simulation, a new project has started to measure the charging properties of degraded material has started at KIT. Facilities to simulate material degradation due to atomic oxygen, UV and thermal cycling have been built and some are already operational. We have acquired capabilities to measure the secondary electron emission yield and the conductivities. Currently, we are modifying the Auger electron microscope to add the capability to measure the photoelectron emission yield, which complete the phase of facility construction. Soon, we will start a systematic campaign to measure the charging properties of the degraded material. Our purpose is not only to make an extensive database of material properties but also to understand the mechanism of how and why the charging properties change after the environmental exposure. That kind of basic research will lead to development of new spacecraft material with higher stability in the material properties over the long period of environmental exposure in orbit. Acknowledgement Authors would like to thank past and present KIT students M. Chiga, D. Kumagai, N. Tomozoe, K. Tsujikawa, A. Ueda, D. Irie, T. Kouno, M. Sakamoto, H.

6 Igawa for their help in development of research facilities. Authors would like to thank also K. Nitta of JAXA for her help in obtaining the test samples. Reference 1. Muranaka, T., Hosoda, S., Kim, J., Hatta, S., Ikeda, K., Hamanaga, T., Cho, M., Usui, H., Ueda, O. H., Koga, K., Goka, T.,: Development of Multi-Utility Spacecraft Charging Analysis Tool (MUSCAT), IEEE Transaction on Plasma Science, Vol.36, No.5, October, , Roussel, J-F., Rogier, F., Dufour, G., Mateo-Velez, J-C., Forest, J., Hilgers, A., Rodgers, D., Girard, L., Payan, D.,: SPIS Open-Source Code: Methods, Capabilities, Achievements, and Prospects, IEEE Transaction on Plasma Science, Vol.36, No.5, October, , M. J. Mandell, V.A. Davis, D. L. Cooke and A.T. Wheelock, "NASCAP-2k Spacecraft Charging Code Overview", 9th Spacecraft Charging Technology Conference, Tsukuba, Japan, April, M. Cho, S. Kawakita, M. Nakamura, M. Takahashi, T. Sato, Y. Nozaki, "Number of arcs estimated on solar array of a geostationary satellite", Journal of Spacecraft and Rockets, vol.42 no.4, pp , G. E. Caledonia, B. D., Green, H. R, Krech, "A high flux source of energetic oxygen atoms for material degradation studies", AIAA journal, Vol 25, NO.1, Jan C.D. Thomson, V. Zavyalov, J.R. Dennison, "Instrumentation for Studies of Electron Emission and Charging From Insulators", 8th Spacecraft Charging Technology Conference, Huntsville, USA, J.R. Dennison, P. Swaminathan, R. Jost, J. Brunson, N. W. Green, A. R. Frederickson, "Proposed Modifications to Engineering Design Guidelines Related to Resistivity Measurements and Spacecraft Charging", 9th Spacecraft Charging Technology Conference, Tsukuba, Japan, 2005

Verification of Analysis Tool of Thruster Plume Interactions for Spacecraft

Verification of Analysis Tool of Thruster Plume Interactions for Spacecraft Verification of Analysis Tool of Thruster Plume Interactions for Spacecraft IEPC-2007-293 Presented at the 30 th International Electric Propulsion Conference, Florence, Italy Satoshi Hosoda 1 Japan Aerospace

More information

Development of Numerical Plasma Plume Analysis Module for Spacecraft Environment Simulator

Development of Numerical Plasma Plume Analysis Module for Spacecraft Environment Simulator Development of Numerical Plasma Plume Analysis Module for Spacecraft Environment Simulator IEPC-2007-197 Presented at the 30 th International Electric Propulsion Conference, Florence, Italy Takanobu Muranaka

More information

On-orbit Potential Measurement of H-II Transfer Vehicle

On-orbit Potential Measurement of H-II Transfer Vehicle On-orbit Potential Measurement of H-II Transfer Vehicle Teppei Okumura, Daisuke Tsujita, Yuki Kobayashi Kiyokazu Koga, Masato Takahashi, Hiroaki Kusawake, Toru Kasai, Hirohiko Uematsu Japan Aerospace Exploration

More information

ISSUES CONCERNING THE INTERNATIONAL STANDARD OF ESD GROUND TEST FOR GEO SATELLITE SOLAR ARRAY

ISSUES CONCERNING THE INTERNATIONAL STANDARD OF ESD GROUND TEST FOR GEO SATELLITE SOLAR ARRAY ISSUES CONCERNING THE INTERNATIONAL STANDARD OF ESD GROUND TEST FOR GEO SATELLITE SOLAR ARRAY Mengu Cho Kyushu Institute of Technology 1-1 Sensui Kitakyushu, Japan 804-855 Phone: +81-93-884-3228 Fax: +81-93-884-3228

More information

Status of ISO Standardization of ESD Test of Satellite Solar Array

Status of ISO Standardization of ESD Test of Satellite Solar Array Status of ISO Standardization of ESD Test of Satellite Solar Array Mengu Cho Laboratory of Spacecraft Environment Interaction Kyushu Institute of Technology Kitakyushu 804-8550, Japan ABSTRACT Frequent

More information

Measurement of Conductivity and Charge Storage in Insulators Related to SpacecraftCharging

Measurement of Conductivity and Charge Storage in Insulators Related to SpacecraftCharging Utah State University DigitalCommons@USU All Physics Faculty Publications Physics 2003 Measurement of Conductivity and Charge Storage in Insulators Related to SpacecraftCharging A. R. Fredrickson JR Dennison

