Tutorial 2 WANG PENG. Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong. September 28, 2017

Size: px
Start display at page:

Download "Tutorial 2 WANG PENG. Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong. September 28, 2017"

Transcription

1 Tutorial 2 WANG PENG Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong September 28, 2017 WANG PENG (ENGG 2440B) Tutorial 2 September 28, / 17

2 Outline 1 Multiple Sums 2 Recurrences WANG PENG (ENGG 2440B) Tutorial 2 September 28, / 17

3 Two Basic Rules for Summations Two simple rules can help you simplify your computation of sums. The Distributive Law ( a i ) m j=1 b j = j=1 m a i b j Change of Variable a i = j=1 a j WANG PENG (ENGG 2440B) Tutorial 2 September 28, / 17

4 Mutiple Sums Multiple Sums Consider a m n matrix as follows: a 11 a 12 a 1n a 21 a 22 a 2n..... a m1 a m2 a mn Then we want to sum up all the elements in the matrix, i.e., S = a 11 + a a 1n + a a m1 + + a mn And we can use the double sum to express above summation compactly as follows: m S = j=1 a ij WANG PENG (ENGG 2440B) Tutorial 2 September 28, / 17

5 Multiple Sums Interchange the Order of Summation When inner and outer indices are unrelated, we can change the order of summation, that is, m m a ij = j=1 j=1 Note: Summing the rows and summing the columns should give the same result. When inner and outer indices are related, we need to take care of the relationship between them, that is, j a ij = Note: j=1 a ij j=i j=i a ij j=1 WANG PENG (ENGG 2440B) Tutorial 2 September 28, / 17 a ij a ij

6 Multiple Sums Example 1 for Multiple Summation Problem: Evaluate the sum i 1 (i j) j=1 in closed form. Show all your work. You are allowed to use without proof the fact that i 2 = n(n + 1)(2n + 1), 6 = n(n + 1) 2 WANG PENG (ENGG 2440B) Tutorial 2 September 28, / 17

7 Multiple Sums Example 1 for Multiple Summation Solution: i 1 (i j) = j=1 = i 1 i 1 i j j=1 j=1 [i(i 1) 12 ] i(i 1) = 1 (i 2 i) 2 ( = 1 n ) i 2 i 2 = 1 [ n(n + 1)(2n + 1) 2 6 ] n(n + 1) 2 = 1 n(n 1)(n + 1) 6 WANG PENG (ENGG 2440B) Tutorial 2 September 28, / 17

8 How to find the Recurrence Definition 1 A recurrence describes a sequence of numbers. Early terms are specified explicitly and later terms are expressed as a function of their predecessors. Example 2 How many different ways are there to climb n stairs, if you can either step up (S) one stair or hop up two (H)? After making an S move, there are n 1 stairs to climb. After making an H move, there are n 2 stairs to climb. Let T (n) be the number of ways to climb n stairs. Then, since the first move must either S or H, so we get the recurrence as follows: T (n) = T (n 1) + T (n 2) Impose the initial conditions on the recurrences WANG PENG (ENGG 2440B) Tutorial 2 September 28, / 17

9 How to Solve the Recurrences Finally, we can get the following recurrence { T (n) = T (n 1) + T (n 2), n 3 ( ) T (1) = 1, T (2) = 2 Then we need to use the tools from Linear Homogeneous Recurrences to solve it. Definition 3 Recurrence has the following form is the Linear Homogeneous Recurrences: T (n) = a 1 T (n 1) + a 2 T (n 2) + + a d T (n d) ( ) for some given constants a 1, a 2,, a d and d 1. WANG PENG (ENGG 2440B) Tutorial 2 September 28, / 17

10 Linear Homogeneous Recurrences Then we develop the following steps to solve the Linear Homogeneous Recurrences: 1 Guess and Verify Method to try T (n) = x n, then plugs it into (*): x n = a 1 x n 1 + a 2 x n a d x n d ( ) 2 Divide (**) by x n d, we get its characteristic equation as follows: x d = a 1 x d 1 + a 2 x d a d ( ) 3 Solve ( ) to get the solutions to ( ). Theorem 4 Let r be the root of ( ), then T (n) = r n solves ( ). WANG PENG (ENGG 2440B) Tutorial 2 September 28, / 17

11 Linear Homogeneous Recurrences Note: If we apply the above steps to solve ( ), we found that the roots of the characteristic equation of ( ) didn t satisfy the initial condition of ( ). Theorem 5 Let r 1, r 2,, r d be the roots of ( ), then from Theorem 4, we get that T 1 (n) = r1 n, T 2 (n) = r2 n,, T d (n) = rd n all solve ( ). Moreover, for any numbers α 1,, α d, the linear combination T 0 (n) of T 1 (n),, T d (n) also solves (*). T 0 (n) = α 1 T 1 (n) + α 2 T 2 (n) + + α d T d (n) WANG PENG (ENGG 2440B) Tutorial 2 September 28, / 17

