"= fol;'"' Introduction: vel\e*\ In this lab, standard deviation was determined to be consistent with statistical theory in

Size: px
Start display at page:

Download ""= fol;'"' Introduction: vel\e*\ In this lab, standard deviation was determined to be consistent with statistical theory in"

Transcription

1 D. Constantino 1 Introduction: vel\e*\ In this lab, standard deviation was determined to be consistent with statistical theory in hopes ofev.aluating the uncertainty in experimental our data. In.all.experiments, rneasurements of data can never be free of error, despite the carefulness of your procedure. Thus, experimental uncertainty exists; by using data analysis, we are able to evaluate and interpret the uncertainty of a measurement. In this lab, we organized and analyzed quantitative data in rolled values ofdice. When rolling dice, a theoretical value is known (or rather - a best estimate), but due to random error, this is not the case. In order to better estimate the uncertainty of a roll, we repeatedly \ rolled the dice and gathered data to calculate its standard deviation. Figure I shows the equation used to calculate the standard deviation (o). Nis the number of measured quantities gathered in the data. The term ds in Figure 2 refers to a deviation, which is the difference between the it measurement & and the mean value 7. CIhe "= fol;'"' mean value.is the bes{ estimot cf dr tflre v*}e - it is cd dated by adding all the data and dividing that with the N numba of measurements). Figure 3 is a combination offigure I and Figure 2 and it is tlte eouation we used to calculate the standard deviation. 1 s-r ;j. The standard deviation reveals the best estimate of the uncertainty in the set ofvalues. Statistically, ifwe were to make another roll, there is a 68% chance the value is between one standard deviation. Furthermore, there is a 95% chance it will fall within two standard deviations. The standard deviation is a reliable measurement of uncertainty because it.determines llrhere exactly tlre unoe$ai*y tries. Our results revealed that this exporiment is consistent because our theoretical value falls between one standard deviation. (mean-c) < theoretical value < (mean + o)

2 Eouinment: o Assorted Dice (4/618/12 sided): Froccduret l.l r." I Pan 1: Step RigM ap and RoU the Dice l. Determine/cornpute a Theoretical Value for each ofthe four dice. 2. Determine/compute a theoretical value for the average of the fow dice rolled together. 3. Roll the set of 4 dice together and record the total in a data table. Repeathis a total of 5 time. Find the average or mean value ofyour 5 roll. 4. Repeat step 3 a total of 15 times (Remember, each experiment is the average of 5 rolls). Record the average values for all 15 experiments in EXCEL. 5. Restate your experimental results in the following form: "Our obsemation is that the average value of the 4 dffirent dice rolled together is _ +/-." 6. Go to whiteboard and add your results to the group chart. 7. Make a histogam chart to display the results of 15 rolls 8. Using excel, calculate the standard deviation (o). 9. On the histogram, draw a bell curve that approximately fits yow histogram and mark the 1o and 2o "confidence intervals". Part 2: Compare Your Theoretlcal Preiliction to Your bperimcntal Values 10. Using this "test for consistency", answer the following question'. "Would you conclude that your theoreticat vahre is cor8'istent with your experimental measuremerttt? Explain" Part 3: Compare Your Values with ostalistical Theory" I 1. Analyze the first standard deviation. 12. Alalyze the second standard deviation.

3 D. constantino 3 Tablel. Theoretical Values Each Die 4-sided 6-sided 8-sided l2-sided VALIIE ALL dice VALUE all 17.0 Table 2. Exnerinrental data Roll 1 Roll 2 Roll 3 Roll 4 Roll 5 Average Deviation Deviation^2 Exp Exp.2 zo Exo.3 17 to 't4.t( 4E e IJ Extr4 2n 1a Exp Exo z Exo z.z 4.U Exo Exp.9 18 ' u.o N?A Exo.10,o I U 9.00 Exp ' ExD o.2 0.M Exp.13 zc Exp aa 1.44 Exp i = 17.2 Std.Dev sum

4 D. Constantino 4 Graph 1. Histograph 6 Experimental Uncertainty - t*,i a-.-+>-- f,o 5 4.c R3 2 L n No15 No16 No17 No18 Dice number Sample Calcalations: (Theoretical Value 6.sided die) (Theoretical Value: ALL dice),.eochside ( ) 27 vaiue: -;t;: 60 :;;= r.) Uu1o. :! all the averages of each ilie : ( ) : 17.0 (Exp. I - Average) Avg. : Eggl r9g - (1e;0+1e's+1s'o+22'o+1o;0) # RoUs S (Mean of all Avgs.) - t rr (16, , , ,2+1A,4+17,O+70,6+ 18, ) rv (Exp.l - Deviation) d1 - i) = ( ) = -l.l (Standard