More information

CHARGING ANALYSIS OF ENGINEERING TEST SATELLITE VIII (ETS-VIII) OF JAPAN

CHARGING ANALYSIS OF ENGINEERING TEST SATELLITE VIII (ETS-VIII) OF JAPAN CHARGING ANALYSIS OF ENGINEERING TEST SATELLITE VIII (ETS-VIII) OF JAPAN Haruhisa Fujii Mitsubishi Electric Corporation, Advanced Technology R&D Center 8-1-1, Tsukaguchi-Honmachi, Amagasaki, Hyogo, 661-8661

More information

HORYU-4: Miniaturised Laboratory for In-Orbit High Voltage Technology Demonstration Tatsuo Shimizu, HORYU-4 Project, Mengu Cho Kyushu Institute of Tec

HORYU-4: Miniaturised Laboratory for In-Orbit High Voltage Technology Demonstration Tatsuo Shimizu, HORYU-4 Project, Mengu Cho Kyushu Institute of Tec HORYU-4: Miniaturised Laboratory for In-Orbit High Voltage Technology Demonstration Tatsuo Shimizu, HORYU-4 Project, Mengu Cho Kyushu Institute of Technology, 1-1 Sensui, Tobata, Kitakyushu, Fukuoka, Japan

More information

SECONDARY ELECTRON EMISSION OF CERAMICS USED IN THE CHANNEL OF SPT

SECONDARY ELECTRON EMISSION OF CERAMICS USED IN THE CHANNEL OF SPT SECONDARY ELECTRON EMISSION OF CERAMICS USED IN THE CHANNEL OF SPT V. Viel-Inguimbert, ONERA/DESP, Avenue Edouard Belin, 3 55 Toulouse Cédex, FRANCE INTRODUCTION In the frame of the development of a plasma

More information

EFFECT OF ATOMIC OXYGEN EXPOSURE ON SPACECRAFT CHARGING PROPERTIES

EFFECT OF ATOMIC OXYGEN EXPOSURE ON SPACECRAFT CHARGING PROPERTIES DISSERTATION DOCTOR OF PHILOSOPHY EFFECT OF ATOMIC OXYGEN EXPOSURE ON SPACECRAFT CHARGING PROPERTIES NOOR DANISH AHRAR MUNDARI STUDENT NO.: 07586406 DEPARTMENT OF ELECTRICAL ENGINEERING KYUSHU INSTITUTE

More information

Classical Resistivity Method in Atmosphere and Vacuum

Classical Resistivity Method in Atmosphere and Vacuum Utah State University DigitalCommons@USU Senior Theses and Projects Materials Physics 2-21-2005 Classical Resistivity Method in Atmosphere and Vacuum Shigeyuki Takahashi Follow this and additional works

More information

The division of energy sources and the working substance in electric propulsioncan determines the range of applicability of electro jet propulsion sys

The division of energy sources and the working substance in electric propulsioncan determines the range of applicability of electro jet propulsion sys Vacuum Arc thruster development for Horyu-4 satellite KaterynaAheieva, Shingo Fuchikami, Hiroshi Fukuda, Tatsuo Shimizu, Kazuhiro Toyoda, Mengu Cho Kyushu Institute of Technology1 N589502a@mail.kyutech.jp

More information

ETS-VIII Solar PDL Plasma Interaction Problem Approach

ETS-VIII Solar PDL Plasma Interaction Problem Approach ETS-VIII Solar PDL Plasma Interaction Problem Approach Takahashi,M.*(Japan); Nishimoto,H.*(Japan); Kawakita,S.*(Japan);Cho,M.**(Japan); Nozaki,Y***(Japan); Fujii,H****(Japan); Murakami,Y.****(Japan); Ozaki,T****(Japan);

More information

INTERACTION BETWEEN HIGH VOLTAGE SOLAR ARRAY AND ION THRUSTER PLASMA

INTERACTION BETWEEN HIGH VOLTAGE SOLAR ARRAY AND ION THRUSTER PLASMA INTERACTION BETWEEN HIGH VOLTAGE SOLAR ARRAY AND ION THRUSTER PLASMA Mengu Cho, Akiyo Saionji, Kazuhiro Toyoda Kyushu Institute of Technology Yukishige Nozaki NEC Toshiba Space Systems, Ltd. Tetsuo Sato

More information

2-2-3 Prediction of the Plasma Environment in the Geostationary Orbit Using the Magnetosphere Simulation

2-2-3 Prediction of the Plasma Environment in the Geostationary Orbit Using the Magnetosphere Simulation 2-2-3 Prediction of the Plasma Environment in the Geostationary Orbit Using the Magnetosphere Simulation The geostationary orbit satellites are used for communication, broadcasting, meteorological observation,

More information

Development Statue of Atomic Oxygen Simulator for Air Breathing Ion Engine

Development Statue of Atomic Oxygen Simulator for Air Breathing Ion Engine Development Statue of Atomic Oxygen Simulator for Air Breathing Ion Engine IEPC-2011-294 Presented at the 32nd International Electric Propulsion Conference, Wiesbaden Germany Yasuyoshi Hisamoto 1 Graduate

More information

Experimental Studies of Ion Beam Neutralization: Preliminary Results

Experimental Studies of Ion Beam Neutralization: Preliminary Results Experimental Studies of Ion Beam Neutralization: Preliminary Results N. Ding, J. Polansky, R. Downey and J. Wang Department of Astronautical Engineering University of Southern California Los Angeles, CA