12 Proof of Theorem 5 Recurrences Proof. Since T 1 (n) = r n 1, T 2 (n) = r n 2,, T d (n) = r n d all solve ( ), we get that T i (n) = a 1 T i (n 1) + a 2 T i (n 2) + + a d T i (n d), i = 1,, d Then since T 0 (n) = α 1 T 1 (n) + α 2 T 2 (n) + + α d T d (n), plugs in above equation for i = 1,, d, T 0 (n) = d α i (a 1 T i (n 1) + a 2 T i (n 2) + + a d T i (n d)) d = a 1 α i T i (n 1) + + a d d α i T i (n d) = a 1 T 0 (n 1) + + a d T d (n d) (By definition of T 0 (n)) WANG PENG (ENGG 2440B) Tutorial 2 September 28, / 17

13 Proceed the Roots with k Counting Multiplicity, k 1 Theorem 6 If r is a root of the characteristic equation of the multiplicity k 1, then all solve the Recurrence (*). r n, nr n,, n k 1 r n Goal: Solve the Linear Homogeneous Recurrence as follows: { T (n) = a 1 T (n 1) + a 2 T (n 2) + + a d T (n d) (Main Body) T (0) = t 0, T (1) = t 1,, T (d 1) = t d 1 (Initial Condition) And we can use the following framework to solve the above problem. WANG PENG (ENGG 2440B) Tutorial 2 September 28, / 17

14 Framework to Solve the Linear Homogeneous Recurrences 1 Find the Characteristic Equation x d = a 1 x d 1 + a 2 x d a d 2 Find the roots of Characteristic Equation By Theorem 6, if r is a root with multiplicity k 1, then r n, nr n,, n k 1 r n will solve the main body of the recurrence. 3 Form the Linear Combination By Theorem 5, if T 1 (n), T 2 (n),, T d (n) are the solutions obtained in Step 2, then for any α 1, α 2,, α d, T 0 (n) = α 1 T 1 (n) + α 2 T 2 (n) + + α d T d (n) is also a solution to the main body of the recurrence. 4 Impose the initial condition Use the initial condition for T 0 (n) to fix α 1, α 2,, α d WANG PENG (ENGG 2440B) Tutorial 2 September 28, / 17

15 Example 2 for Linear Homogeneous Recurrence Problem: What is the solution of the recurrence relation with a 0 = 2 and a 1 = 7 a n = a n 1 + 2a n 2 WANG PENG (ENGG 2440B) Tutorial 2 September 28, / 17

16 Example 2 for Linear Homogeneous Recurrence Problem: What is the solution of the recurrence relation a n = a n 1 + 2a n 2 with a 0 = 2 and a 1 = 7 Solution: Follow the framework above, 1 Find the Characteristic Equation and roots: 2 Form the Linear Combination 3 Impose the initial condition r 2 = r + 2 r 1 = 2, r 2 = 1 a n = α 1 2 n + α 2 ( 1) n a 0 = α 1 + α 2 = 2, a 1 = 2α 1 α 2 = 7 α 1 = 3, α 2 = 1 Based on above steps, the solution to the recurrence is as follows: a n = 3 2 n ( 1) n WANG PENG (ENGG 2440B) Tutorial 2 September 28, / 17

17 Example 3 for Linear Homogeneous Recurrence Problem: What is the solution of the recurrence relation with a 0 = 1 and a 1 = 6 a n = 6a n 1 9a n 2 WANG PENG (ENGG 2440B) Tutorial 2 September 28, / 17

18 Example 3 for Linear Homogeneous Recurrence Problem: What is the solution of the recurrence relation a n = 6a n 1 9a n 2 with a 0 = 1 and a 1 = 6 Solution: Follow the framework above, 1 Find the Characteristic Equation and roots: 2 Form the Linear Combination 3 Impose the initial condition r 2 = 6r 9 r 1 = r 2 = 3 a n = (α 1 + α 2 n) 3 n a 0 = α 1 = 1, a 1 = 3α 1 + 3α 2 = 6 α 1 = α 2 = 3 Based on above steps, the solution to the recurrence is as follows: a n = 3 n + n 3 n WANG PENG (ENGG 2440B) Tutorial 2 September 28, / 17

19 Thank You! If you have any questions, feel free to contact me. WANG PENG (ENGG 2440B) Tutorial 2 September 28, / 17

ENGG 2440B Discrete Mathematics for Engineers Tutorial 8

ENGG 2440B Discrete Mathematics for Engineers Tutorial 8 ENGG 440B Discrete Mathematics for Engineers Tutorial 8 Jiajin Li Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong jjli@se.cuhk.edu.hk November, 018 Jiajin

More information

CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi

CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi Definition (Linear homogeneous recurrence) A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form a n = c 1 a n 1 + c 2 a n 2 +... + c k a

More information

Section Summary. Sequences. Recurrence Relations. Summations Special Integer Sequences (optional)

Section Summary. Sequences. Recurrence Relations. Summations Special Integer Sequences (optional) Section 2.4 Section Summary Sequences. o Examples: Geometric Progression, Arithmetic Progression Recurrence Relations o Example: Fibonacci Sequence Summations Special Integer Sequences (optional) Sequences