5 Enor Analysis (mean-o) < theoretical value < (mean + o) : (t ) = 17.o < (r ) : 15.5 < 17.0 < 18.9 b vu"u;; ht.fi Jy'U Nip. H'l*' vv Since our theoretical value falls between the mean/deviation of , the results of this experiments are consistent. ln part 1, we determined the theoretical value for rolling all four dice to be a value of 1?-0- br our first experiment of rolling the dice 5 timeg the average did not equal the. theoretical average value. The discrepancy in this experiment was a value of 1.0 (the percent discrepancy being 5.9%). Even though the experimental value did not match the theoretical value, it does not mean our theory was inconsistent. The theoretical value is an 'average' of the rolled dice, therefore, multiple rolls and calculations are need to determine the consistency. I do not think tle discrepancy is due to 'human error' because human enor is something tlat could be fixed., \, \\ These differences occurandomly I art V After repeating the experiment a totat of 15 times, we were pretty confident that the "k resutts willfalt between 14 and 20 (a confidence range of /- 3). After adding our results to the class chart, we see that "most of our results fall within the range 15 to 19", The interval of the class confidence range is smaller than our individual groups'. Although we got the sarne results as the class, the confidence range is nrrorruer in tie class chart. '

6 D. Constantino 6 After recording our own histogram chaxt in the 1ab, the next step was to calculate the Standard Deviation. Our experiment resulted in a 1.67 standard deviation. When marking the lo and 2o "confidence intervals' on our histogram chart, it was clear that the theoretical value fell within the 1"'deviation. Also, the peak ofthe bell curve is very close (ifnot located) on the mean value. When part 2 ofthe lab required us to test for consistency, we concluded that our theoretical value was in fact consistent with our experimental measurements because we have (mean-o) < theoretical value < (mean + o) :( ) s I7.0 < (17.2+ r.67) : 15.5 < 17.0 < 18.9 proven both graphically and analytically that the theoretical value falls within 1 Standard Deviafion. 1 standard deviation was orr test for consistency. Lastly, in part tlree, we compared our values with 'Statistical Theory'. It is statistically predicted that 68% of the values of any measrnsment falls between one standard deviations. Our results showed that 67% ofour values fell between our standard deviation - a 2:i-::-:::::::: Y.# medstrements between 10 --'t^ - ^^ oz x LOO% = 67To very consistent result. Furthermore, approximately 95% ofthe value of any measurement should statisticallv fall within 2 standard deviations. Our results revealed that I 007o of our values L# measurements between ^^ru. 15 xtoayo =!OO% fell between 2 o. When detsrmining experimental cursisteflcy t rough standard deviation, our results have shown quite a bit of consistency. An expected number ofvalues had rolled between I and 2 standard deviations, making our experiment consistent with statistical theory as well. Thus, experimental mcertainty is not so uncertain with the calculation powers of standard deviation.

COMP6053 lecture: Sampling and the central limit theorem. Jason Noble,

COMP6053 lecture: Sampling and the central limit theorem. Jason Noble, COMP6053 lecture: Sampling and the central limit theorem Jason Noble, jn2@ecs.soton.ac.uk Populations: long-run distributions Two kinds of distributions: populations and samples. A population is the set

More information

COMP6053 lecture: Sampling and the central limit theorem. Markus Brede,

COMP6053 lecture: Sampling and the central limit theorem. Markus Brede, COMP6053 lecture: Sampling and the central limit theorem Markus Brede, mb8@ecs.soton.ac.uk Populations: long-run distributions Two kinds of distributions: populations and samples. A population is the set

More information

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table.

MA 1125 Lecture 15 - The Standard Normal Distribution. Friday, October 6, Objectives: Introduce the standard normal distribution and table. MA 1125 Lecture 15 - The Standard Normal Distribution Friday, October 6, 2017. Objectives: Introduce the standard normal distribution and table. 1. The Standard Normal Distribution We ve been looking at

More information

A Primer on Statistical Inference using Maximum Likelihood

A Primer on Statistical Inference using Maximum Likelihood A Primer on Statistical Inference using Maximum Likelihood November 3, 2017 1 Inference via Maximum Likelihood Statistical inference is the process of using observed data to estimate features of the population.

More information

Introduction to Determining Power Law Relationships

Introduction to Determining Power Law Relationships 1 Goal Introduction to Determining Power Law Relationships Content Discussion and Activities PHYS 104L The goal of this week s activities is to expand on a foundational understanding and comfort in modeling

More information

Chapter 10 Regression Analysis

Chapter 10 Regression Analysis Chapter 10 Regression Analysis Goal: To become familiar with how to use Excel 2007/2010 for Correlation and Regression. Instructions: You will be using CORREL, FORECAST and Regression. CORREL and FORECAST

More information

Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01: Probability and Statistics for Engineers Spring 2013 Contents 1 Joint Probability Distributions 2 1.1 Two Discrete

More information

Lecture 10: The Normal Distribution. So far all the random variables have been discrete.