More information

Spacecraft Environment Interaction Engineering

Spacecraft Environment Interaction Engineering Spacecraft Environment Interaction Engineering Spacecraft Charging Analysis Mengu Cho Laboratory of Spacecraft Environment Interaction Engineering Kyushu Institute of Technology cho@ele.kyutech.ac.jp http://laseine.ele.kyutech.ac.jp

More information

ESD RELATED R&D STUDIES AT CNES AND ONERA

ESD RELATED R&D STUDIES AT CNES AND ONERA ESD RELATED R&D STUDIES AT CNES AND ONERA Denis PAYAN (1), Virginie INGUIMBERT (2), Jean-Charles MATEO-VELEZ (2), Daniel SARRAIL (2), Thierry PAULMIER (2), Jean-François ROUSSEL (2), Bernard DIRASSEN (2),

More information

Project report. Spacecraft Charging and Mitigation Methods. By Muhammad Azam. Abstract

Project report. Spacecraft Charging and Mitigation Methods. By Muhammad Azam. Abstract Umeå University October 7, 2009 Department of physics Space physics 7.5 ECTS. Project report Spacecraft Charging and Mitigation Methods By Muhammad Azam Muhammad.azam1@yahoo.com Supervisor Kjell Rönnmark

More information

Surface Charging. J.C. Matéo-Vélez, A. Sicard, J.F. Roussel

Surface Charging. J.C. Matéo-Vélez, A. Sicard, J.F. Roussel Surface Charging J.C. Matéo-Vélez, A. Sicard, J.F. Roussel The research leading to these results funded in part by the European Union Seventh Framework Programme (FP7) under grant agreement No 606716 SPACESTORM

More information

MAE 5595: Space Environments and Spacecraft Interactions. Lesson 4: Introduction

MAE 5595: Space Environments and Spacecraft Interactions. Lesson 4: Introduction MAE 5595: Space Environments and Spacecraft Interactions Lesson 4: Introduction Ambient Environment Neutral Environment Low pressure environment (150km ~ 3x10-9 atm) Ambient neutral gas (LEO atomic oxygen)

More information

PRACTICE NO. PD-AP-1309 PREFERRED PAGE 1 OF 5 RELIABILITY PRACTICES ANALYSIS OF RADIATED EMI FROM ESD EVENTS CAUSED BY SPACE CHARGING

PRACTICE NO. PD-AP-1309 PREFERRED PAGE 1 OF 5 RELIABILITY PRACTICES ANALYSIS OF RADIATED EMI FROM ESD EVENTS CAUSED BY SPACE CHARGING PREFERRED PAGE 1 OF 5 RELIABILITY PRACTICES ANALYSIS OF RADIATED EMI FROM ESD EVENTS Practice: Modeling is utilized for the analysis of conducted and radiated electromagnetic interference (EMI) caused

More information

Development of an Alternating Electric Field Accelerator for Laser-Ablation Plasma Acceleration

Development of an Alternating Electric Field Accelerator for Laser-Ablation Plasma Acceleration Development of an Alternating Electric Field Accelerator for Laser-Ablation Plasma Acceleration IEPC-2015-91125 Presented at Joint Conference of 30th International Symposium on Space Technology and Science

More information

Study of Distributed Ion-Pumps in CESR 1

Study of Distributed Ion-Pumps in CESR 1 Study of Distributed Ion-Pumps in CESR 1 Yulin Li, Roberto Kersevan, Nariman Mistry Laboratory of Nuclear Studies, Cornell University Ithaca, NY 153-001 Abstract It is desirable to reduce anode voltage

More information

Measurement of Charging and Discharging of High Resistivity Materials Spacecraft Materials by Electron Beams

Measurement of Charging and Discharging of High Resistivity Materials Spacecraft Materials by Electron Beams Utah State University DigitalCommons@USU Conference Proceedings Materials Physics 2009 Measurement of Charging and Discharging of High Resistivity Materials Spacecraft Materials by Electron Beams Ryan

More information

Characterization of the operation of RITs with iodine

Characterization of the operation of RITs with iodine Characterization of the operation of RITs with iodine IEPC-2017-368 Presented at the 35th International Electric Propulsion Conference Georgia Institute of Technology Atlanta, Georgia USA Waldemar Gärtner

More information

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7 Advanced Lab Course X-Ray Photoelectron Spectroscopy M210 As of: 2015-04-01 Aim: Chemical analysis of surfaces. Content 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT 3 3.1 Qualitative analysis 6 3.2 Chemical

More information

Influence of Electrode Configuration of a Liquid Propellant PPT on its Performance

Influence of Electrode Configuration of a Liquid Propellant PPT on its Performance Influence of Electrode Configuration of a Liquid Propellant PPT on its Performance IEPC-- /ISTS--b- Presented at Joint Conference of th International Symposium on Space Technology and Science th International

More information

Spacecraft Environment Interaction Engineering

Spacecraft Environment Interaction Engineering Spacecraft Environment Interaction Engineering Electrodynamic Tether Lunar charging Future issues Mengu Cho Laboratory of Spacecraft Environment Interaction Engineering Kyushu Institute of Technology cho@ele.kyutech.ac.jp

More information

PHOTOELECTRON SPECTROSCOPY IN AIR (PESA)

PHOTOELECTRON SPECTROSCOPY IN AIR (PESA) PHOTOELECTRON SPECTROSCOPY IN AIR (PESA) LEADERS IN GAS DETECTION Since 1977 Model AC-3 Features: Atmospheric pressure operation (unique in the world) Estimate work function, ionization potential, density