More information

Notes for Recitation 14

Notes for Recitation 14 6.04/18.06J Mathematics for Computer Science October 7, 006 Tom Leighton and Ronitt Rubinfeld Notes for Recitation 14 Guessing a Particular Solution A general linear recurrence has the form: fn) = b 1

More information

Handout 7: Recurrences (Cont d)

Handout 7: Recurrences (Cont d) ENGG 2440B: Discrete Mathematics for Engineers Handout 7: Recurrences (Cont d) 2018 19 First Term Instructor: Anthony Man Cho So October 8, 2018 In the last handout, we studied techniques for solving linear

More information

ENGG5781 Matrix Analysis and Computations Lecture 8: QR Decomposition

ENGG5781 Matrix Analysis and Computations Lecture 8: QR Decomposition ENGG5781 Matrix Analysis and Computations Lecture 8: QR Decomposition Wing-Kin (Ken) Ma 2017 2018 Term 2 Department of Electronic Engineering The Chinese University of Hong Kong Lecture 8: QR Decomposition

More information

General Comments Proofs by Mathematical Induction

General Comments Proofs by Mathematical Induction CMSC351 Notes on Mathematical Induction Proofs These are examples of proofs used in cmsc250. These proofs tend to be very detailed. You can be a little looser. General Comments Proofs by Mathematical Induction

More information

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij Topics Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij or a ij lives in row i and column j Definition of a matrix

More information

General Comments on Proofs by Mathematical Induction

General Comments on Proofs by Mathematical Induction Fall 2015: CMSC250 Notes on Mathematical Induction Proofs General Comments on Proofs by Mathematical Induction All proofs by Mathematical Induction should be in one of the styles below. If not there should

More information

Exam 2 Solutions. x 1 x. x 4 The generating function for the problem is the fourth power of this, (1 x). 4

Exam 2 Solutions. x 1 x. x 4 The generating function for the problem is the fourth power of this, (1 x). 4 Math 5366 Fall 015 Exam Solutions 1. (0 points) Find the appropriate generating function (in closed form) for each of the following problems. Do not find the coefficient of x n. (a) In how many ways can

More information

Matrices BUSINESS MATHEMATICS

Matrices BUSINESS MATHEMATICS Matrices BUSINESS MATHEMATICS 1 CONTENTS Matrices Special matrices Operations with matrices Matrix multipication More operations with matrices Matrix transposition Symmetric matrices Old exam question

More information

Pre-sessional Mathematics for Big Data MSc Class 2: Linear Algebra

Pre-sessional Mathematics for Big Data MSc Class 2: Linear Algebra Pre-sessional Mathematics for Big Data MSc Class 2: Linear Algebra Yuri Kalnishkan September 22, 2018 Linear algebra is vitally important for applied mathematics We will approach linear algebra from a

More information

Solving Recurrence Relations 1. Guess and Math Induction Example: Find the solution for a n = 2a n 1 + 1, a 0 = 0 We can try finding each a n : a 0 =

Solving Recurrence Relations 1. Guess and Math Induction Example: Find the solution for a n = 2a n 1 + 1, a 0 = 0 We can try finding each a n : a 0 = Solving Recurrence Relations 1. Guess and Math Induction Example: Find the solution for a n = 2a n 1 + 1, a 0 = 0 We can try finding each a n : a 0 = 0 a 1 = 2 0 + 1 = 1 a 2 = 2 1 + 1 = 3 a 3 = 2 3 + 1

More information

Matrix Arithmetic. j=1

Matrix Arithmetic. j=1 An m n matrix is an array A = Matrix Arithmetic a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn of real numbers a ij An m n matrix has m rows and n columns a ij is the entry in the i-th row and j-th column

More information

Matrices and Linear Algebra

Matrices and Linear Algebra Contents Quantitative methods for Economics and Business University of Ferrara Academic year 2017-2018 Contents 1 Basics 2 3 4 5 Contents 1 Basics 2 3 4 5 Contents 1 Basics 2 3 4 5 Contents 1 Basics 2

More information

Linear Algebra. The analysis of many models in the social sciences reduces to the study of systems of equations.

Linear Algebra. The analysis of many models in the social sciences reduces to the study of systems of equations. POLI 7 - Mathematical and Statistical Foundations Prof S Saiegh Fall Lecture Notes - Class 4 October 4, Linear Algebra The analysis of many models in the social sciences reduces to the study of systems

More information

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections )

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections ) c Dr. Igor Zelenko, Fall 2017 1 10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections 7.2-7.4) 1. When each of the functions F 1, F 2,..., F n in right-hand side

More information

CSC236 Week 4. Larry Zhang

CSC236 Week 4. Larry Zhang CSC236 Week 4 Larry Zhang 1 Announcements PS2 due on Friday This week s tutorial: Exercises with big-oh PS1 feedback People generally did well Writing style need to be improved. This time the TAs are lenient,

More information

Section 9.8. First let s get some practice with determining the interval of convergence of power series.