Lecture 10: The Normal Distribution. So far all the random variables have been discrete. Lecture 10: The Normal Distribution 1. Continuous Random Variables So far all the random variables have been discrete. We need a different type of model (called a probability density function) for continuous

More information

Lesson 6-1: Relations and Functions

Lesson 6-1: Relations and Functions I ll bet you think numbers are pretty boring, don t you? I ll bet you think numbers have no life. For instance, numbers don t have relationships do they? And if you had no relationships, life would be

More information

Numbers and Data Analysis

Numbers and Data Analysis Numbers and Data Analysis With thanks to George Goth, Skyline College for portions of this material. Significant figures Significant figures (sig figs) are only the first approimation to uncertainty and

More information

Uncertainty and Graphical Analysis

Uncertainty and Graphical Analysis Uncertainty and Graphical Analysis Introduction Two measures of the quality of an experimental result are its accuracy and its precision. An accurate result is consistent with some ideal, true value, perhaps

More information

STA Why Sampling? Module 6 The Sampling Distributions. Module Objectives

STA Why Sampling? Module 6 The Sampling Distributions. Module Objectives STA 2023 Module 6 The Sampling Distributions Module Objectives In this module, we will learn the following: 1. Define sampling error and explain the need for sampling distributions. 2. Recognize that sampling

More information

EXPERIMENT: REACTION TIME

EXPERIMENT: REACTION TIME EXPERIMENT: REACTION TIME OBJECTIVES to make a series of measurements of your reaction time to make a histogram, or distribution curve, of your measured reaction times to calculate the "average" or "mean"

More information

Review Problems for Test 2

Review Problems for Test 2 Review Problems for Test 2 Math 6-03/06 0 0/ 2007 These problems are provided to help you study. The fact that a problem occurs here does not mean that there will be a similar problem on the test. And

More information

Sampling Distribution Models. Chapter 17

Sampling Distribution Models. Chapter 17 Sampling Distribution Models Chapter 17 Objectives: 1. Sampling Distribution Model 2. Sampling Variability (sampling error) 3. Sampling Distribution Model for a Proportion 4. Central Limit Theorem 5. Sampling

More information

MAT Mathematics in Today's World

MAT Mathematics in Today's World MAT 1000 Mathematics in Today's World Last Time We discussed the four rules that govern probabilities: 1. Probabilities are numbers between 0 and 1 2. The probability an event does not occur is 1 minus

More information

Sampling Distributions

Sampling Distributions Sampling Error As you may remember from the first lecture, samples provide incomplete information about the population In particular, a statistic (e.g., M, s) computed on any particular sample drawn from

More information

THE SAMPLING DISTRIBUTION OF THE MEAN

THE SAMPLING DISTRIBUTION OF THE MEAN THE SAMPLING DISTRIBUTION OF THE MEAN COGS 14B JANUARY 26, 2017 TODAY Sampling Distributions Sampling Distribution of the Mean Central Limit Theorem INFERENTIAL STATISTICS Inferential statistics: allows

More information

Lab 0 Appendix C L0-1 APPENDIX C ACCURACY OF MEASUREMENTS AND TREATMENT OF EXPERIMENTAL UNCERTAINTY

Lab 0 Appendix C L0-1 APPENDIX C ACCURACY OF MEASUREMENTS AND TREATMENT OF EXPERIMENTAL UNCERTAINTY Lab 0 Appendix C L0-1 APPENDIX C ACCURACY OF MEASUREMENTS AND TREATMENT OF EXPERIMENTAL UNCERTAINTY A measurement whose accuracy is unknown has no use whatever. It is therefore necessary to know how to

More information

The Central Limit Theorem

The Central Limit Theorem The Central Limit Theorem Suppose n tickets are drawn at random with replacement from a box of numbered tickets. The central limit theorem says that when the probability histogram for the sum of the draws

More information

Using Dice to Introduce Sampling Distributions Written by: Mary Richardson Grand Valley State University

Using Dice to Introduce Sampling Distributions Written by: Mary Richardson Grand Valley State University Using Dice to Introduce Sampling Distributions Written by: Mary Richardson Grand Valley State University richamar@gvsu.edu Overview of Lesson In this activity students explore the properties of the distribution

More information

Statistical Methods for the Social Sciences, Autumn 2012

Statistical Methods for the Social Sciences, Autumn 2012 Statistical Methods for the Social Sciences, Autumn 2012 Review Session 3: Probability. Exercises Ch.4. More on Stata TA: Anastasia Aladysheva anastasia.aladysheva@graduateinstitute.ch Office hours: Mon

More information

Do students sleep the recommended 8 hours a night on average?