More information

SOLAR FURNACE. By Heiko Ritter JOURNEY TO THE INNER

SOLAR FURNACE. By Heiko Ritter JOURNEY TO THE INNER SOLAR FURNACE 88 Seite 1 By Heiko Ritter JOURNEY TO THE INNER THERMAL TESTS FOR Seite 2 SOLAR SYSTEM B E P I C O L O M B O T he European Space Agency, ESA, is currently developing a mission to the planet

More information

Ma5: Auger- and Electron Energy Loss Spectroscopy

Ma5: Auger- and Electron Energy Loss Spectroscopy Ma5: Auger- and Electron Energy Loss Spectroscopy 1 Introduction Electron spectroscopies, namely Auger electron- and electron energy loss spectroscopy are utilized to determine the KLL spectrum and the

More information

Magnetic fields applied to laser-generated plasma to enhance the ion yield acceleration

Magnetic fields applied to laser-generated plasma to enhance the ion yield acceleration Magnetic fields applied to laser-generated plasma to enhance the ion yield acceleration L. Torrisi, G. Costa, and G. Ceccio Dipartimento di Scienze Fisiche MIFT, Università di Messina, V.le F.S. D Alcontres

More information

Electrostatic measurements around a cryo-jet

Electrostatic measurements around a cryo-jet Electrostatic measurements around a cryo-jet KIT, 2018-04-19 Pre-normative REsearch for Safe use of Liquid HYdrogen 1 PRESLHY Kick-off Meeting, April 16-20, 2018, KIT, Karlsruhe, Germany Content I. Intro

More information

Electrostatic Breakdown Analysis

Electrostatic Breakdown Analysis Utah State University DigitalCommons@USU Senior Theses and Projects Materials Physics 11-18-2014 Electrostatic Breakdown Analysis Sam Hansen Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/mp_seniorthesesprojects

More information

Thrust Measurement of a CW Laser Thruster in Vacuum

Thrust Measurement of a CW Laser Thruster in Vacuum Thrust Measurement of a CW Laser Thruster in Vacuum Kazuhiro Toyoda Kyushu Institute of Technology Komurasaki Kimiya and Yoshihiro Arakawa University of Tokyo IEPC-01-207 This paper reports results of

More information

Appendix G. Solar Orbiter SPICE Thermal Design, Analysis and Testing. Samuel Tustain (RAL Space, United Kingdom)

Appendix G. Solar Orbiter SPICE Thermal Design, Analysis and Testing. Samuel Tustain (RAL Space, United Kingdom) 137 Appendix G Solar Orbiter SPICE Thermal Design, Analysis and Testing Samuel Tustain (RAL Space, United Kingdom) 138 Solar Orbiter SPICE Thermal Design, Analysis and Testing Abstract 1 The Spectral Imaging

More information

SOLAR ROCKET PROPULSION Ground and Space Technology Demonstration. Dr. Michael Holmes, AFRL/PRSS

SOLAR ROCKET PROPULSION Ground and Space Technology Demonstration. Dr. Michael Holmes, AFRL/PRSS SOLAR ROCKET PROPULSION Ground and Space Technology Demonstration Dr. Michael Holmes, AFRL/PRSS Solar Thermal Propulsion Concept Parabolic Mirror Sun Create thrust by collecting and focusing sunlight to

More information

Space Charge Distribution in Polymethyl Methacrylate and Quartz Glass Irradiated by Protons

Space Charge Distribution in Polymethyl Methacrylate and Quartz Glass Irradiated by Protons Sensors and Materials, Vol. 29, No. 8 (217) 1213 1222 MYU Tokyo 1213 S & M 1413 Space Charge Distribution in Polymethyl Methacrylate and Quartz Glass Irradiated by Protons Hiroaki Miyake * and Yasuhiro

More information

Photoelectric Effect Experiment

Photoelectric Effect Experiment Experiment 1 Purpose The photoelectric effect is a key experiment in modern physics. In this experiment light is used to excite electrons that (given sufficient energy) can escape from a material producing

More information

4. How can fragmentation be useful in identifying compounds? Permits identification of branching not observed in soft ionization.

4. How can fragmentation be useful in identifying compounds? Permits identification of branching not observed in soft ionization. Homework 9: Chapters 20-21 Assigned 12 April; Due 17 April 2006; Quiz on 19 April 2006 Chap. 20 (Molecular Mass Spectroscopy) Chap. 21 (Surface Analysis) 1. What are the types of ion sources in molecular

More information

11.1 Survey of Spacecraft Propulsion Systems

11.1 Survey of Spacecraft Propulsion Systems 11.1 Survey of Spacecraft Propulsion Systems 11.1 Survey of Spacecraft Propulsion Systems In the progressing Space Age, spacecrafts such as satellites and space probes are the key to space exploration,

More information

COMBINED EFFECT OF ATOMIC OXYGEN AND VACUUM ULTRAVIOLET FROM DEUTERIUM LAMP ON THE EROSION OF FLUORINATED POLYMER

COMBINED EFFECT OF ATOMIC OXYGEN AND VACUUM ULTRAVIOLET FROM DEUTERIUM LAMP ON THE EROSION OF FLUORINATED POLYMER COMBINED EFFECT OF ATOMIC OXYGEN AND VACUUM ULTRAVIOLET FROM DEUTERIUM LAMP ON THE EROSION OF FLUORINATED POLYMER Kumiko Yokota (1), Kazuhiro Kishida (2), Akio Okamoto (3), Junichiro Ishizawa (4), Masahito