Section 9.8. First let s get some practice with determining the interval of convergence of power series. First let s get some practice with determining the interval of convergence of power series. First let s get some practice with determining the interval of convergence of power series. Example (1) Determine

More information

MATH 2030: MATRICES ,, a m1 a m2 a mn If the columns of A are the vectors a 1, a 2,...,a n ; A is represented as A 1. .

MATH 2030: MATRICES ,, a m1 a m2 a mn If the columns of A are the vectors a 1, a 2,...,a n ; A is represented as A 1. . MATH 030: MATRICES Matrix Operations We have seen how matrices and the operations on them originated from our study of linear equations In this chapter we study matrices explicitely Definition 01 A matrix

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Linear Systems and Matrices

Linear Systems and Matrices Department of Mathematics The Chinese University of Hong Kong 1 System of m linear equations in n unknowns (linear system) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.......

More information

A SUMMARY OF RECURSION SOLVING TECHNIQUES

A SUMMARY OF RECURSION SOLVING TECHNIQUES A SUMMARY OF RECURSION SOLVING TECHNIQUES KIMMO ERIKSSON, KTH These notes are meant to be a complement to the material on recursion solving techniques in the textbook Discrete Mathematics by Biggs. In

More information

Lecture Notes: Solving Linear Systems with Gauss Elimination

Lecture Notes: Solving Linear Systems with Gauss Elimination Lecture Notes: Solving Linear Systems with Gauss Elimination Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Echelon Form and Elementary

More information

ENGG5781 Matrix Analysis and Computations Lecture 9: Kronecker Product

ENGG5781 Matrix Analysis and Computations Lecture 9: Kronecker Product ENGG5781 Matrix Analysis and Computations Lecture 9: Kronecker Product Wing-Kin (Ken) Ma 2017 2018 Term 2 Department of Electronic Engineering The Chinese University of Hong Kong Kronecker product and

More information

CS 310 Advanced Data Structures and Algorithms

CS 310 Advanced Data Structures and Algorithms CS 310 Advanced Data Structures and Algorithms Runtime Analysis May 31, 2017 Tong Wang UMass Boston CS 310 May 31, 2017 1 / 37 Topics Weiss chapter 5 What is algorithm analysis Big O, big, big notations

More information

Fall 2017 Test II review problems

Fall 2017 Test II review problems Fall 2017 Test II review problems Dr. Holmes October 18, 2017 This is a quite miscellaneous grab bag of relevant problems from old tests. Some are certainly repeated. 1. Give the complete addition and

More information

Consider an infinite row of dominoes, labeled by 1, 2, 3,, where each domino is standing up. What should one do to knock over all dominoes?

Consider an infinite row of dominoes, labeled by 1, 2, 3,, where each domino is standing up. What should one do to knock over all dominoes? 1 Section 4.1 Mathematical Induction Consider an infinite row of dominoes, labeled by 1,, 3,, where each domino is standing up. What should one do to knock over all dominoes? Principle of Mathematical

More information

CSC2100B Data Structures Analysis

CSC2100B Data Structures Analysis CSC2100B Data Structures Analysis Irwin King king@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~king Department of Computer Science & Engineering The Chinese University of Hong Kong Algorithm An algorithm

More information

Jong C. Park Computer Science Division, KAIST

Jong C. Park Computer Science Division, KAIST Jong C. Park Computer Science Division, KAIST Today s Topics Introduction Solving Recurrence Relations Discrete Mathematics, 2008 2 Computer Science Division, KAIST Definition A recurrence relation for

More information

Mathematical Induction

Mathematical Induction Mathematical Induction MAT231 Transition to Higher Mathematics Fall 2014 MAT231 (Transition to Higher Math) Mathematical Induction Fall 2014 1 / 21 Outline 1 Mathematical Induction 2 Strong Mathematical

More information

A = , A 32 = n ( 1) i +j a i j det(a i j). (1) j=1

A = , A 32 = n ( 1) i +j a i j det(a i j). (1) j=1 Lecture Notes: Determinant of a Square Matrix Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Determinant Definition Let A [a ij ] be an

More information

CS 2110: INDUCTION DISCUSSION TOPICS

CS 2110: INDUCTION DISCUSSION TOPICS CS 110: INDUCTION DISCUSSION TOPICS The following ideas are suggestions for how to handle your discussion classes. You can do as much or as little of this as you want. You can either present at the board,

More information

Solving Linear Systems

Solving Linear Systems Solving Linear Systems Iterative Solutions Methods Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) Linear Systems Fall 2015 1 / 12 Introduction We continue looking how to solve linear systems of

More information

Outlines. Discrete Time Markov Chain (DTMC) Continuous Time Markov Chain (CTMC)

Outlines. Discrete Time Markov Chain (DTMC) Continuous Time Markov Chain (CTMC) Markov Chains (2) Outlines Discrete Time Markov Chain (DTMC) Continuous Time Markov Chain (CTMC) 2 pj ( n) denotes the pmf of the random variable p ( n) P( X j) j We will only be concerned with homogenous

More information

Algebraic Properties of Solutions of Linear Systems

Algebraic Properties of Solutions of Linear Systems Algebraic Properties of Solutions of Linear Systems In this chapter we will consider simultaneous first-order differential equations in several variables, that is, equations of the form f 1t,,,x n d f