Do students sleep the recommended 8 hours a night on average? BIEB100. Professor Rifkin. Notes on Section 2.2, lecture of 27 January 2014. Do students sleep the recommended 8 hours a night on average? We first set up our null and alternative hypotheses: H0: μ= 8

More information

Concepts in Statistics

Concepts in Statistics Concepts in Statistics -- A Theoretical and Hands-on Approach Statistics The Art of Distinguishing Luck from Chance Statistics originally meant the collection of population and economic information vital

More information

" = Y(#,$) % R(r) = 1 4& % " = Y(#,$) % R(r) = Recitation Problems: Week 4. a. 5 B, b. 6. , Ne Mg + 15 P 2+ c. 23 V,

 = Y(#,$) % R(r) = 1 4& %  = Y(#,$) % R(r) = Recitation Problems: Week 4. a. 5 B, b. 6. , Ne Mg + 15 P 2+ c. 23 V, Recitation Problems: Week 4 1. Which of the following combinations of quantum numbers are allowed for an electron in a one-electron atom: n l m l m s 2 2 1! 3 1 0 -! 5 1 2! 4-1 0! 3 2 1 0 2 0 0 -! 7 2-2!

More information

Chapter 26: Comparing Counts (Chi Square)

Chapter 26: Comparing Counts (Chi Square) Chapter 6: Comparing Counts (Chi Square) We ve seen that you can turn a qualitative variable into a quantitative one (by counting the number of successes and failures), but that s a compromise it forces

More information

We're in interested in Pr{three sixes when throwing a single dice 8 times}. => Y has a binomial distribution, or in official notation, Y ~ BIN(n,p).

We're in interested in Pr{three sixes when throwing a single dice 8 times}. => Y has a binomial distribution, or in official notation, Y ~ BIN(n,p). Sampling distributions and estimation. 1) A brief review of distributions: We're in interested in Pr{three sixes when throwing a single dice 8 times}. => Y has a binomial distribution, or in official notation,

More information

Experiment 2 Random Error and Basic Statistics

Experiment 2 Random Error and Basic Statistics PHY9 Experiment 2: Random Error and Basic Statistics 8/5/2006 Page Experiment 2 Random Error and Basic Statistics Homework 2: Turn in at start of experiment. Readings: Taylor chapter 4: introduction, sections

More information

Chapter 18. Sampling Distribution Models /51

Chapter 18. Sampling Distribution Models /51 Chapter 18 Sampling Distribution Models 1 /51 Homework p432 2, 4, 6, 8, 10, 16, 17, 20, 30, 36, 41 2 /51 3 /51 Objective Students calculate values of central 4 /51 The Central Limit Theorem for Sample

More information

Study and research skills 2009 Duncan Golicher. and Adrian Newton. Last draft 11/24/2008

Study and research skills 2009 Duncan Golicher. and Adrian Newton. Last draft 11/24/2008 Study and research skills 2009. and Adrian Newton. Last draft 11/24/2008 Inference about the mean: What you will learn Why we need to draw inferences from samples The difference between a population and

More information

Chapter 18. Sampling Distribution Models. Copyright 2010, 2007, 2004 Pearson Education, Inc.

Chapter 18. Sampling Distribution Models. Copyright 2010, 2007, 2004 Pearson Education, Inc. Chapter 18 Sampling Distribution Models Copyright 2010, 2007, 2004 Pearson Education, Inc. Normal Model When we talk about one data value and the Normal model we used the notation: N(μ, σ) Copyright 2010,

More information

Confidence Intervals

Confidence Intervals Quantitative Foundations Project 3 Instructor: Linwei Wang Confidence Intervals Contents 1 Introduction 3 1.1 Warning....................................... 3 1.2 Goals of Statistics..................................

More information

Measurements of a Table

Measurements of a Table Measurements of a Table OBJECTIVES to practice the concepts of significant figures, the mean value, the standard deviation of the mean and the normal distribution by making multiple measurements of length

More information

1 What is the area model for multiplication?

1 What is the area model for multiplication? for multiplication represents a lovely way to view the distribution property the real number exhibit. This property is the link between addition and multiplication. 1 1 What is the area model for multiplication?

More information

Terms of Use. Copyright Embark on the Journey

Terms of Use. Copyright Embark on the Journey Terms of Use All rights reserved. No part of this packet may be reproduced, stored in a retrieval system, or transmitted in any form by any means - electronic, mechanical, photo-copies, recording, or otherwise

More information

Mathematician Preemptive Strike 2 Due on Day 1 of Chapter 2

Mathematician Preemptive Strike 2 Due on Day 1 of Chapter 2 Mathematician Preemptive Strike Due on Day 1 of Chapter Your first experience with a Wiggle chart. Not to be confused with anything related to the Wiggles Note: It s also called a Sign chart, but since

More information

Reporting Measurement and Uncertainty

Reporting Measurement and Uncertainty Introduction Reporting Measurement and Uncertainty One aspect of Physics is to describe the physical world. In this class, we are concerned primarily with describing objects in motion and objects acted

More information

Identify events like OIL+ in the tree and their probabilities (don't reduce).