More information

New 2d Far Field Beam Scanning Device at DLR s Electric Propulsion Test Facility

New 2d Far Field Beam Scanning Device at DLR s Electric Propulsion Test Facility New 2d Far Field Beam Scanning Device at DLR s Electric Propulsion Test Facility IEPC-2015-b/IEPC-388 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th

More information

Space Environments and Effects Section. Pioneer. Voyager. New Horizons. D.J. Rodgers ESA-ESTEC, The Netherlands

Space Environments and Effects Section. Pioneer. Voyager. New Horizons. D.J. Rodgers ESA-ESTEC, The Netherlands Pioneer Voyager New Horizons D.J. Rodgers ESA-ESTEC, The Netherlands 20 January EJSM/Laplace instruments workshop 1 Possible launch 2020 Spacecraft Jupiter Europa Orbiter Jupiter Ganymede Orbiter Ganymede

More information

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition Gaetano L Episcopo Scanning Electron Microscopy Focus Ion Beam and Pulsed Plasma Deposition Hystorical background Scientific discoveries 1897: J. Thomson discovers the electron. 1924: L. de Broglie propose

More information

PREFERRED RELIABILITY PRACTICES. Practice:

PREFERRED RELIABILITY PRACTICES. Practice: PREFERRED RELIABILITY PRACTICES Practice No. PD-ED-1239 Page 1 of 6 October 1995 SPACECRAFT THERMAL CONTROL COATINGS DESIGN AND APPLICATION Practice: Select and apply thermal coatings for control of spacecraft

More information

Photoemission Spectroscopy

Photoemission Spectroscopy FY13 Experimental Physics - Auger Electron Spectroscopy Photoemission Spectroscopy Supervisor: Per Morgen SDU, Institute of Physics Campusvej 55 DK - 5250 Odense S Ulrik Robenhagen,

More information

Laboratory Studies of Lunar Dust Transport

Laboratory Studies of Lunar Dust Transport Laboratory Studies of Lunar Dust Transport X. Wang, M. Horanyi and S. Robertson Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) 4.15.2010 Lunar plasma Environment Evidence of electrostatic

More information

Specification of electron radiation environment at GEO and MEO for surface charging estimates

Specification of electron radiation environment at GEO and MEO for surface charging estimates Specification of electron radiation environment at GEO and MEO for surface charging estimates Natalia Ganushkina (University of Michigan/FMI) Collaborators: S. Dubyagin (FMI), J.-C. Matéo Vélez, A. Sicard

More information

Results on a-c tubes subjected to synchrotron irradiation

Results on a-c tubes subjected to synchrotron irradiation Results on a-c tubes subjected to synchrotron irradiation V. Baglin, P. Chiggiato, P. Costa-Pinto, B. Henrist (CERN, Geneva) V. Anashin, D. Dorokhov. A. Semenov, A. Krasnov, D. Shwartz, A. Senchenko (,

More information

OVERVIEW OF ASTRIUM EROSION / CONTAMINATION MODELLING TOOL AND VALIDATION ON ONERA EXPERIMENTAL RESULTS

OVERVIEW OF ASTRIUM EROSION / CONTAMINATION MODELLING TOOL AND VALIDATION ON ONERA EXPERIMENTAL RESULTS OVERVIEW OF ASTRIUM EROSION / CONTAMINATION MODELLING TOOL AND VALIDATION ON ONERA EXPERIMENTAL RESULTS S. Provost, C. Theroude, P. Chèoux-Damas ASTRIUM SAS, 31 avenue des Cosmonautes, 31402 Toulouse Cedex

More information

BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN. Jose Sergio Almeida INPE (Brazil)

BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN. Jose Sergio Almeida INPE (Brazil) BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN Jose Sergio Almeida INPE (Brazil) 1 st International Academy of Astronautics Latin American Symposium on Small

More information

The Effects of Surface Modification on Spacecraft Charging Parameters

The Effects of Surface Modification on Spacecraft Charging Parameters Utah State University DigitalCommons@USU All Physics Faculty Publications Physics -- The Effects of Surface Modification on Spacecraft Charging Parameters Amberly JR Dennison Utah State University Follow

More information

- 581 IEPC the ion beam diagnostics in detail such as measurements of xenon with double charges, Introduction

- 581 IEPC the ion beam diagnostics in detail such as measurements of xenon with double charges, Introduction - 581 IEPC-95-89 300 HOURS ENDURANCE TEST OF MICROWAVE ION THRUSTER Shin Satori*, Hitoshi Kuninaka* and Kyoichi Kuriki** Institute of Space and Astronautical Science 3-1-1, Yoshinodai, Sagamihara, Kanagawa

More information

Importance of Accurate Computation of Secondary Electron Emission for ModelingSpacecraft Charging

Importance of Accurate Computation of Secondary Electron Emission for ModelingSpacecraft Charging Utah State University DigitalCommons@USU All Physics Faculty Publications Physics 1-1-2005 Importance of Accurate Computation of Secondary Electron Emission for ModelingSpacecraft Charging Sebastien Clerc

More information

The scanning microbeam PIXE analysis facility at NIRS

The scanning microbeam PIXE analysis facility at NIRS Nuclear Instruments and Methods in Physics Research B 210 (2003) 42 47 www.elsevier.com/locate/nimb The scanning microbeam PIXE analysis facility at NIRS Hitoshi Imaseki a, *, Masae Yukawa a, Frank Watt

More information

Scanning Electron Microscopy

Scanning Electron Microscopy Scanning Electron Microscopy Field emitting tip Grid 2kV 100kV Anode ZEISS SUPRA Variable Pressure FESEM Dr Heath Bagshaw CMA bagshawh@tcd.ie Why use an SEM? Fig 1. Examples of features resolvable using

More information

Electric Field Measurements in Atmospheric Pressure Electric Discharges

Electric Field Measurements in Atmospheric Pressure Electric Discharges 70 th Gaseous Electronics Conference Pittsburgh, PA, November 6-10, 2017 Electric Field Measurements in Atmospheric Pressure Electric Discharges M. Simeni Simeni, B.M. Goldberg, E. Baratte, C. Zhang, K.