More information

Recurrence Relations

Recurrence Relations Recurrence Relations Recurrence Relations Reading (Epp s textbook) 5.6 5.8 1 Recurrence Relations A recurrence relation for a sequence aa 0, aa 1, aa 2, ({a n }) is a formula that relates each term a k

More information

INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRICES

INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRICES 1 CHAPTER 4 MATRICES 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRICES 1 Matrices Matrices are of fundamental importance in 2-dimensional and 3-dimensional graphics programming

More information

MA 1B ANALYTIC - HOMEWORK SET 7 SOLUTIONS

MA 1B ANALYTIC - HOMEWORK SET 7 SOLUTIONS MA 1B ANALYTIC - HOMEWORK SET 7 SOLUTIONS 1. (7 pts)[apostol IV.8., 13, 14] (.) Let A be an n n matrix with characteristic polynomial f(λ). Prove (by induction) that the coefficient of λ n 1 in f(λ) is

More information

Examples of linear systems and explanation of the term linear. is also a solution to this equation.

Examples of linear systems and explanation of the term linear. is also a solution to this equation. . Linear systems Examples of linear systems and explanation of the term linear. () ax b () a x + a x +... + a x b n n Illustration by another example: The equation x x + 5x 7 has one solution as x 4, x

More information

Matrices. Chapter Definitions and Notations

Matrices. Chapter Definitions and Notations Chapter 3 Matrices 3. Definitions and Notations Matrices are yet another mathematical object. Learning about matrices means learning what they are, how they are represented, the types of operations which

More information

MATH 802: ENUMERATIVE COMBINATORICS ASSIGNMENT 2

MATH 802: ENUMERATIVE COMBINATORICS ASSIGNMENT 2 MATH 80: ENUMERATIVE COMBINATORICS ASSIGNMENT KANNAPPAN SAMPATH Facts Recall that, the Stirling number S(, n of the second ind is defined as the number of partitions of a [] into n non-empty blocs. We

More information

Combinations and Probabilities

Combinations and Probabilities Combinations and Probabilities Tutor: Zhang Qi Systems Engineering and Engineering Management qzhang@se.cuhk.edu.hk November 2014 Tutor: Zhang Qi (SEEM) Tutorial 7 November 2014 1 / 16 Combination Review

More information

Math 475, Problem Set #8: Answers

Math 475, Problem Set #8: Answers Math 475, Problem Set #8: Answers A. Brualdi, problem, parts (a), (b), and (d). (a): As n goes from to 6, the sum (call it h n ) takes on the values,, 8, 2, 55, and 44; we recognize these as Fibonacci

More information

Elementary Row Operations on Matrices

Elementary Row Operations on Matrices King Saud University September 17, 018 Table of contents 1 Definition A real matrix is a rectangular array whose entries are real numbers. These numbers are organized on rows and columns. An m n matrix

More information

MATH 3511 Lecture 1. Solving Linear Systems 1

MATH 3511 Lecture 1. Solving Linear Systems 1 MATH 3511 Lecture 1 Solving Linear Systems 1 Dmitriy Leykekhman Spring 2012 Goals Review of basic linear algebra Solution of simple linear systems Gaussian elimination D Leykekhman - MATH 3511 Introduction

More information

Math 2142 Homework 5 Part 1 Solutions

Math 2142 Homework 5 Part 1 Solutions Math 2142 Homework 5 Part 1 Solutions Problem 1. For the following homogeneous second order differential equations, give the general solution and the particular solution satisfying the given initial conditions.

More information

Solving Linear Systems of Equations

Solving Linear Systems of Equations November 6, 2013 Introduction The type of problems that we have to solve are: Solve the system: A x = B, where a 11 a 1N a 12 a 2N A =.. a 1N a NN x = x 1 x 2. x N B = b 1 b 2. b N To find A 1 (inverse

More information

Section 9.2: Matrices.. a m1 a m2 a mn

Section 9.2: Matrices.. a m1 a m2 a mn Section 9.2: Matrices Definition: A matrix is a rectangular array of numbers: a 11 a 12 a 1n a 21 a 22 a 2n A =...... a m1 a m2 a mn In general, a ij denotes the (i, j) entry of A. That is, the entry in

More information

1 - Systems of Linear Equations

1 - Systems of Linear Equations 1 - Systems of Linear Equations 1.1 Introduction to Systems of Linear Equations Almost every problem in linear algebra will involve solving a system of equations. ü LINEAR EQUATIONS IN n VARIABLES We are

More information

Review of matrices. Let m, n IN. A rectangle of numbers written like A =

Review of matrices. Let m, n IN. A rectangle of numbers written like A = Review of matrices Let m, n IN. A rectangle of numbers written like a 11 a 12... a 1n a 21 a 22... a 2n A =...... a m1 a m2... a mn where each a ij IR is called a matrix with m rows and n columns or an

More information

Lecture Notes: Matrix Inverse. 1 Inverse Definition. 2 Inverse Existence and Uniqueness