Identify events like OIL+ in the tree and their probabilities (don't reduce). 1. Make a complete tree diagram for the following information: P(OIL) = 0.3 P(+ OIL) = 0.8 P(- no OIL) = 0.9 Identify events like OIL+ in the tree and their probabilities (don't reduce). 2. From your tree

More information

Lecture 1: Probability Fundamentals

Lecture 1: Probability Fundamentals Lecture 1: Probability Fundamentals IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge January 22nd, 2008 Rasmussen (CUED) Lecture 1: Probability

More information

Probability and Inference. POLI 205 Doing Research in Politics. Populations and Samples. Probability. Fall 2015

Probability and Inference. POLI 205 Doing Research in Politics. Populations and Samples. Probability. Fall 2015 Fall 2015 Population versus Sample Population: data for every possible relevant case Sample: a subset of cases that is drawn from an underlying population Inference Parameters and Statistics A parameter

More information

Business Statistics. Lecture 3: Random Variables and the Normal Distribution

Business Statistics. Lecture 3: Random Variables and the Normal Distribution Business Statistics Lecture 3: Random Variables and the Normal Distribution 1 Goals for this Lecture A little bit of probability Random variables The normal distribution 2 Probability vs. Statistics Probability:

More information

Notes on Random Variables, Expectations, Probability Densities, and Martingales

Notes on Random Variables, Expectations, Probability Densities, and Martingales Eco 315.2 Spring 2006 C.Sims Notes on Random Variables, Expectations, Probability Densities, and Martingales Includes Exercise Due Tuesday, April 4. For many or most of you, parts of these notes will be

More information

Section 3.4 Normal Distribution MDM4U Jensen

Section 3.4 Normal Distribution MDM4U Jensen Section 3.4 Normal Distribution MDM4U Jensen Part 1: Dice Rolling Activity a) Roll two 6- sided number cubes 18 times. Record a tally mark next to the appropriate number after each roll. After rolling

More information

Fundamentals of Probability CE 311S

Fundamentals of Probability CE 311S Fundamentals of Probability CE 311S OUTLINE Review Elementary set theory Probability fundamentals: outcomes, sample spaces, events Outline ELEMENTARY SET THEORY Basic probability concepts can be cast in

More information

Experiment 2 Random Error and Basic Statistics

Experiment 2 Random Error and Basic Statistics PHY191 Experiment 2: Random Error and Basic Statistics 7/12/2011 Page 1 Experiment 2 Random Error and Basic Statistics Homework 2: turn in the second week of the experiment. This is a difficult homework

More information

Experiment 0 ~ Introduction to Statistics and Excel Tutorial. Introduction to Statistics, Error and Measurement

Experiment 0 ~ Introduction to Statistics and Excel Tutorial. Introduction to Statistics, Error and Measurement Experiment 0 ~ Introduction to Statistics and Excel Tutorial Many of you already went through the introduction to laboratory practice and excel tutorial in Physics 1011. For that reason, we aren t going

More information

03.1 Experimental Error

03.1 Experimental Error 03.1 Experimental Error Problems: 15, 18, 20 Dr. Fred Omega Garces Chemistry 251 Miramar College 1 Making a measurement In general, the uncertainty of a measurement is determined by the precision of the

More information

Day 2 Notes: Riemann Sums In calculus, the result of f ( x)

Day 2 Notes: Riemann Sums In calculus, the result of f ( x) AP Calculus Unit 6 Basic Integration & Applications Day 2 Notes: Riemann Sums In calculus, the result of f ( x) dx is a function that represents the anti-derivative of the function f(x). This is also sometimes

More information

Civil Engineering Computation. Initial Meeting and Class Setup EXCEL Review Problems

Civil Engineering Computation. Initial Meeting and Class Setup EXCEL Review Problems Civil Engineering Computation Initial Meeting and Class Setup EXCEL Review Problems Class Meeting Times The class runs from 12:30 until 2:20 on Monday with the lab following at 2:30 This was the original

More information

Radiometric Dating (tap anywhere)

Radiometric Dating (tap anywhere) Radiometric Dating (tap anywhere) Protons Neutrons Electrons Elements on the periodic table are STABLE Elements can have radioactive versions of itself called ISOTOPES!! Page 1 in your ESRT has your list!

More information

A Scientific Model for Free Fall.

A Scientific Model for Free Fall. A Scientific Model for Free Fall. I. Overview. This lab explores the framework of the scientific method. The phenomenon studied is the free fall of an object released from rest at a height H from the ground.

More information

Physics 6A Lab Experiment 6

Physics 6A Lab Experiment 6 Biceps Muscle Model Physics 6A Lab Experiment 6 Introduction This lab will begin with some warm-up exercises to familiarize yourself with the theory, as well as the experimental setup. Then you ll move

More information

the probability of getting either heads or tails must be 1 (excluding the remote possibility of getting it to land on its edge).

the probability of getting either heads or tails must be 1 (excluding the remote possibility of getting it to land on its edge). Probability One of the most useful and intriguing aspects of quantum mechanics is the Heisenberg Uncertainty Principle. Before I get to it however, we need some initial comments on probability. Let s first

More information

t s THE LABORATORY NOTEBOOK

t s THE LABORATORY NOTEBOOK THE LABORATORY NOTEBOOK The laboratory notebook is a legal document describing ones activities as they apply to a given research project and, It is a teaching tool, to be used to remind or inform one of

More information

Conditional Probability

Conditional Probability Conditional Probability When we obtain additional information about a probability experiment, we want to use the additional information to reassess the probabilities of events given the new information.