More information

M2 TP. Low-Energy Electron Diffraction (LEED)

M2 TP. Low-Energy Electron Diffraction (LEED) M2 TP Low-Energy Electron Diffraction (LEED) Guide for report preparation I. Introduction: Elastic scattering or diffraction of electrons is the standard technique in surface science for obtaining structural

More information

Miniature Vacuum Arc Thruster with Controlled Cathode Feeding

Miniature Vacuum Arc Thruster with Controlled Cathode Feeding Miniature Vacuum Arc Thruster with Controlled Cathode Feeding Igal Kronhaus and Matteo Laterza Aerospace Plasma Laboratory, Faculty of Aerospace Engineering, Technion - Israel Institute of Technology,

More information

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source 3rd International EUVL Symposium NOVEMBER 1-4, 2004 Miyazaki, Japan Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi

More information

Cold Gas Thruster Qualification for FORMOSAT 5

Cold Gas Thruster Qualification for FORMOSAT 5 Cold Gas Thruster Qualification for FORMOSAT 5 By Hans-Peter HARMANN 1), Tammo ROMBACH 2) and Heiko DARTSCH 1) 1) AST Advanced Space Technologies GmbH, Stuhr, Germany 2) SpaceTech GmbH, Immenstaad, Germany

More information

The Q Machine. 60 cm 198 cm Oven. Plasma. 6 cm 30 cm. 50 cm. Axial. Probe. PUMP End Plate Magnet Coil. Filament Cathode. Radial. Hot Plate.

The Q Machine. 60 cm 198 cm Oven. Plasma. 6 cm 30 cm. 50 cm. Axial. Probe. PUMP End Plate Magnet Coil. Filament Cathode. Radial. Hot Plate. 1 The Q Machine 60 cm 198 cm Oven 50 cm Axial Probe Plasma 6 cm 30 cm PUMP End Plate Magnet Coil Radial Probe Hot Plate Filament Cathode 2 THE Q MACHINE 1. GENERAL CHARACTERISTICS OF A Q MACHINE A Q machine

More information

Low energy electrons in the inner Earth s magnetosphere

Low energy electrons in the inner Earth s magnetosphere Low energy electrons in the inner Earth s magnetosphere Natalia Ganushkina (1, 2) (1) University of Michigan, Ann Arbor MI, USA (2) Finnish Meteorological Institute, Helsinki, Finland The research leading

More information

Nascap-2k Spacecraft Surface Charging Code (EAR-controlled, freely available to US citizens and companies)

Nascap-2k Spacecraft Surface Charging Code (EAR-controlled, freely available to US citizens and companies) Nascap-2k Spacecraft Surface Charging Code (EAR-controlled, freely available to US citizens and companies) Myron J. Mandell and Victoria A. Davis, Leidos, Inc. Dale Ferguson, David L. Cooke and Adrian

More information

Spectroscopy for planetary upper atmospheres きょくたん

Spectroscopy for planetary upper atmospheres きょくたん Spectroscopy for planetary upper atmospheres きょくたん Spectrum of Venus atmosphere Spectrum of Jupiter and Io Figure 1. An EUV spectrum measured by Hisaki spacecraft. The spectrograph mixes spatial and spectral

More information

Performance Characteristics of Electrothermal Pulsed Plasma Thrusters with Insulator-Rod-Arranged Cavities and Teflon-Alternative Propellants

Performance Characteristics of Electrothermal Pulsed Plasma Thrusters with Insulator-Rod-Arranged Cavities and Teflon-Alternative Propellants Performance Characteristics of Electrothermal Pulsed Plasma Thrusters with Insulator-Rod-Arranged Cavities and Teflon-Alternative Propellants IEPC-2007-337 Presented at the 30 th International Electric

More information

Alta FT-150: The Thruster for LISA Pathfinder and LISA/NGO Missions

Alta FT-150: The Thruster for LISA Pathfinder and LISA/NGO Missions 9 th LISA Symposium, Paris ASP Conference Series, Vol. 467 G. Auger, P. Binétruy and E. Plagnol, eds. c 2012 Astronomical Society of the Pacific Alta FT-150: The Thruster for LISA Pathfinder and LISA/NGO

More information

Development of Microwave Engine

Development of Microwave Engine Development of Microwave Engine IEPC-01-224 Shin SATORI*, Hiroyuki OKAMOTO**, Ted Mitsuteru SUGIKI**, Yoshinori AOKI #, Atsushi NAGATA #, Yasumasa ITO** and Takayoshi KIZAKI # * Hokkaido Institute of Technology

More information

DISTRIBUTION LIST. Others original copies Name amount. Lens Research & Development 1x Uittenhout, J.M.M. 1x DOCUMENT CHANGE RECORD