Lecture Notes: Matrix Inverse. 1 Inverse Definition. 2 Inverse Existence and Uniqueness Lecture Notes: Matrix Inverse Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Inverse Definition We use I to represent identity matrices,

More information

Math 2602 Finite and Linear Math Fall 14. Homework 8: Core solutions

Math 2602 Finite and Linear Math Fall 14. Homework 8: Core solutions Math 2602 Finite and Linear Math Fall 14 Homework 8: Core solutions Review exercises for Chapter 5 page 183 problems 25, 26a-26b, 29. Section 8.1 on page 252 problems 8, 9, 10, 13. Section 8.2 on page

More information

MATRICES. a m,1 a m,n A =

MATRICES. a m,1 a m,n A = MATRICES Matrices are rectangular arrays of real or complex numbers With them, we define arithmetic operations that are generalizations of those for real and complex numbers The general form a matrix of

More information

Mathematical Induction

Mathematical Induction Mathematical Induction Let s motivate our discussion by considering an example first. What happens when we add the first n positive odd integers? The table below shows what results for the first few values

More information

Class Notes: Solving Simultaneous Linear Equations by Gaussian Elimination. Consider a set of simultaneous linear equations:

Class Notes: Solving Simultaneous Linear Equations by Gaussian Elimination. Consider a set of simultaneous linear equations: METR/OCN 465: Computer Programming with Applications in Meteorology and Oceanography Dr Dave Dempsey Dept of Geosciences, SFSU Class Notes: Solving Simultaneous Linear Equations by Gaussian Elimination

More information

MATH 243E Test #3 Solutions

MATH 243E Test #3 Solutions MATH 4E Test # Solutions () Find a recurrence relation for the number of bit strings of length n that contain a pair of consecutive 0s. You do not need to solve this recurrence relation. (Hint: Consider

More information

Definition: A sequence is a function from a subset of the integers (usually either the set

Definition: A sequence is a function from a subset of the integers (usually either the set Math 3336 Section 2.4 Sequences and Summations Sequences Geometric Progression Arithmetic Progression Recurrence Relation Fibonacci Sequence Summations Definition: A sequence is a function from a subset

More information

Name Solutions Linear Algebra; Test 3. Throughout the test simplify all answers except where stated otherwise.

Name Solutions Linear Algebra; Test 3. Throughout the test simplify all answers except where stated otherwise. Name Solutions Linear Algebra; Test 3 Throughout the test simplify all answers except where stated otherwise. 1) Find the following: (10 points) ( ) Or note that so the rows are linearly independent, so

More information

Chapters 3.2 Discrete distributions

Chapters 3.2 Discrete distributions Chapters 3.2 Discrete distributions In this section we study several discrete distributions and their properties. Here are a few, classified by their support S X. There are of course many, many more. For

More information

Lecture 1 Systems of Linear Equations and Matrices

Lecture 1 Systems of Linear Equations and Matrices Lecture 1 Systems of Linear Equations and Matrices Math 19620 Outline of Course Linear Equations and Matrices Linear Transformations, Inverses Bases, Linear Independence, Subspaces Abstract Vector Spaces

More information

Algebra II (Common Core) Summer Assignment Due: September 11, 2017 (First full day of classes) Ms. Vella

Algebra II (Common Core) Summer Assignment Due: September 11, 2017 (First full day of classes) Ms. Vella 1 Algebra II (Common Core) Summer Assignment Due: September 11, 2017 (First full day of classes) Ms. Vella In this summer assignment, you will be reviewing important topics from Algebra I that are crucial

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Dr Gerhard Roth COMP 40A Winter 05 Version Linear algebra Is an important area of mathematics It is the basis of computer vision Is very widely taught, and there are many resources

More information

Recursion. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Fall 2007

Recursion. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Fall 2007 Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Fall 2007 1 / 47 Computer Science & Engineering 235 to Discrete Mathematics Sections 7.1-7.2 of Rosen Recursive Algorithms 2 / 47 A recursive

More information

Review of Basic Concepts in Linear Algebra

Review of Basic Concepts in Linear Algebra Review of Basic Concepts in Linear Algebra Grady B Wright Department of Mathematics Boise State University September 7, 2017 Math 565 Linear Algebra Review September 7, 2017 1 / 40 Numerical Linear Algebra

More information

Lectures on Linear Algebra for IT

Lectures on Linear Algebra for IT Lectures on Linear Algebra for IT by Mgr. Tereza Kovářová, Ph.D. following content of lectures by Ing. Petr Beremlijski, Ph.D. Department of Applied Mathematics, VSB - TU Ostrava Czech Republic 2. Systems

More information

Elementary Differential Equations, Section 2 Prof. Loftin: Practice Test Problems for Test Find the radius of convergence of the power series

Elementary Differential Equations, Section 2 Prof. Loftin: Practice Test Problems for Test Find the radius of convergence of the power series Elementary Differential Equations, Section 2 Prof. Loftin: Practice Test Problems for Test 2 SOLUTIONS 1. Find the radius of convergence of the power series Show your work. x + x2 2 + x3 3 + x4 4 + + xn