More information

Review of the Normal Distribution

Review of the Normal Distribution Sampling and s Normal Distribution Aims of Sampling Basic Principles of Probability Types of Random Samples s of the Mean Standard Error of the Mean The Central Limit Theorem Review of the Normal Distribution

More information

Linear Kinematics John Smith Kathy Hernandez (partner) Physics 1 Lab (Friday) Mr. Kiledjian 02/24/2006

Linear Kinematics John Smith Kathy Hernandez (partner) Physics 1 Lab (Friday) Mr. Kiledjian 02/24/2006 Linear Kinematics John Smith Kathy Hernandez (partner) Physics 1 Lab (Friday) Mr. Kiledjian 02/24/2006 Purpose: In this lab, we will investigate the relationship between displacements, velocity, and acceleration.

More information

Fundamental Statistical Concepts and Methods Needed in a Test-and-Evaluator s Toolkit. Air Academy Associates

Fundamental Statistical Concepts and Methods Needed in a Test-and-Evaluator s Toolkit. Air Academy Associates Fundamental Statistical Concepts and Methods Needed in a Test-and-Evaluator s Toolkit Mark Kiemele Air Academy Associates mkiemele@airacad.com ITEA 010 Symposium Glendale, AZ 13 September 010 INTRODUCTIONS

More information

Normal Distributions Rejection of Data + RLC Circuits. Lecture 4 Physics 2CL Summer 2011

Normal Distributions Rejection of Data + RLC Circuits. Lecture 4 Physics 2CL Summer 2011 Normal Distributions Rejection of Data + RLC Circuits Lecture 4 Physics 2CL Summer 2011 Outline Reminder of simple uncertainty propagation formulae Hidden useful formula for estimating uncertainties More

More information

( v 1 + v 2 ) + (3 v 1 ) = 4 v 1 + v 2. and ( 2 v 2 ) + ( v 1 + v 3 ) = v 1 2 v 2 + v 3, for instance.

( v 1 + v 2 ) + (3 v 1 ) = 4 v 1 + v 2. and ( 2 v 2 ) + ( v 1 + v 3 ) = v 1 2 v 2 + v 3, for instance. 4.2. Linear Combinations and Linear Independence If we know that the vectors v 1, v 2,..., v k are are in a subspace W, then the Subspace Test gives us more vectors which must also be in W ; for instance,

More information

1 Normal Distribution.

1 Normal Distribution. Normal Distribution.. Introduction A Bernoulli trial is simple random experiment that ends in success or failure. A Bernoulli trial can be used to make a new random experiment by repeating the Bernoulli

More information

Lab 1: Measurement, Uncertainty, and Uncertainty Propagation

Lab 1: Measurement, Uncertainty, and Uncertainty Propagation Lab 1: Measurement, Uncertainty, and Uncertainty Propagation 17 ame Date Partners TA Section Lab 1: Measurement, Uncertainty, and Uncertainty Propagation The first principle is that you must not fool yourself

More information

Introduction to Measurement Physics 114 Eyres

Introduction to Measurement Physics 114 Eyres 1 Introduction to Measurement Physics 114 Eyres 6/5/2016 Module 1: Measurement 1 2 Significant Figures Count all non-zero digits Count zeros between non-zero digits Count zeros after the decimal if also

More information

Two-sample Categorical data: Testing

Two-sample Categorical data: Testing Two-sample Categorical data: Testing Patrick Breheny April 1 Patrick Breheny Introduction to Biostatistics (171:161) 1/28 Separate vs. paired samples Despite the fact that paired samples usually offer

More information

Chapter 7: Statistics Describing Data. Chapter 7: Statistics Describing Data 1 / 27

Chapter 7: Statistics Describing Data. Chapter 7: Statistics Describing Data 1 / 27 Chapter 7: Statistics Describing Data Chapter 7: Statistics Describing Data 1 / 27 Categorical Data Four ways to display categorical data: 1 Frequency and Relative Frequency Table 2 Bar graph (Pareto chart)

More information

STA Module 8 The Sampling Distribution of the Sample Mean. Rev.F08 1

STA Module 8 The Sampling Distribution of the Sample Mean. Rev.F08 1 STA 2023 Module 8 The Sampling Distribution of the Sample Mean Rev.F08 1 Module Objectives 1. Define sampling error and explain the need for sampling distributions. 2. Find the mean and standard deviation

More information

PS2 Lab 1: Measurement and Uncertainty Supplemental Fall 2013

PS2 Lab 1: Measurement and Uncertainty Supplemental Fall 2013 Background and Introduction (If you haven t already read the chapters from Taylor posted on the course website, do so now before continuing.) In an experimental setting it is just as important to specify

