Thermal Hydraulic Considerations in Steady State Design

Size: px
Start display at page:

Download "Thermal Hydraulic Considerations in Steady State Design"

Transcription

1 Thermal Hydraulic Considerations in Steady State Design 1. PWR Design 2. BWR Design Course 22.39, Lecture 18 11/10/05 1

2 PWR Design Unless specified otherwise, all figures in this presentation are from: Shuffler, C., J. Trant, N. Todreas, and A. Romano. "Application of Hydride Fuels to Enhance Pressurized Water Reactor Performance." MIT-NFC-TR-077. Cambridge, MA: MIT CANES, January Courtesy of MIT CANES. Used with permission. 2

3 Components of Margin for MDNBR Overpower Transient 3800 MW th 4456 MW th 3

4 Summary of Steady-State Thermal Hydraulic Design Constraints 4

5 MDNBR vs Power Source: Blair, S., and N.E. Todreas. "Thermal Hydraulic Performance Analysis of a Small Integral Pressurized Water Reactor Core." MIT-ANP-TR-099. Cambridge MA: MIT CANES, December Courtesy of MIT CANES. Used with permission. 5

6 Flow-Induced Vibration Mechanisms 6

7 Vibrations Analysis Assumptions The fuel rod is modeled as a linear structure Changes to the fuel assembly structure over time are not considered Only the cladding structure is considered in the fuel rod model Only the first vibration mode is considered Core power is the only operating parameter affecting the vibrations performance of new designs 7

8 Summary of Steady-State Thermal Hydraulic Design Constraints 8

9 9 Vortex Shedding The vortex shedding margins in the lift and drag directions are defined as: VSM lift = f 1 f f s s (3.18) VSM drag = The vortex shedding frequency is given by: f 1 2 f s 2 f s where, f 1 : fundamental frequency of the rod (3.19) Vcross f = S (3.15) s D where the Strouhal number, S, was found by Weaver and Fitzpatrick to depend on the P/D ratio and channel shape. For square arrays, 1 (3.16) S = 2 ( P D 1) and for hexagonal arrays, S = 1 (3.17) 1.73(P D 1)

10 Fluid Elastic Instability The ratio of the maximum effective cross-flow velocity in the hot assembly, V eff, to the critical velocity for the bundle geometry V critical : FIM = V V eff (3.21) critical The most widely accepted correlation for estimating the critical velocity for a tube bundle is Connor s equation: V critical = β f n 2 π ζ m t ρ fl (3.23) where Pettigrew suggested a P/D effect on Connors constant: β=4.76 P D (3.24) The critical velocity is constant for a fixed geometry and, with the exception of small changes in coolant density, does not depend on the power and flow conditions in the core. 10

11 11 W Fretting Wear ( 3 2 f fretting,new 1 m t y ) rms new T c,ref 3 2 W ( fretting,ref f 1 m t y ) rms Tc,new ref = (3.39) where y rms is turbulence induced vibration from axial and cross flow, m t is total linear mass, and f 1 is fundamental frequency of fuel rod. The wear rate ratio is the constrained parameter, and the ratio of the cycle lengths is the design limit. If a new design has a shorter cycle length than the reference core, then it can safely accommodate a higher rate of wear. The wear rate limit, due to its dependence on cycle length, will depend on both the power and the fuel burnup. The power, however, depends on the wear rate limit, and the burnup, when limited by fuel performance constraints, depends on the power.

12 Sliding Wear W sliding, new W sliding, ref = y rms 1 D 2 4 I cl (D f 1 ) + new A cl ( D y rms f 1 ) + ref T c, ref ref (3.44) 1 D 2 T c, new 4I cl A cl new where A cl is cladding cross-sectional area, I cl is cladding moment of inertia, D is cladding outside diameter 12

13 P/D vs H/HM for Square and Hexagonal arrays of UZrH 1.6 and UO P/D H/HM Hydride Hex Hydride Square Oxide Hex Oxide Square 13

14 Maximum Achievable Power for Square Arrays of UO 2 at 29 psia Note: The following figures, slides 14-19, came from the paper, E. Greenspan et al, Optimization of UO 2 Fueled PWR Core Design, Proceedings of ICAPP 05, Seoul, Korea, May 15-19, 2005, Paper

15 Maximum Achievable Power for Square Arrays of UO 2 at 60 psia 15

16 Maximum Achievable Power at 29 psia Accounting for Fuel Rod Vibration and Wear 16

17 Maximum Achievable Power at 60 psia Accounting for Fuel Rod Vibration and Wear 17

18 18 Maximum Permissible Cycle Length. 29 psia

19 19 Maximum Permissible Cycle Length. 60 psia

20 Illustration of Porosity in a Wire-Wrapped Bundle 20

21 21 THV-Induced Wear Data with Otsubo s Wear Constraint where P i is the pitch, P is the porosity, d w is the wire diameter, R is the number of rings in the bundle, ΔT is the temperature drop across the bundle in C, H is the axial pitch, and L is the length of the assembly. The region above this line (labeled wear mark region) is the region where Otsubo s constraint predicts that wear will occur. In the region below the dotted line, Otsubo s constraint predicts that no significant wear will occur. The points marked with a represent reactors in which no wear has been observed, while the points marked with a * represent reactors in which wear marks occurred. The horizontal lines identify the range over which the subject fuel tests were conducted. The red dots,, used for BN-350, BN-600, and BOR-60, represent Russian fast reactor data not used by Otsubo.

22 BWR Core Design 22

23 GE9_9 Fuel Bundle 23

24 Thermal-Hydraulic Constraints 24

25 25 The Hench-Gillis correlation has the general form: AZ x = (2 J )+ F C P B + Z

26 Pin-by-Pin Power-to-Average Power Ratio at BOL for a BWR GE 9_9 Single Bundle Without Gadolinia 26

27 J1 Factors 27

28 Bundle Loss Coefficients 28

29 Coefficients for Frictional Pressure Drop Correlations 29

30 Vibration Ratio Dependence on Quality and Mass Flux, Païdoussis Correlation Source: Ferroni, P., and N. E. Todreas. "Thermal Hydraulic Analysis of Hydride Fueled BWRs" MIT-NFC-TR-079. Cambridge, MA: MIT CANES, February Courtesy of MIT CANES. Used with permission. 30

31 Païdoussis Correlation Quinn s Data Comparison 31

32 Païdoussis - Tsukuda Vibration Ratio Comparison (Restricted G Range) 32

33 Final Vibration Ratio Comparison 33

34 Locations of the Assembly Configurations Examined for / Ratio Investigation 34

35 Comparison between Relative Maximum Power and Overall Maximum Power 35

36 36 Power distribution assumptions The non-uniform radial power distribution is accounted for by means of four radial peaking factors, which reflect typical average BWR values Hot assembly: 1.45 Mid-hot assemblies: 1.3 Mid-cold assemblies: 1.0 Cold assemblies: 0.6

37 37 3 core types are considered*: 1) Oxide Backfit Core: existing BWR 5 vessel fueled with UO 2 (core radius = 3.2 m). Cruciform CRs, WRs, constant fuel channel size. 2) Hydride Backfit Core: existing BWR5 vessel fueled with UZrH 1.6 (core radius = 3.2 m). Variable fuel channel size. 3) Hydride New Core: ESBWR vessel fueled with UZrH 1.6 (core radius = 3.55 m). Variable fuel channel size. * Each core type has been modeled 400 times, i.e. each time with a different assembly configuration.