More information

Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat

Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat Linear Algebra Lecture 2 1.3.7 Matrix Matrix multiplication using Falk s

More information

Next topics: Solving systems of linear equations

Next topics: Solving systems of linear equations Next topics: Solving systems of linear equations 1 Gaussian elimination (today) 2 Gaussian elimination with partial pivoting (Week 9) 3 The method of LU-decomposition (Week 10) 4 Iterative techniques:

More information

Defn: A linear recurrence relation has constant coefficients if the a i s are constant. Ch 14: 1, 4, 5, 10, 13, 18, 22, 24, 25 and

Defn: A linear recurrence relation has constant coefficients if the a i s are constant. Ch 14: 1, 4, 5, 10, 13, 18, 22, 24, 25 and 7.4: linear homogeneous recurrence relation: Defn: A recurrence relation is linear if h n = a 1 (n)h n 1 + a (n)h n +... + a k (n)h n k + b(n) A recurrence relation has order k if a k 0 Ex: Derangement

More information

Calculus and linear algebra for biomedical engineering Week 3: Matrices, linear systems of equations, and the Gauss algorithm

Calculus and linear algebra for biomedical engineering Week 3: Matrices, linear systems of equations, and the Gauss algorithm Calculus and linear algebra for biomedical engineering Week 3: Matrices, linear systems of equations, and the Gauss algorithm Hartmut Führ fuehr@matha.rwth-aachen.de Lehrstuhl A für Mathematik, RWTH Aachen

More information

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Friday, Feb 8, 2013

Statistics 253/317 Introduction to Probability Models. Winter Midterm Exam Friday, Feb 8, 2013 Statistics 253/317 Introduction to Probability Models Winter 2014 - Midterm Exam Friday, Feb 8, 2013 Student Name (print): (a) Do not sit directly next to another student. (b) This is a closed-book, closed-note

More information

Lecture Notes in Linear Algebra

Lecture Notes in Linear Algebra Lecture Notes in Linear Algebra Dr. Abdullah Al-Azemi Mathematics Department Kuwait University February 4, 2017 Contents 1 Linear Equations and Matrices 1 1.2 Matrices............................................

More information

Chapter 5.2: Series solution near an ordinary point

Chapter 5.2: Series solution near an ordinary point Chapter 5.2: Series solution near an ordinary point We now look at ODE s with polynomial coefficients of the form: P (x)y + Q(x)y + R(x)y = 0. Thus, we assume P (x), Q(x), R(x) are polynomials in x. Why?

More information

(Refer Slide Time: 1:13)

(Refer Slide Time: 1:13) Linear Algebra By Professor K. C. Sivakumar Department of Mathematics Indian Institute of Technology, Madras Lecture 6 Elementary Matrices, Homogeneous Equaions and Non-homogeneous Equations See the next

More information

Power Series Solutions We use power series to solve second order differential equations

Power Series Solutions We use power series to solve second order differential equations Objectives Power Series Solutions We use power series to solve second order differential equations We use power series expansions to find solutions to second order, linear, variable coefficient equations

More information

Some Review Problems for Exam 2: Solutions

Some Review Problems for Exam 2: Solutions Math 5366 Fall 017 Some Review Problems for Exam : Solutions 1 Find the coefficient of x 15 in each of the following: 1 (a) (1 x) 6 Solution: 1 (1 x) = ( ) k + 5 x k 6 k ( ) ( ) 0 0 so the coefficient

More information

Inverses and Elementary Matrices

Inverses and Elementary Matrices Inverses and Elementary Matrices 1-12-2013 Matrix inversion gives a method for solving some systems of equations Suppose a 11 x 1 +a 12 x 2 + +a 1n x n = b 1 a 21 x 1 +a 22 x 2 + +a 2n x n = b 2 a n1 x

More information

Math 304 (Spring 2010) - Lecture 2

Math 304 (Spring 2010) - Lecture 2 Math 304 (Spring 010) - Lecture Emre Mengi Department of Mathematics Koç University emengi@ku.edu.tr Lecture - Floating Point Operation Count p.1/10 Efficiency of an algorithm is determined by the total

More information

Phys 201. Matrices and Determinants

Phys 201. Matrices and Determinants Phys 201 Matrices and Determinants 1 1.1 Matrices 1.2 Operations of matrices 1.3 Types of matrices 1.4 Properties of matrices 1.5 Determinants 1.6 Inverse of a 3 3 matrix 2 1.1 Matrices A 2 3 7 =! " 1

More information

Generating Functions

Generating Functions Generating Functions Karen Ge May, 07 Abstract Generating functions gives us a global perspective when we need to study a local property. We define generating functions and present its applications in

More information

MAT 242 CHAPTER 4: SUBSPACES OF R n

MAT 242 CHAPTER 4: SUBSPACES OF R n MAT 242 CHAPTER 4: SUBSPACES OF R n JOHN QUIGG 1. Subspaces Recall that R n is the set of n 1 matrices, also called vectors, and satisfies the following properties: x + y = y + x x + (y + z) = (x + y)