More information

3.2 A2 - Just Like Derivatives but Backwards

3.2 A2 - Just Like Derivatives but Backwards 3. A - Just Like Derivatives but Backwards The Definite Integral In the previous lesson, you saw that as the number of rectangles got larger and larger, the values of Ln, Mn, and Rn all grew closer and

More information

Measurement: The Basics

Measurement: The Basics I. Introduction Measurement: The Basics Physics is first and foremost an experimental science, meaning that its accumulated body of knowledge is due to the meticulous experiments performed by teams of

More information

Kinetic Friction. Experiment #13

Kinetic Friction. Experiment #13 Kinetic Friction Experiment #13 Joe Solution E01234567 Partner- Jane Answers PHY 221 Lab Instructor- Nathaniel Franklin Wednesday, 11 AM-1 PM Lecture Instructor Dr. Jacobs Abstract The purpose of this

More information

MAC Calculus II Spring Homework #6 Some Solutions.

MAC Calculus II Spring Homework #6 Some Solutions. MAC 2312-15931-Calculus II Spring 23 Homework #6 Some Solutions. 1. Find the centroid of the region bounded by the curves y = 2x 2 and y = 1 2x 2. Solution. It is obvious, by inspection, that the centroid

More information

Basic Probability. Introduction

Basic Probability. Introduction Basic Probability Introduction The world is an uncertain place. Making predictions about something as seemingly mundane as tomorrow s weather, for example, is actually quite a difficult task. Even with

More information

Geography 3251: Mountain Geography Assignment II: Island Biogeography Theory Assigned: May 22, 2012 Due: May 29, 9 AM

Geography 3251: Mountain Geography Assignment II: Island Biogeography Theory Assigned: May 22, 2012 Due: May 29, 9 AM Names: Geography 3251: Mountain Geography Assignment II: Island Biogeography Theory Assigned: May 22, 2012 Due: May 29, 2012 @ 9 AM NOTE: This lab is a modified version of the Island Biogeography lab that

More information

Section 5.4. Ken Ueda

Section 5.4. Ken Ueda Section 5.4 Ken Ueda Students seem to think that being graded on a curve is a positive thing. I took lasers 101 at Cornell and got a 92 on the exam. The average was a 93. I ended up with a C on the test.

More information

review session gov 2000 gov 2000 () review session 1 / 38

review session gov 2000 gov 2000 () review session 1 / 38 review session gov 2000 gov 2000 () review session 1 / 38 Overview Random Variables and Probability Univariate Statistics Bivariate Statistics Multivariate Statistics Causal Inference gov 2000 () review

More information

5 Systems of Equations

5 Systems of Equations Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate

More information

In a radioactive source containing a very large number of radioactive nuclei, it is not

In a radioactive source containing a very large number of radioactive nuclei, it is not Simulated Radioactive Decay Using Dice Nuclei Purpose: In a radioactive source containing a very large number of radioactive nuclei, it is not possible to predict when any one of the nuclei will decay.

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations As stated in Section G, Definition., a linear equation in two variables is an equation of the form AAAA + BBBB = CC, where AA and BB are not both zero. Such an equation has

More information

P (A) = P (B) = P (C) = P (D) =

P (A) = P (B) = P (C) = P (D) = STAT 145 CHAPTER 12 - PROBABILITY - STUDENT VERSION The probability of a random event, is the proportion of times the event will occur in a large number of repititions. For example, when flipping a coin,

More information

Secondary Support Pack. be introduced to some of the different elements within the periodic table;

Secondary Support Pack. be introduced to some of the different elements within the periodic table; Secondary Support Pack INTRODUCTION The periodic table of the elements is central to chemistry as we know it today and the study of it is a key part of every student s chemical education. By playing the

More information

MA 1128: Lecture 08 03/02/2018. Linear Equations from Graphs And Linear Inequalities

MA 1128: Lecture 08 03/02/2018. Linear Equations from Graphs And Linear Inequalities MA 1128: Lecture 08 03/02/2018 Linear Equations from Graphs And Linear Inequalities Linear Equations from Graphs Given a line, we would like to be able to come up with an equation for it. I ll go over

More information

Notes 3.2: Properties of Limits

Notes 3.2: Properties of Limits Calculus Maimus Notes 3.: Properties of Limits 3. Properties of Limits When working with its, you should become adroit and adept at using its of generic functions to find new its of new functions created

More information

CENTRAL LIMIT THEOREM (CLT)

CENTRAL LIMIT THEOREM (CLT) CENTRAL LIMIT THEOREM (CLT) A sampling distribution is the probability distribution of the sample statistic that is formed when samples of size n are repeatedly taken from a population. If the sample statistic

More information

Lecture 4: Feedback and Op-Amps

Lecture 4: Feedback and Op-Amps Lecture 4: Feedback and Op-Amps Last time, we discussed using transistors in small-signal amplifiers If we want a large signal, we d need to chain several of these small amplifiers together There s a problem,

More information

LECTURE 15: SIMPLE LINEAR REGRESSION I

LECTURE 15: SIMPLE LINEAR REGRESSION I David Youngberg BSAD 20 Montgomery College LECTURE 5: SIMPLE LINEAR REGRESSION I I. From Correlation to Regression a. Recall last class when we discussed two basic types of correlation (positive and negative).