DISTRIBUTION LIST. Others original copies Name amount. Lens Research & Development 1x Uittenhout, J.M.M. 1x DOCUMENT CHANGE RECORD 2 of 15 DISTRIBUTION LIST Others original copies Name amount Lens Research & Development 1x Uittenhout, J.M.M. 1x DOCUMENT CHANGE RECORD Issue Date Total pages Pages affected Brief description of change

More information

EVALUATION OF F-OSR EXPOSED TO SPACE ON SM/SEED EXPERIMENT

EVALUATION OF F-OSR EXPOSED TO SPACE ON SM/SEED EXPERIMENT Proc. of International Symposium on SM/MPAC&SEED ExperimentTsukuba, Japan, - March, 28 49 EVALUATION OF F-OSR EXPOSED TO SPACE ON SM/SEED EXPERIMENT Eiji MIYAZAKI, Junichiro ISHIZAWA and Hiroyuki SHIMAMURA

More information

Praktikum zur. Materialanalytik

Praktikum zur. Materialanalytik Praktikum zur Materialanalytik Energy Dispersive X-ray Spectroscopy B513 Stand: 19.10.2016 Contents 1 Introduction... 2 2. Fundamental Physics and Notation... 3 2.1. Alignments of the microscope... 3 2.2.

More information

Table of Contents Why? (10 min.) How? (2 min.) Q&A (3 min.)

Table of Contents Why? (10 min.) How? (2 min.) Q&A (3 min.) Table of Contents Why? (10 min.) How? (2 min.) Q&A (3 min.) Stanford University Dept. of Aeronautics & Astronautics 1 Modeling ADEOS-III Failure E = 10kV/m Assume magnetic field penetration into slots

More information

CHARACTERIZATION of NANOMATERIALS KHP

CHARACTERIZATION of NANOMATERIALS KHP CHARACTERIZATION of NANOMATERIALS Overview of the most common nanocharacterization techniques MAIN CHARACTERIZATION TECHNIQUES: 1.Transmission Electron Microscope (TEM) 2. Scanning Electron Microscope

More information

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering

More information

OBSERVATION OF THE HYDROGEN DISPERSION BY USING RAMAN SCATTERING MESURMENT AND INCREASE OF MEASURABLE DISTANCE

OBSERVATION OF THE HYDROGEN DISPERSION BY USING RAMAN SCATTERING MESURMENT AND INCREASE OF MEASURABLE DISTANCE OBSERVATION OF THE HYDROGEN DISPERSION BY USING RAMAN SCATTERING MESURMENT AND INCREASE OF MEASURABLE DISTANCE Yuta Segawa 1, Masahiro Inoue 2, Akihiro Nakamoto 3, Satoshi Umehara 3 1 Natural Resource

More information

A Survey of Spacecraft Charging Events on the DMSP Spacecraft in LEO

A Survey of Spacecraft Charging Events on the DMSP Spacecraft in LEO A Survey of Spacecraft Charging Events on the DMSP Spacecraft in LEO Phillip C. Anderson Space Science Applications Laboratory The Aerospace Corporation PO Box 92957 M2/260 Los Angeles, CA 90009-2957 ph:

More information

The Experimental Study on Electron Beam Extraction from ECR Neutralizer

The Experimental Study on Electron Beam Extraction from ECR Neutralizer The Experimental Study on Electron Beam Extraction from ECR Neutralizer IEPC-2015-b-105 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International

More information

XPS/UPS and EFM. Brent Gila. XPS/UPS Ryan Davies EFM Andy Gerger

XPS/UPS and EFM. Brent Gila. XPS/UPS Ryan Davies EFM Andy Gerger XPS/UPS and EFM Brent Gila XPS/UPS Ryan Davies EFM Andy Gerger XPS/ESCA X-ray photoelectron spectroscopy (XPS) also called Electron Spectroscopy for Chemical Analysis (ESCA) is a chemical surface analysis

More information

This is an author-deposited version published in: Eprints ID: 13975

This is an author-deposited version published in:   Eprints ID: 13975 Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

SPARCS: AN ADVANCED SOFTWARE FOR SPACECRAFT CHARGING ANALYSES

SPARCS: AN ADVANCED SOFTWARE FOR SPACECRAFT CHARGING ANALYSES SPARCS: AN ADVANCED SOFTWARE FOR SPACECRAFT CHARGING ANALYSES S. Clerc Alcatel Space 100 Bd du Midi FR-06156 Cannes La Bocca Cedex Phone: +33 4 92 92 64 83 Fax: +33 4 92 92 69 70 E-mail: sebastien.clerc@space.alcatel.fr

More information

1 EX/P4-8. Hydrogen Concentration of Co-deposited Carbon Films Produced in the Vicinity of Local Island Divertor in Large Helical Device

1 EX/P4-8. Hydrogen Concentration of Co-deposited Carbon Films Produced in the Vicinity of Local Island Divertor in Large Helical Device 1 EX/P4-8 Hydrogen Concentration of Co-deposited Carbon Films Produced in the Vicinity of Local Island Divertor in Large Helical Device T. Hino 1,2), T. Hirata 1), N. Ashikawa 2), S. Masuzaki 2), Y. Yamauchi

More information

Workshops on X-band and high gradients: collaboration and resource

Workshops on X-band and high gradients: collaboration and resource Workshops on X-band and high gradients: collaboration and resource 25 October 2012 International workshop on breakdown science and high gradient technology 18-20 April 2012 in KEK 25 October 2012 International

More information

Safety Precautions WARNING If critical situations that could lead to user s death or serious injury is assumed by mishandling of the product.