38 38 Core structural changes resulting from the implementation of UZrH 1.6

39 The greater design freedom for the hydride cores is limited by the application of 2 Structural Constraints: Hydride Backfit Core Structural Constraints Maximum Number of Assemblies* 1.6N ref (1222) Maximum Assembly Weight** 1.4M ref (361kg) Hydride New Core 1.6N ref (1222) Not Applied * to limit the refueling time. ** due to the limited load capacity of the crane in an existing plant. Not applied to the Hydride New Core since a reactor designed specifically to utilize UZrH 1.6 is assumed to be provided with a crane of sufficient load capacity. 39

40 Oxide Core Powermap 40

41 Power, LHGR and Number of Rods Ratios Between the Examined Oxide Core Configuration and the Reference Core (the lines represent unity ratios) 41

42 Whole Core Flow Rate (Oxide Core) 42

43 43 Some observations about the powermaps: What are the limiting parameters and where do they apply d MCPR (most limiting constraint) Fuel avg T The size of this area increases significantly (especially for Hydride fuel) if the fuel-clad gap is modeled as a He-filled gap*. However, for all the three core types the overall max power is not affected by the choice of the gap filling. Very tight lattice assemblies. Core _p Vibration Ratio P/d Small d rods: significantly more subject to vibrations. NOTE: Fuel Centerline T, Clad Surface T and Decay Ratio are never limiting. * Through the whole analysis, the fuel-clad gap is assumed to be filled by a liquid-metal eutectic.

44 Limiting Effect Exerted by Constraints (Oxide Core) 44

45 Core Average Exit Quality and Hot Bundle Exit Quality (Oxide Core) 45

46 Bypass Flow Percentage (Oxide Core) 46

47 Oxide Core Fuel Matrix (n_n) Size (the colored scale indicates the matrix index n; black upper line: n=7, black lower line: n=12; green line: high power region) 47

48 48 1) Oxide Backfit Core 2) Hydride Backfit Core Oxide Backfit Hydride Backfit Although the core size is the same, the Hydride Core delivers 10-25% more power! (depending on the assembly configuration considered)

49 Power, LHGR and Rod Ratios Between Hydride Backfit Core and Oxide Ref. Core (continuous lines represent unity ratios) 49

50 Limiting Effect Exerted by Constraints (Hydride Backfit Core) 50

51 51 3) Hydride New Core The benefits derived from the implementation of Hydride fuel are coupled with those (predictable) resulting from having a larger core size (ESBWR core size). For the sake of comparison, the ESBWR fueled with oxide delivers about 4500 MW th

Comparison of Silicon Carbide and Zircaloy4 Cladding during LBLOCA

Comparison of Silicon Carbide and Zircaloy4 Cladding during LBLOCA Comparison of Silicon Carbide and Zircaloy4 Cladding during LBLOCA Prepared By: Kwangwon Ahn Prepared For: 22.314 Prepared On: December 7 th, 2006 Comparison of Silicon Carbide and Zircaloy4 Cladding during

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6 Lectures on Nuclear Power Safety Lecture No 6 Title: Introduction to Thermal-Hydraulic Analysis of Nuclear Reactor Cores Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture

More information

ENGINEERING OF NUCLEAR REACTORS. Fall December 17, 2002 OPEN BOOK FINAL EXAM 3 HOURS

ENGINEERING OF NUCLEAR REACTORS. Fall December 17, 2002 OPEN BOOK FINAL EXAM 3 HOURS 22.312 ENGINEERING OF NUCLEAR REACTORS Fall 2002 December 17, 2002 OPEN BOOK FINAL EXAM 3 HOURS PROBLEM #1 (30 %) Consider a BWR fuel assembly square coolant subchannel with geometry and operating characteristics

More information

SUB-CHAPTER D.1. SUMMARY DESCRIPTION

SUB-CHAPTER D.1. SUMMARY DESCRIPTION PAGE : 1 / 12 CHAPTER D. REACTOR AND CORE SUB-CHAPTER D.1. SUMMARY DESCRIPTION Chapter D describes the nuclear, hydraulic and thermal characteristics of the reactor, the proposals made at the present stage

More information

Research Article Subchannel Analysis of Wire Wrapped SCWR Assembly

Research Article Subchannel Analysis of Wire Wrapped SCWR Assembly Science and Technology of Nuclear Installations, Article ID 301052, 8 pages http://dx.doi.org/10.1155/2014/301052 Research Article Subchannel Analysis of Wire Wrapped SCWR Assembly Jianqiang Shan, Henan

More information

Thermal-Hydraulic Design

Thermal-Hydraulic Design Read: BWR Section 3 (Assigned Previously) PWR Chapter (Assigned Previously) References: BWR SAR Section 4.4 PWR SAR Section 4.4 Principal Design Requirements (1) Energy Costs Minimized A) Maximize Plant

More information

A Study on Hydraulic Resistance of Porous Media Approach for CANDU-6 Moderator Analysis

A Study on Hydraulic Resistance of Porous Media Approach for CANDU-6 Moderator Analysis Proceedings of the Korean Nuclear Society Spring Meeting Kwangju, Korea, May 2002 A Study on Hydraulic Resistance of Porous Media Approach for CANDU-6 Moderator Analysis Churl Yoon, Bo Wook Rhee, and Byung-Joo

More information

Numerical Simulation of the MYRRHA reactor: development of the appropriate flow solver Dr. Lilla Koloszár, Philippe Planquart

Numerical Simulation of the MYRRHA reactor: development of the appropriate flow solver Dr. Lilla Koloszár, Philippe Planquart Numerical Simulation of the MYRRHA reactor: development of the appropriate flow solver Dr. Lilla Koloszár, Philippe Planquart Von Karman Institute, Ch. de Waterloo 72. B-1640, Rhode-St-Genese, Belgium,

More information

Answers to questions in each section should be tied together and handed in separately.