More information

Discrete Calculus and its Applications

Discrete Calculus and its Applications Discrete Calculus and its Applications Alexander Payne March 9, 2014 1 Introduction In these notes, we will introduce the foundations of discrete calculus (a.k.a. the calculus of finite differences) as

More information

15-780: LinearProgramming

15-780: LinearProgramming 15-780: LinearProgramming J. Zico Kolter February 1-3, 2016 1 Outline Introduction Some linear algebra review Linear programming Simplex algorithm Duality and dual simplex 2 Outline Introduction Some linear

More information

Evolutionary Models. Evolutionary Models

Evolutionary Models. Evolutionary Models Edit Operators In standard pairwise alignment, what are the allowed edit operators that transform one sequence into the other? Describe how each of these edit operations are represented on a sequence alignment

More information

Announcements Wednesday, October 10

Announcements Wednesday, October 10 Announcements Wednesday, October 10 The second midterm is on Friday, October 19 That is one week from this Friday The exam covers 35, 36, 37, 39, 41, 42, 43, 44 (through today s material) WeBWorK 42, 43

More information

Review for Exam 2. Review for Exam 2.

Review for Exam 2. Review for Exam 2. Review for Exam 2. 5 or 6 problems. No multiple choice questions. No notes, no books, no calculators. Problems similar to homeworks. Exam covers: Regular-singular points (5.5). Euler differential equation

More information

Notes on Row Reduction

Notes on Row Reduction Notes on Row Reduction Francis J. Narcowich Department of Mathematics Texas A&M University September The Row-Reduction Algorithm The row-reduced form of a matrix contains a great deal of information, both

More information

Differential Equations

Differential Equations This document was written and copyrighted by Paul Dawkins. Use of this document and its online version is governed by the Terms and Conditions of Use located at. The online version of this document is

More information

Announcements Monday, October 02

Announcements Monday, October 02 Announcements Monday, October 02 Please fill out the mid-semester survey under Quizzes on Canvas WeBWorK 18, 19 are due Wednesday at 11:59pm The quiz on Friday covers 17, 18, and 19 My office is Skiles

More information

Algorithm Analysis Recurrence Relation. Chung-Ang University, Jaesung Lee

Algorithm Analysis Recurrence Relation. Chung-Ang University, Jaesung Lee Algorithm Analysis Recurrence Relation Chung-Ang University, Jaesung Lee Recursion 2 Recursion 3 Recursion in Real-world Fibonacci sequence = + Initial conditions: = 0 and = 1. = + = + = + 0, 1, 1, 2,

More information

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit II: Numerical Linear Algebra Lecturer: Dr. David Knezevic Unit II: Numerical Linear Algebra Chapter II.3: QR Factorization, SVD 2 / 66 QR Factorization 3 / 66 QR Factorization

More information

INTRODUCTION TO SIGMA NOTATION

INTRODUCTION TO SIGMA NOTATION INTRODUCTION TO SIGMA NOTATION The notation itself Sigma notation is a way of writing a sum of many terms, in a concise form A sum in sigma notation looks something like this: 3k The Σ sigma) indicates

More information

Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems. Matrix Factorization Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

Sheet 06.6: Curvilinear Integration, Matrices I

Sheet 06.6: Curvilinear Integration, Matrices I Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 5/6 Doent: Jan von Delft Übungen: Benedikt Bruognolo, Dennis Schimmel, Frauke Schwar, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5r/

More information

Matrix Algebra for Engineers Jeffrey R. Chasnov

Matrix Algebra for Engineers Jeffrey R. Chasnov Matrix Algebra for Engineers Jeffrey R. Chasnov The Hong Kong University of Science and Technology The Hong Kong University of Science and Technology Department of Mathematics Clear Water Bay, Kowloon

More information

After linear functions, the next simplest functions are polynomials. Examples are

After linear functions, the next simplest functions are polynomials. Examples are Mathematics 10 Fall 1999 Polynomials After linear functions, the next simplest functions are polynomials. Examples are 1+x, x +3x +, x 3. Here x is a variable. Recall that we have defined a function to

More information

Some vector algebra and the generalized chain rule Ross Bannister Data Assimilation Research Centre, University of Reading, UK Last updated 10/06/10

Some vector algebra and the generalized chain rule Ross Bannister Data Assimilation Research Centre, University of Reading, UK Last updated 10/06/10 Some vector algebra an the generalize chain rule Ross Bannister Data Assimilation Research Centre University of Reaing UK Last upate 10/06/10 1. Introuction an notation As we shall see in these notes the

More information

Chapter 3. Linear and Nonlinear Systems

Chapter 3. Linear and Nonlinear Systems 59 An expert is someone who knows some of the worst mistakes that can be made in his subject, and how to avoid them Werner Heisenberg (1901-1976) Chapter 3 Linear and Nonlinear Systems In this chapter

More information

c i r i i=1 r 1 = [1, 2] r 2 = [0, 1] r 3 = [3, 4].

c i r i i=1 r 1 = [1, 2] r 2 = [0, 1] r 3 = [3, 4]. Lecture Notes: Rank of a Matrix Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Linear Independence Definition 1. Let r 1, r 2,..., r m

More information