Safety Precautions WARNING If critical situations that could lead to user s death or serious injury is assumed by mishandling of the product. Safety Precautions Observe the following notices to ensure personal safety or to prevent accidents. To ensure that you use this product correctly, read this User s Manual thoroughly before use. Make sure

More information

Kinetic Simulations of Ion Beam Neutralization

Kinetic Simulations of Ion Beam Neutralization Kinetic Simulations of Ion Beam Neutralization O. Chang and J. Wang Astronautical Engineering Department University of Southern California Los Angeles, CA 90089-1192, USA Abstract. Full particle PIC simulations

More information

The Effect of the Discharge Chamber Structure on the Performance of a 5 cm-diameter ECR Ion Thruster

The Effect of the Discharge Chamber Structure on the Performance of a 5 cm-diameter ECR Ion Thruster Progress In Electromagnetics Research Letters, Vol. 75, 91 96, 2018 The Effect of the Discharge Chamber Structure on the Performance of a 5 cm-diameter ECR Ion Thruster Yujun Ke, Xinfeng Sun *, Yong Zhao,

More information

Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm

Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm -Aerosol and tropospheric ozone retrieval method using continuous UV spectra- Atmospheric composition measurements from satellites are

More information

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Richard London rlondon@llnl.gov Workshop on Interaction of Free Electron Laser Radiation with Matter Hamburg This work

More information

Arifur Rahman Khan, PhD.

Arifur Rahman Khan, PhD. Arifur Rahman Khan, PhD. http://me.utep.edu/contactdirectory-me.htm Email: arkhan@utep.edu 4740 N Mesa St. Apt. #35 markhan132@gmail.com El Paso, Texas, 79912 Phone: +1-915-219-1947 Research Interests

More information

The KATRIN experiment

The KATRIN experiment The KATRIN experiment Status and SDS comissioning Philipp Chung-On Ranitzsch for the KATRIN collaboration Insitute for Nuclear Physics, Westfälische Wilhelms-Universität, Münster The KATRIN experiment

More information

SBUV(/2) and SSBUV Solar Irradiance Measurements Matthew DeLand, Richard Cebula, Liang-Kang Huang Science Systems and Applications, Inc.

SBUV(/2) and SSBUV Solar Irradiance Measurements Matthew DeLand, Richard Cebula, Liang-Kang Huang Science Systems and Applications, Inc. SBUV(/2) and SSBUV Solar Irradiance Measurements Matthew DeLand, Richard Cebula, Liang-Kang Huang Science Systems and Applications, Inc. (SSAI) Solar Spectral Irradiance Variations Workshop NIST, Gaithersburg,

More information

PoS(TIPP2014)033. Upgrade of MEG Liquid Xenon Calorimeter. Ryu SAWADA. ICEPP, the University of Tokyo

PoS(TIPP2014)033. Upgrade of MEG Liquid Xenon Calorimeter. Ryu SAWADA. ICEPP, the University of Tokyo ICEPP, the University of Tokyo E-mail: sawada@icepp.s.u-tokyo.ac.jp The MEG experiment yielded the most stringent upper limit on the branching ratio of the flavorviolating muon decay µ + e + γ. A major

More information

Space product assurance

Space product assurance ECSS-Q-ST-70-06C Space product assurance Particle and UV radiation testing for space materials ECSS Secretariat ESA-ESTEC Requirements & Standards Division Noordwijk, The Netherlands Foreword This Standard

More information

Number Density Measurement of Neutral Particles in a Miniature Microwave Discharge Ion Thruster

Number Density Measurement of Neutral Particles in a Miniature Microwave Discharge Ion Thruster Trans. JSASS Aerospace Tech. Japan Vol. 12, No. ists29, pp. Tb_31-Tb_35, 2014 Topics Number Density Measurement of Neutral Particles in a Miniature Microwave Discharge Ion Thruster By Yuto SUGITA 1), Hiroyuki

More information

Three Dimensional Particle-In-Cell Simulation for the Development of Air Breathing Ion Engine

Three Dimensional Particle-In-Cell Simulation for the Development of Air Breathing Ion Engine Three Dimensional Particle-In-Cell Simulation for the Development of Air Breathing Ion Engine IEPC-205-46p Presented at Joint Conference of 0th International Symposium on Space Technology and Science 4th

More information

DEVELOPMENT OF A COMBUSTION SYSTEM FOR LIQUID OR GAS SAMPLES

DEVELOPMENT OF A COMBUSTION SYSTEM FOR LIQUID OR GAS SAMPLES RADIOCARBON, Vol 46, Nr 1, 2004, p 141 145 2004 by the Arizona Board of Regents on behalf of the University of Arizona DEVELOPMENT OF A COMBUSTION SYSTEM FOR LIQUID OR GAS SAMPLES J H Park C S Lee 1 Department

More information

A simple electric thruster based on ion charge exchange

A simple electric thruster based on ion charge exchange A simple electric thruster based on ion charge exchange IEPC-2007-35 Presented at the 30 th International Electric Propulsion Conference, Florence, Italy Joe Khachan and Lachlan Blackhall University of

More information

Experiment objectives: measure the ratio of Planck s constant to the electron charge h/e using the photoelectric effect.

Experiment objectives: measure the ratio of Planck s constant to the electron charge h/e using the photoelectric effect. Chapter 1 Photoelectric Effect Experiment objectives: measure the ratio of Planck s constant to the electron charge h/e using the photoelectric effect. History The photoelectric effect and its understanding

More information