Answers to questions in each section should be tied together and handed in separately. EGT0 ENGINEERING TRIPOS PART IA Wednesday 4 June 014 9 to 1 Paper 1 MECHANICAL ENGINEERING Answer all questions. The approximate number of marks allocated to each part of a question is indicated in the

More information

22.06 ENGINEERING OF NUCLEAR SYSTEMS OPEN BOOK FINAL EXAM 3 HOURS

22.06 ENGINEERING OF NUCLEAR SYSTEMS OPEN BOOK FINAL EXAM 3 HOURS 22.6 ENGINEERING OF NUCLEAR SYSTEMS OPEN BOOK FINAL EXAM 3 HOURS Short Questions (1% each) a) The specific power in a UO 2 pellet of a certain LWR is q"'=2 W/cm 3. The fuel 235 U enrichment is 4 % by weight.

More information

SENSITIVITY ANALYSIS FOR ULOF OF PGSFR

SENSITIVITY ANALYSIS FOR ULOF OF PGSFR Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS March 26-30, 2017, Jeju Island, Korea SENSITIVITY ANALYSIS FOR ULOF OF PGSFR Sarah Kang 1, Jaeseok Heo 1, ChiWoong Choi 1, Kwi-Seok

More information

Idaho National Laboratory Reactor Analysis Applications of the Serpent Lattice Physics Code

Idaho National Laboratory Reactor Analysis Applications of the Serpent Lattice Physics Code Idaho National Laboratory Reactor Analysis Applications of the Serpent Lattice Physics Code By Frederick N. Gleicher II, Javier Ortensi, Benjamin Baker, and Mark DeHart Outline Intra-Pin Power and Flux

More information

Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls

Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls Fluid Structure Interaction V 85 Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls K. Fujita Osaka City University,

More information

A Probabilistic Physics-of-Failure Approach to Assessment of Frequency of In-Vessel Steam Generator Tube Rupture Accident in SMRs

A Probabilistic Physics-of-Failure Approach to Assessment of Frequency of In-Vessel Steam Generator Tube Rupture Accident in SMRs A Probabilistic Physics-of-Failure Approach to Assessment of Frequency of In-Vessel Steam Generator Tube Rupture Accident in SMRs Mohammad Modarres Professor of Nuclear Engineering Center for Risk and

More information

Fuel BurnupCalculations and Uncertainties

Fuel BurnupCalculations and Uncertainties Fuel BurnupCalculations and Uncertainties Outline Review lattice physics methods Different approaches to burnup predictions Linkage to fuel safety criteria Sources of uncertainty Survey of available codes

More information

SCWR Research in Korea. Yoon Y. Bae KAERI

SCWR Research in Korea. Yoon Y. Bae KAERI SCWR Research in Korea Yoon Y. ae KAERI Organization President Dr. In-Soon Chnag Advanced Reactor Development Dr. Jong-Kyun Park Nuclear Engineering & Research Dr. M. H. Chang Mechanical Engineering &

More information

«CALCULATION OF ISOTOPE BURN-UP AND CHANGE IN EFFICIENCY OF ABSORBING ELEMENTS OF WWER-1000 CONTROL AND PROTECTION SYSTEM DURING BURN-UP».

«CALCULATION OF ISOTOPE BURN-UP AND CHANGE IN EFFICIENCY OF ABSORBING ELEMENTS OF WWER-1000 CONTROL AND PROTECTION SYSTEM DURING BURN-UP». «CALCULATION OF ISOTOPE BURN-UP AND CHANGE IN EFFICIENCY OF ABSORBING ELEMENTS OF WWER-1000 CONTROL AND PROTECTION SYSTEM DURING BURN-UP». O.A. Timofeeva, K.U. Kurakin FSUE EDO «GIDROPRESS», Podolsk, Russia

More information

Improvement of Critical Heat Flux Performance by Wire Spacer

Improvement of Critical Heat Flux Performance by Wire Spacer Journal of Energy and Power Engineering 9 (215) 844-851 doi: 1.17265/1934-8975/215.1.2 D DAVID PUBLISHING Improvement of Critical Heat Flux Performance by Wire Spacer Dan Tri Le 1 and Minoru Takahashi

More information

PREDICTION OF MASS FLOW RATE AND PRESSURE DROP IN THE COOLANT CHANNEL OF THE TRIGA 2000 REACTOR CORE

PREDICTION OF MASS FLOW RATE AND PRESSURE DROP IN THE COOLANT CHANNEL OF THE TRIGA 2000 REACTOR CORE PREDICTION OF MASS FLOW RATE AND PRESSURE DROP IN THE COOLANT CHANNEL OF THE TRIGA 000 REACTOR CORE Efrizon Umar Center for Research and Development of Nuclear Techniques (P3TkN) ABSTRACT PREDICTION OF

More information

ULOF Accident Analysis for 300 MWt Pb-Bi Coolled MOX Fuelled SPINNOR Reactor

ULOF Accident Analysis for 300 MWt Pb-Bi Coolled MOX Fuelled SPINNOR Reactor ULOF Accident Analysis for 300 MWt Pb-Bi Coolled MOX Fuelled SPINNOR Reactor Ade afar Abdullah Electrical Engineering Department, Faculty of Technology and Vocational Education Indonesia University of

More information

A PWR HOT-ROD MODEL: RELAP5/MOD3.2.2Y AS A SUBCHANNEL CODE I.C. KIRSTEN (1), G.R. KIMBER (2), R. PAGE (3), J.R. JONES (1) ABSTRACT

A PWR HOT-ROD MODEL: RELAP5/MOD3.2.2Y AS A SUBCHANNEL CODE I.C. KIRSTEN (1), G.R. KIMBER (2), R. PAGE (3), J.R. JONES (1) ABSTRACT FR0200515 9 lh International Conference on Nuclear Engineering, ICONE-9 8-12 April 2001, Nice, France A PWR HOT-ROD MODEL: RELAP5/MOD3.2.2Y AS A SUBCHANNEL CODE I.C. KIRSTEN (1), G.R. KIMBER (2), R. PAGE

More information

Introduction to Reactivity and Reactor Control

Introduction to Reactivity and Reactor Control Introduction to Reactivity and Reactor Control Larry Foulke Adjunct Professor Director of Nuclear Education Outreach University of Pittsburgh IAEA Workshop on Desktop Simulation October 2011 Learning Objectives

More information

Incineration of Plutonium in PWR Using Hydride Fuel

Incineration of Plutonium in PWR Using Hydride Fuel Incineration of Plutonium in PWR Using Hydride Fuel Francesco Ganda and Ehud Greenspan University of California, Berkeley ARWIF-2005 Oak-Ridge, TN February 16-18, 2005 Pu transmutation overview Many approaches

More information

Theoretical Task 3 (T-3) : Solutions 1 of 9

Theoretical Task 3 (T-3) : Solutions 1 of 9 Theoretical Task 3 (T-3) : Solutions of 9 The Design of a Nuclear Reactor Uranium occurs in nature as UO with only 0.70% of the uranium atoms being 35 U. Neutron induced fission occurs readily in 35 U