More information

Take the measurement of a person's height as an example. Assuming that her height has been determined to be 5' 8", how accurate is our result?

Take the measurement of a person's height as an example. Assuming that her height has been determined to be 5' 8, how accurate is our result? Error Analysis Introduction The knowledge we have of the physical world is obtained by doing experiments and making measurements. It is important to understand how to express such data and how to analyze

More information

Experiment Flow Analysis

Experiment Flow Analysis MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.1X Fall Term 22 Handed out: November 26 Due: Dec 6 at 4 pm Experiment Flow Analysis Problem 1: Here is a summary of the measurements,

More information

Lecture 11: Extrema. Nathan Pflueger. 2 October 2013

Lecture 11: Extrema. Nathan Pflueger. 2 October 2013 Lecture 11: Extrema Nathan Pflueger 2 October 201 1 Introduction In this lecture we begin to consider the notion of extrema of functions on chosen intervals. This discussion will continue in the lectures

More information

The Scientific Method

The Scientific Method The Scientific Method Mauna Kea Observatory, Hawaii Look up in the sky. How many stars do you see? Do they all look the same? How long have they been there? What are stars made of? 2 ENGAGE Orsola studies

More information

Name: Lab Partner: Section: In this experiment error analysis and propagation will be explored.

Name: Lab Partner: Section: In this experiment error analysis and propagation will be explored. Chapter 2 Error Analysis Name: Lab Partner: Section: 2.1 Purpose In this experiment error analysis and propagation will be explored. 2.2 Introduction Experimental physics is the foundation upon which the

More information

Unit 22: Sampling Distributions

Unit 22: Sampling Distributions Unit 22: Sampling Distributions Summary of Video If we know an entire population, then we can compute population parameters such as the population mean or standard deviation. However, we generally don

More information

Student Activity: Finding Factors and Prime Factors

Student Activity: Finding Factors and Prime Factors When you have completed this activity, go to Status Check. Pre-Algebra A Unit 2 Student Activity: Finding Factors and Prime Factors Name Date Objective In this activity, you will find the factors and the

More information

Why should you care?? Intellectual curiosity. Gambling. Mathematically the same as the ESP decision problem we discussed in Week 4.

Why should you care?? Intellectual curiosity. Gambling. Mathematically the same as the ESP decision problem we discussed in Week 4. I. Probability basics (Sections 4.1 and 4.2) Flip a fair (probability of HEADS is 1/2) coin ten times. What is the probability of getting exactly 5 HEADS? What is the probability of getting exactly 10

More information

Determination of Density 1

Determination of Density 1 Introduction Determination of Density 1 Authors: B. D. Lamp, D. L. McCurdy, V. M. Pultz and J. M. McCormick* Last Update: February 1, 2013 Not so long ago a statistical data analysis of any data set larger

More information

Please read this introductory material carefully; it covers topics you might not yet have seen in class.

Please read this introductory material carefully; it covers topics you might not yet have seen in class. b Lab Physics 211 Lab 10 Torque What You Need To Know: Please read this introductory material carefully; it covers topics you might not yet have seen in class. F (a) (b) FIGURE 1 Forces acting on an object

More information

Slide 1. Slide 2. Slide 3. Dilution Solution. What s the concentration of red triangles? What s the concentration of red triangles?

Slide 1. Slide 2. Slide 3. Dilution Solution. What s the concentration of red triangles? What s the concentration of red triangles? Slide 1 Dilution Solution Solution Dilution Slide 2 What s the concentration of red triangles? 500 ml A. B. C. D.10 M E. 5 M Slide 3 What s the concentration of red triangles? 500 ml A. 10 B. 10 C. D.

More information

Physics 1140 Fall 2013 Introduction to Experimental Physics

Physics 1140 Fall 2013 Introduction to Experimental Physics Physics 1140 Fall 2013 Introduction to Experimental Physics Joanna Atkin Lecture 5: Recap of Error Propagation and Gaussian Statistics Graphs and linear fitting Experimental analysis Typically make repeat

More information

Outline. Probability. Math 143. Department of Mathematics and Statistics Calvin College. Spring 2010

Outline. Probability. Math 143. Department of Mathematics and Statistics Calvin College. Spring 2010 Outline Math 143 Department of Mathematics and Statistics Calvin College Spring 2010 Outline Outline 1 Review Basics Random Variables Mean, Variance and Standard Deviation of Random Variables 2 More Review

More information

9.5 Radical Equations

9.5 Radical Equations Section 9.5 Radical Equations 945 9.5 Radical Equations In this section we are going to solve equations that contain one or more radical expressions. In the case where we can isolate the radical expression

More information