More information

Steady-State and Transient Neutronic and Thermal-hydraulic Analysis of ETDR using the FAST code system

Steady-State and Transient Neutronic and Thermal-hydraulic Analysis of ETDR using the FAST code system Steady-State and Transient Neutronic and Thermal-hydraulic Analysis of ETDR using the FAST code system Sandro Pelloni, Evaldas Bubelis and Paul Coddington Laboratory for Reactor Physics and Systems Behaviour,

More information

The Pennsylvania State University. The Graduate School. College of Engineering

The Pennsylvania State University. The Graduate School. College of Engineering The Pennsylvania State University The Graduate School College of Engineering TRACE/PARCS ASSESSMENT BASED ON PEACH BOTTOM TURBINE TRIP AND LOW FLOW STABILITY TESTS A Thesis in Nuclear Engineering by Boyan

More information

Figure 22.1 Unflattened Flux Distribution

Figure 22.1 Unflattened Flux Distribution 22 Neutron Flux Control If nothing were done to flatten the flux in our reactors, it would look something like Figure 22.1. The flux would be a maximum in the efuel of the reactor (where neutrons are moving

More information

RELATIONSHIPS AMONG KEY REACTOR SYSTEMS DESIGN VARIABLES Professor Neil Todreas TABLE OF CONTENTS

RELATIONSHIPS AMONG KEY REACTOR SYSTEMS DESIGN VARIABLES Professor Neil Todreas TABLE OF CONTENTS Class Note I September 6, 006 RELATIONSHIPS AMONG KEY REACTOR SYSTEMS DESIGN VARIABLES Professor Neil Todreas TABLE OF CONTENTS 1.0 KEY DESIGN PARAMETERS ARISING FROM ECONOMIC ASSESSMENT....0 CORE DESIGN

More information

Specific heat capacity. Convective heat transfer coefficient. Thermal diffusivity. Lc ft, m Characteristic length (r for cylinder or sphere; for slab)

Specific heat capacity. Convective heat transfer coefficient. Thermal diffusivity. Lc ft, m Characteristic length (r for cylinder or sphere; for slab) Important Heat Transfer Parameters CBE 150A Midterm #3 Review Sheet General Parameters: q or or Heat transfer rate Heat flux (per unit area) Cp Specific heat capacity k Thermal conductivity h Convective

More information

VVER-1000 Reflooding Scenario Simulation with MELCOR Code in Comparison with MELCOR Simulation

VVER-1000 Reflooding Scenario Simulation with MELCOR Code in Comparison with MELCOR Simulation VVER-1000 Reflooding Scenario Simulation with MELCOR 1.8.6 Code in Comparison with MELCOR 1.8.3 Simulation Jiří Duspiva Nuclear Research Institute Řež, plc. Nuclear Power and Safety Division Dept. of Reactor

More information

Homogenization Methods for Full Core Solution of the Pn Transport Equations with 3-D Cross Sections. Andrew Hall October 16, 2015

Homogenization Methods for Full Core Solution of the Pn Transport Equations with 3-D Cross Sections. Andrew Hall October 16, 2015 Homogenization Methods for Full Core Solution of the Pn Transport Equations with 3-D Cross Sections Andrew Hall October 16, 2015 Outline Resource-Renewable Boiling Water Reactor (RBWR) Current Neutron

More information

Department of Engineering and System Science, National Tsing Hua University,

Department of Engineering and System Science, National Tsing Hua University, 3rd International Conference on Materials Engineering, Manufacturing Technology and Control (ICMEMTC 2016) The Establishment and Application of TRACE/CFD Model for Maanshan PWR Nuclear Power Plant Yu-Ting

More information

APPLICATION OF THE COUPLED THREE DIMENSIONAL THERMAL- HYDRAULICS AND NEUTRON KINETICS MODELS TO PWR STEAM LINE BREAK ANALYSIS

APPLICATION OF THE COUPLED THREE DIMENSIONAL THERMAL- HYDRAULICS AND NEUTRON KINETICS MODELS TO PWR STEAM LINE BREAK ANALYSIS APPLICATION OF THE COUPLED THREE DIMENSIONAL THERMAL- HYDRAULICS AND NEUTRON KINETICS MODELS TO PWR STEAM LINE BREAK ANALYSIS Michel GONNET and Michel CANAC FRAMATOME Tour Framatome. Cedex 16, Paris-La

More information

Study of Burnup Reactivity and Isotopic Inventories in REBUS Program

Study of Burnup Reactivity and Isotopic Inventories in REBUS Program Study of Burnup Reactivity and Isotopic Inventories in REBUS Program T. Yamamoto 1, Y. Ando 1, K. Sakurada 2, Y. Hayashi 2, and K. Azekura 3 1 Japan Nuclear Energy Safety Organization (JNES) 2 Toshiba

More information

Advanced Heavy Water Reactor. Amit Thakur Reactor Physics Design Division Bhabha Atomic Research Centre, INDIA

Advanced Heavy Water Reactor. Amit Thakur Reactor Physics Design Division Bhabha Atomic Research Centre, INDIA Advanced Heavy Water Reactor Amit Thakur Reactor Physics Design Division Bhabha Atomic Research Centre, INDIA Design objectives of AHWR The Advanced Heavy Water Reactor (AHWR) is a unique reactor designed

More information

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea Neutronic evaluation of thorium-uranium fuel in heavy water research reactor HADI SHAMORADIFAR 1,*, BEHZAD TEIMURI 2, PARVIZ PARVARESH 1, SAEED MOHAMMADI 1 1 Department of Nuclear physics, Payame Noor

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 7

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 7 ectures on Nuclear Power Safety ecture No 7 itle: hermal-hydraulic nalysis of Single-Phase lows in Heated hannels Department of Energy echnology KH Spring 005 Slide No Outline of the ecture lad-oolant

More information

DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS

DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS DEVELOPMENT OF COMPUTATIONAL MULTIFLUID DYNAMICS MODELS FOR NUCLEAR REACTOR APPLICATIONS Henry Anglart Royal Institute of Technology, Department of Physics Division of Nuclear Reactor Technology Stocholm,

More information

COMPARISON OF COBRA-TF AND VIPRE-01 AGAINST LOW FLOW CODE ASSESSMENT PROBLEMS.

COMPARISON OF COBRA-TF AND VIPRE-01 AGAINST LOW FLOW CODE ASSESSMENT PROBLEMS. COMPARISON OF COBRA-TF AND VIPRE-01 AGAINST LOW FLOW CODE ASSESSMENT PROBLEMS A. Galimov a, M. Bradbury b, G. Gose c, R. Salko d, C. Delfino a a NuScale Power LLC, 1100 Circle Blvd., Suite 200, Corvallis,

More information

X. Neutron and Power Distribution

X. Neutron and Power Distribution X. Neutron and Power Distribution X.1. Distribution of the Neutron Flux in the Reactor In order for the power generated by the fission reactions to be maintained at a constant level, the fission rate must

More information

Hybrid Low-Power Research Reactor with Separable Core Concept

Hybrid Low-Power Research Reactor with Separable Core Concept Hybrid Low-Power Research Reactor with Separable Core Concept S.T. Hong *, I.C.Lim, S.Y.Oh, S.B.Yum, D.H.Kim Korea Atomic Energy Research Institute (KAERI) 111, Daedeok-daero 989 beon-gil, Yuseong-gu,

More information

FLUID STRUCTURE INTERACTIONS PREAMBLE. There are two types of vibrations: resonance and instability.

FLUID STRUCTURE INTERACTIONS PREAMBLE. There are two types of vibrations: resonance and instability. FLUID STRUCTURE INTERACTIONS PREAMBLE There are two types of vibrations: resonance and instability. Resonance occurs when a structure is excited at a natural frequency. When damping is low, the structure

More information

Vortex Induced Vibrations

Vortex Induced Vibrations Vortex Induced Vibrations By: Abhiroop Jayanthi Indian Institute of Technology, Delhi Some Questions! What is VIV? What are the details of a steady approach flow past a stationary cylinder? How and why

More information

The Dynamical Loading of the WWER440/V213 Reactor Pressure Vessel Internals during LOCA Accident in Hot and Cold Leg of the Primary Circuit

The Dynamical Loading of the WWER440/V213 Reactor Pressure Vessel Internals during LOCA Accident in Hot and Cold Leg of the Primary Circuit The Dynamical Loading of the WWER440/V213 Reactor Pressure Vessel Internals during LOCA Accident in Hot and Cold Leg of the Primary Circuit ABSTRACT Peter Hermansky, Marian Krajčovič VUJE, Inc. Okružná

More information

Critical Experiment Analyses by CHAPLET-3D Code in Two- and Three-Dimensional Core Models

Critical Experiment Analyses by CHAPLET-3D Code in Two- and Three-Dimensional Core Models Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 42, No. 1, p. 101 108 (January 2005) TECHNICAL REPORT Critical Experiment Analyses by CHAPLET-3D Code in Two- and Three-Dimensional Core Models Shinya KOSAKA

More information

SYSTEM ANALYSIS AND ISOTHERMAL SEPARATE EFFECT EXPERIMENTS OF THE ACCIDENT BEHAVIOR IN PWR SPENT FUEL STORAGE POOLS

SYSTEM ANALYSIS AND ISOTHERMAL SEPARATE EFFECT EXPERIMENTS OF THE ACCIDENT BEHAVIOR IN PWR SPENT FUEL STORAGE POOLS SYSTEM ANALYSIS AND ISOTHERMAL SEPARATE EFFECT EXPERIMENTS OF THE ACCIDENT BEHAVIOR IN PWR SPENT FUEL STORAGE POOLS H. Chahi 1, W. Kästner 1 and S. Alt 1 1 : University of Applied Sciences Zittau/GörlitzInstitute

More information

Available online at ScienceDirect. Energy Procedia 71 (2015 ) 52 61

Available online at  ScienceDirect. Energy Procedia 71 (2015 ) 52 61 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 71 (2015 ) 52 61 The Fourth International Symposium on Innovative Nuclear Energy Systems, INES-4 Reactor physics and thermal hydraulic

More information

EasyChair Preprint. Numerical Simulation of Fluid Flow and Heat Transfer of the Supercritical Water in Different Fuel Rod Channels

EasyChair Preprint. Numerical Simulation of Fluid Flow and Heat Transfer of the Supercritical Water in Different Fuel Rod Channels EasyChair Preprint 298 Numerical Simulation of Fluid Flow and Heat Transfer of the Supercritical Water in Different Fuel Rod Channels Huirui Han and Chao Zhang EasyChair preprints are intended for rapid

More information

Chem 481 Lecture Material 4/22/09

Chem 481 Lecture Material 4/22/09 Chem 481 Lecture Material 4/22/09 Nuclear Reactors Poisons The neutron population in an operating reactor is controlled by the use of poisons in the form of control rods. A poison is any substance that

More information

(1) SCK CEN, Boeretang 200, B-2400 Mol, Belgium (2) Belgonucléaire, Av. Arianelaan 4, B-1200 Brussels, Belgium

(1) SCK CEN, Boeretang 200, B-2400 Mol, Belgium (2) Belgonucléaire, Av. Arianelaan 4, B-1200 Brussels, Belgium The REBUS Experimental Programme for Burn-up Credit Peter Baeten (1)*, Pierre D'hondt (1), Leo Sannen (1), Daniel Marloye (2), Benoit Lance (2), Alfred Renard (2), Jacques Basselier (2) (1) SCK CEN, Boeretang

More information

Challenges in Prismatic HTR Reactor Physics

Challenges in Prismatic HTR Reactor Physics Challenges in Prismatic HTR Reactor Physics Javier Ortensi R&D Scientist - Idaho National Laboratory www.inl.gov Advanced Reactor Concepts Workshop, PHYSOR 2012 April 15, 2012 Outline HTR reactor physics

More information

Lesson 14: Reactivity Variations and Control

Lesson 14: Reactivity Variations and Control Lesson 14: Reactivity Variations and Control Reactivity Variations External, Internal Short-term Variations Reactivity Feedbacks Reactivity Coefficients and Safety Medium-term Variations Xe 135 Poisoning

More information

Verification of Core Monitoring System with Gamma Thermometer

Verification of Core Monitoring System with Gamma Thermometer GENES4/ANP2003, Sep. 15-19, 2003, Kyoto, JAPAN Paper 1006 Verification of Core Monitoring System with Gamma Thermometer Hisashi SHIRAGA 1*, Hiromi MARUYAMA 1, Atsushi FUSHIMI 2, Yoshiji KARINO 3 and Hiroyuki

More information

DEVELOPMENT OF A COUPLED CODE SYSTEM BASED ON SPACE SAFETY ANALYSIS CODE AND RAST-K THREE-DIMENSIONAL NEUTRONICS CODE

DEVELOPMENT OF A COUPLED CODE SYSTEM BASED ON SPACE SAFETY ANALYSIS CODE AND RAST-K THREE-DIMENSIONAL NEUTRONICS CODE DEVELOPMENT OF A COUPLED CODE SYSTEM BASED ON SPACE SAFETY ANALYSIS CODE AND RAST-K THREE-DIMENSIONAL NEUTRONICS CODE Seyun Kim, Eunki Lee, Yo-Han Kim and Dong-Hyuk Lee Central Research Institute, Korea

More information

The Pennsylvania State University. The Graduate School. Department Of Mechanical & Nuclear Engineering

The Pennsylvania State University. The Graduate School. Department Of Mechanical & Nuclear Engineering The Pennsylvania State University The Graduate School Department Of Mechanical & Nuclear Engineering FEASIBILITY STUDY FOR THE CONCEPTUAL DESIGN OF A DUAL-CORE BOILING SUPERHEAT REACTOR A Thesis in Nuclear

More information

Richard B. Vilim. Applied Physics Division Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60*139

Richard B. Vilim. Applied Physics Division Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60*139 August 1985 FRA-TM-15 Reactor Hot Spot Analysis by Richard B. Vilim Applied Physics Division Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60*139 FRA TECHNICAL MEMORANDUM MO. 152

More information

CASL MPO- Hydrogen. Ms. Jennifer Jarvis (PhD Thesis, Defense 5/12/15) Ron Ballinger

CASL MPO- Hydrogen. Ms. Jennifer Jarvis (PhD Thesis, Defense 5/12/15) Ron Ballinger CASL MPO- Hydrogen Ms. Jennifer Jarvis (PhD Thesis, Defense 5/12/15) Ron Ballinger Overview Introduction Water Chemistry: Dose rates and local chemistry Electrochemistry: Atomistic Simulations Conclusions

More information

Coupled Neutronics Thermalhydraulics LC)CA Analysis

Coupled Neutronics Thermalhydraulics LC)CA Analysis Coupled Neutronics Thermalhydraulics LC)CA Analysis B.Rouben, Manager Reactor Core Physics Branch,AE,CL Presented at Chulalongkorn University Bangkok, Thailand 9 1997 December RFSP -Reactor Fuelling Simulation

More information

Name: 10/21/2014. NE 161 Midterm. Multiple choice 1 to 10 are 2 pts each; then long problems 1 through 4 are 20 points each.

Name: 10/21/2014. NE 161 Midterm. Multiple choice 1 to 10 are 2 pts each; then long problems 1 through 4 are 20 points each. NE 161 Midterm Multiple choice 1 to 10 are 2 pts each; then long problems 1 through 4 are 20 points each. 1. Which would have a higher mass flow rate out of a 1 ft 2 break, a. 200 psia subcooled water

More information

USE OF CFD TO PREDICT CRITICAL HEAT FLUX IN ROD BUNDLES

USE OF CFD TO PREDICT CRITICAL HEAT FLUX IN ROD BUNDLES USE OF CFD TO PREDICT CRITICAL HEAT FLUX IN ROD BUNDLES Z. E. Karoutas, Y. Xu, L. David Smith, I, P. F. Joffre, Y. Sung Westinghouse Electric Company 5801 Bluff Rd, Hopkins, SC 29061 karoutze@westinghouse.com;

More information

CFD SIMULATION OF SWIRL FLOW IN HEXAGONAL ROD BUNDLE GEOMETRY BY SPLIT MIXING VANE GRID SPACERS. Mohammad NAZIFIFARD

CFD SIMULATION OF SWIRL FLOW IN HEXAGONAL ROD BUNDLE GEOMETRY BY SPLIT MIXING VANE GRID SPACERS. Mohammad NAZIFIFARD CFD SIMULATION OF SWIRL FLOW IN HEXAGONAL ROD BUNDLE GEOMETRY BY SPLIT MIXING VANE GRID SPACERS Mohammad NAZIFIFARD Department of Energy Systems Engineering, Energy Research Institute, University of Kashan,

More information

Thorium-Cycle Fission for Green Nuclear Power. Pt Peter McIntyre MIt Texas A&M University

Thorium-Cycle Fission for Green Nuclear Power. Pt Peter McIntyre MIt Texas A&M University Thorium-Cycle Fission for Green Nuclear Power Pt Peter McIntyre MIt Texas A&M University Criteria for green nuclear power: Use the most plentiful fissionable fuels: Thorium and depleted d uranium Operate

More information

Nuclear Theory - Course 227 NEUTRON FLUX DISTRI~UTION

Nuclear Theory - Course 227 NEUTRON FLUX DISTRI~UTION Nuclear Theory - Course 227 NEUTRON FLUX DSTR~UTON. From neutron diffusi'on t-heory it is possible to derive the steady state flux distribution in a reactor. Since the flux is not normally the ~;ame everywhere

More information

OECD/NEA Transient Benchmark Analysis with PARCS - THERMIX

OECD/NEA Transient Benchmark Analysis with PARCS - THERMIX OECD/NEA Transient Benchmark Analysis with PARCS - THERMIX Volkan Seker Thomas J. Downar OECD/NEA PBMR Workshop Paris, France June 16, 2005 Introduction Motivation of the benchmark Code-to-code comparisons.

More information

Kord Smith Art DiGiovine Dan Hagrman Scott Palmtag. Studsvik Scandpower. CASMO User s Group May 2003

Kord Smith Art DiGiovine Dan Hagrman Scott Palmtag. Studsvik Scandpower. CASMO User s Group May 2003 Kord Smith Art DiGiovine Dan Hagrman Scott Palmtag CASMO User s Group May 2003 TFU-related data is required input for: -CASMO-4 - SIMULATE-3 - SIMULATE-3K and SIMULATE-3R (implicit in XIMAGE and GARDEL)

More information

SINGLE-PHASE AND TWO-PHASE NATURAL CONVECTION IN THE McMASTER NUCLEAR REACTOR

SINGLE-PHASE AND TWO-PHASE NATURAL CONVECTION IN THE McMASTER NUCLEAR REACTOR SINGLE-PHASE AND TWO-PHASE NATURAL CONVECTION IN THE McMASTER NUCLEAR REACTOR A. S. Schneider and J. C. Luxat Department of Engineering Physics, McMaster University, 1280 Main St. West, Hamilton, ON, L8S

More information

PWR CONTROL ROD EJECTION ANALYSIS WITH THE MOC CODE DECART

PWR CONTROL ROD EJECTION ANALYSIS WITH THE MOC CODE DECART PWR CONTROL ROD EJECTION ANALYSIS WITH THE MOC CODE DECART Mathieu Hursin and Thomas Downar University of California Berkeley, USA mhursin@nuc.berkeley.edu,downar@nuc.berkeley.edu ABSTRACT During the past

More information

THERMAL HYDRAULIC MODELING OF THE LS-VHTR

THERMAL HYDRAULIC MODELING OF THE LS-VHTR 2013 International Nuclear Atlantic Conference - INAC 2013 Recife, PE, Brazil, November 24-29, 2013 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-05-2 THERMAL HYDRAULIC MODELING OF

More information

Fuel - Coolant Heat Transfer

Fuel - Coolant Heat Transfer Heat Transfer 5-1 Chapter 5 Fuel - Coolant Heat Transfer 5.1 Introduction The interface between the fuel and the coolant is centrally important to reactor design since it is here that the limit to power

More information

DETAILED CORE DESIGN AND FLOW COOLANT CONDITIONS FOR NEUTRON FLUX MAXIMIZATION IN RESEARCH REACTORS

DETAILED CORE DESIGN AND FLOW COOLANT CONDITIONS FOR NEUTRON FLUX MAXIMIZATION IN RESEARCH REACTORS Proceedings of ICONE14 14th International Conference on Nuclear Engineering June 17-21, 2006, Miami, FL, USA ICONE14-89547 DETAILED CORE DESIGN AND FLOW COOLANT CONDITIONS FOR NEUTRON FLUX MAXIMIZATION

More information

Study of boron dilution phenomenon in the core and fuel assemblies of Bushehr VVER-1000 reactor in normal operating conditions

Study of boron dilution phenomenon in the core and fuel assemblies of Bushehr VVER-1000 reactor in normal operating conditions NUKLEONIKA 2010;55(3:323 330 ORIGINAL PAPER Study of boron dilution phenomenon in the core and fuel assemblies of Bushehr VVER-1000 reactor in normal operating conditions Yashar Rahmani, Ehsan Zarifi,

More information

Development of depletion models for radionuclide inventory, decay heat and source term estimation in discharged fuel

Development of depletion models for radionuclide inventory, decay heat and source term estimation in discharged fuel Development of depletion models for radionuclide inventory, decay heat and source term estimation in discharged fuel S. Caruso, A. Shama, M. M. Gutierrez National Cooperative for the Disposal of Radioactive

More information

SPACE-DEPENDENT DYNAMICS OF PWR. T. Suzudo Japan Atomic Energy Research Institute, JAERI Tokai-Mura, Naka-Gun Japan

SPACE-DEPENDENT DYNAMICS OF PWR. T. Suzudo Japan Atomic Energy Research Institute, JAERI Tokai-Mura, Naka-Gun Japan SPACE-DEPENDENT DYNAMICS OF PWR T. Suzudo Japan Atomic Energy Research Institute, JAERI Tokai-Mura, Naka-Gun 319-11 Japan E. Türkcan and J.P. Verhoef Netherlands Energy Research Foundation P.O. Box 1,

More information

NEW FUEL IN MARIA RESEARCH REACTOR, PROVIDING BETTER CONDITIONS FOR IRRADIATION IN THE FAST NEUTRON SPECTRUM.

NEW FUEL IN MARIA RESEARCH REACTOR, PROVIDING BETTER CONDITIONS FOR IRRADIATION IN THE FAST NEUTRON SPECTRUM. NEW FUEL IN MARIA RESEARCH REACTOR, PROVIDING BETTER CONDITIONS FOR IRRADIATION IN THE FAST NEUTRON SPECTRUM. M. LIPKA National Centre for Nuclear Research Andrzeja Sołtana 7, 05-400 Otwock-Świerk, Poland

More information

NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT

NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS OF KUR FUEL ASSEMBLY DURING LOSS OF COOLANT ACCIDENT Ito D*, and Saito Y Research Reactor Institute Kyoto University 2-1010 Asashiro-nishi, Kumatori, Sennan,

More information

EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION

EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION A. K. Kansal, P. Suryanarayana, N. K. Maheshwari Reactor Engineering Division, Bhabha Atomic Research Centre,

More information

The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature.

The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature. Moderator Temperature Coefficient MTC 1 Moderator Temperature Coefficient The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature. α

More information

Reactivity Coefficients

Reactivity Coefficients Revision 1 December 2014 Reactivity Coefficients Student Guide GENERAL DISTRIBUTION GENERAL DISTRIBUTION: Copyright 2014 by the National Academy for Nuclear Training. Not for sale or for commercial use.

More information

ANALYSIS OF THE OECD PEACH BOTTOM TURBINE TRIP 2 TRANSIENT BENCHMARK WITH THE COUPLED NEUTRONIC AND THERMAL-HYDRAULICS CODE TRAC-M/PARCS

ANALYSIS OF THE OECD PEACH BOTTOM TURBINE TRIP 2 TRANSIENT BENCHMARK WITH THE COUPLED NEUTRONIC AND THERMAL-HYDRAULICS CODE TRAC-M/PARCS ANALYSIS OF THE OECD PEACH BOTTOM TURBINE TRIP 2 TRANSIENT BENCHMARK WITH THE COUPLED NEUTRONIC AND THERMAL-HYDRAULICS CODE TRAC-M/PARCS Deokjung Lee and Thomas J. Downar School of Nuclear Engineering

More information

Optimization of CARA Fuel Element with negative coolant void coefficient

Optimization of CARA Fuel Element with negative coolant void coefficient Optimization of CARA Fuel Element with negative coolant void coefficient H. Lestani +, P. Florido *, J. González +, A. Marino 0 + Instituto Balseiro, CNEA - CONICET * Instituto Balseiro - Florestan technology

More information

Rattlesnake, MAMMOTH and Research in Support of TREAT Kinetics Calculations

Rattlesnake, MAMMOTH and Research in Support of TREAT Kinetics Calculations Rattlesnake, MAMMOTH and Research in Support of TREAT Kinetics Calculations www.inl.gov DOE NEUP-IRP Meeting University of Michigan May 24, 2016 TREAT s mission is to deliver transient energy deposition

More information

Grid supports design for dual-cooled fuel rods

Grid supports design for dual-cooled fuel rods Int. Jnl. of Multiphysics Volume 5 Number 4 011 99 Grid supports design for dual-cooled fuel rods JaeYong Kim, YoungHo Lee, KyungHo Yoon and HyungKyu Kim Innovative Nuclear Fuel Division, Korea Atomic

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 4. Title: Control Rods and Sub-critical Systems

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 4. Title: Control Rods and Sub-critical Systems Lectures on Nuclear Power Safety Lecture No 4 Title: Control Rods and Sub-critical Systems Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture Control Rods Selection of Control

More information

THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF MECHANICAL AND NUCLEAR ENGINEERING

THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF MECHANICAL AND NUCLEAR ENGINEERING THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF MECHANICAL AND NUCLEAR ENGINEERING CODE-TO-CODE VERIFICATION OF COBRA-TF AND TRACE ADRIAN MICHAEL LEANDRO SPRING 2016 A thesis submitted

More information

Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis

Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis 1 Portál pre odborné publikovanie ISSN 1338-0087 Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis Jakubec Jakub Elektrotechnika 13.02.2013 This work deals with thermo-hydraulic processes

More information

Active Control of Separated Cascade Flow

Active Control of Separated Cascade Flow Chapter 5 Active Control of Separated Cascade Flow In this chapter, the possibility of active control using a synthetic jet applied to an unconventional axial stator-rotor arrangement is investigated.

More information

DOPPLER COEFFICIENT OF REACTIVITY BENCHMARK CALCULATIONS FOR DIFFERENT ENRICHMENTS OF UO 2

DOPPLER COEFFICIENT OF REACTIVITY BENCHMARK CALCULATIONS FOR DIFFERENT ENRICHMENTS OF UO 2 Supercomputing in Nuclear Applications (M&C + SNA 2007) Monterey, California, April 15-19, 2007, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007) DOPPLER COEFFICIENT OF REACTIVITY BENCHMARK

More information

Lecture 30 Review of Fluid Flow and Heat Transfer

Lecture 30 Review of Fluid Flow and Heat Transfer Objectives In this lecture you will learn the following We shall summarise the principles used in fluid mechanics and heat transfer. It is assumed that the student has already been exposed to courses in

More information

Noise and Vibration Analysis of a Heat Exchanger: a Case Study

Noise and Vibration Analysis of a Heat Exchanger: a Case Study Noise and Vibration Analysis of a Heat Exchanger: a Case Study Thiago A. Fiorentin and Alexandre Mikowski Department of Mobility Engineering, Federal University of Santa Catarina, Joinville, Brazil 88040-900

More information

MIT: Akshay Dave, Lin-wen Hu, Kaichao Sun INL: Ryan Marlow, Paul Murray, Joseph Nielsen. Nuclear Reactor Laboratory

MIT: Akshay Dave, Lin-wen Hu, Kaichao Sun INL: Ryan Marlow, Paul Murray, Joseph Nielsen. Nuclear Reactor Laboratory MIT: Akshay Dave, Lin-wen Hu, Kaichao Sun INL: Ryan Marlow, Paul Murray, Joseph Nielsen Nuclear Reactor Laboratory LEU CONVERSION Most U.S. civil-use research and test reactors have been converted from

More information

CALCULATION OF TEMPERATURE REACTIVITY COEFFICIENTS IN KRITZ-2 CRITICAL EXPERIMENTS USING WIMS ABSTRACT

CALCULATION OF TEMPERATURE REACTIVITY COEFFICIENTS IN KRITZ-2 CRITICAL EXPERIMENTS USING WIMS ABSTRACT CALCULATION OF TEMPERATURE REACTIVITY COEFFICIENTS IN KRITZ-2 CRITICAL EXPERIMENTS USING WIMS D J Powney AEA Technology, Nuclear Science, Winfrith Technology Centre, Dorchester, Dorset DT2 8DH United Kingdom

More information

A METHOD TO PREVENT SEVERE POWER AND FLOW OSCILLATIONS IN BOILING WATER REACTORS

A METHOD TO PREVENT SEVERE POWER AND FLOW OSCILLATIONS IN BOILING WATER REACTORS A METHOD TO PREVENT SEVERE POWER AND FLOW OSCILLATIONS IN BOILING WATER REACTORS Yousef M. Farawila Farawila et al., Inc. Nuclear@Farawila.com ABSTRACT This paper introduces a new method for preventing

More information

Thorium-Cycle Fission for Green Nuclear Power. Pt Peter McIntyre MIt Texas A&M University

Thorium-Cycle Fission for Green Nuclear Power. Pt Peter McIntyre MIt Texas A&M University Thorium-Cycle Fission for Green Nuclear Power Pt Peter McIntyre MIt Texas A&M University Criteria for green nuclear power: Use the most plentiful fissionable fuels: Thorium and depleted d uranium Operate

More information

Computational and Experimental Studies of Fluid flow and Heat Transfer in a Calandria Based Reactor

Computational and Experimental Studies of Fluid flow and Heat Transfer in a Calandria Based Reactor Computational and Experimental Studies of Fluid flow and Heat Transfer in a Calandria Based Reactor SD Ravi 1, NKS Rajan 2 and PS Kulkarni 3 1 Dept. of Aerospace Engg., IISc, Bangalore, India. ravi@cgpl.iisc.ernet.in

More information

REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN PWRs

REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN PWRs REACTOR PHYSICS ASPECTS OF PLUTONIUM RECYCLING IN s Present address: J.L. Kloosterman Interfaculty Reactor Institute Delft University of Technology Mekelweg 15, NL-2629 JB Delft, the Netherlands Fax: ++31

More information

Three-dimensional Floquet stability analysis of the wake in cylinder arrays

Three-dimensional Floquet stability analysis of the wake in cylinder arrays J. Fluid Mech. (7), vol. 59, pp. 79 88. c 7 Cambridge University Press doi:.7/s78798 Printed in the United Kingdom 79 Three-dimensional Floquet stability analysis of the wake in cylinder arrays N. K.-R.

More information

English text only NUCLEAR ENERGY AGENCY COMMITTEE ON THE SAFETY OF NUCLEAR INSTALLATIONS

English text only NUCLEAR ENERGY AGENCY COMMITTEE ON THE SAFETY OF NUCLEAR INSTALLATIONS Unclassified NEA/CSNI/R(2008)6/VOL2 NEA/CSNI/R(2008)6/VOL2 Unclassified Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development 26-Nov-2008 English

More information

Design constraints Maximum clad temperature, linear power rating

Design constraints Maximum clad temperature, linear power rating Design constraints Maximum clad temperature, linear power rating K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 7

More information

Institute of Atomic Energy POLATOM OTWOCK-SWIERK POLAND. Irradiations of HEU targets in MARIA RR for Mo-99 production. G.

Institute of Atomic Energy POLATOM OTWOCK-SWIERK POLAND. Irradiations of HEU targets in MARIA RR for Mo-99 production. G. Instytut Energii Atomowej Institute of Atomic Energy OTWOCK-SWIERK POLAND Irradiations of HEU targets in MARIA RR for Mo-99 production G. Krzysztoszek IAEA TM on Commercial Products and Services of Research

More information

MEASUREMENT OF LAMINAR VELOCITY PROFILES IN A PROTOTYPIC PWR FUEL ASSEMBLY. Sandia National Laboratories b. Nuclear Regulatory Commission

MEASUREMENT OF LAMINAR VELOCITY PROFILES IN A PROTOTYPIC PWR FUEL ASSEMBLY. Sandia National Laboratories b. Nuclear Regulatory Commission MEASUREMENT OF LAMINAR VELOCITY PROFILES IN A PROTOTYPIC PWR FUEL ASSEMBLY S. Durbin a, *, E. Lindgren a, and A. Zigh b a Sandia National Laboratories b Nuclear Regulatory Commission Abstract Laminar gas

More information