Introduction to Differential Equations

Size: px
Start display at page:

Download "Introduction to Differential Equations"

Transcription

1 CHAPTER 1 Introduction to Differential Equations Differential equations arise from real-world proble ms and problems in applied mathematics. One of the fi rst things you are taught in calculus is that the derivative of a function is the instantaneous rate of change of the fu nction w ith respect ro its independent variable. When mathematics is applied to real-world problenns, it is often the case that finding a relation between a function and its rate of change is easier than finding a fommla for the function itself; it is thi s relation between an unknown function and its derivatives that produces a differential equation. To give a very si mple example, a biologist studyi ng the growth of a population, with size at time r given by the function P(t), might make the ve1y simple, but logical, assumption that a population grows at a rate directly proportional to its size. ln mathematical notation, the equation for P(r) could then be written as dp - = rp(t). di where the constant of proporti onality, r, would probably be determined experimentally by biologists working in the field. Equations U1sed for modeling population growth can be much more complicated than this, sometimes involving scores of interacting populations with different properties; however, almost any population model is based on equations similar to thi s. In an analogous manner, a physicist might.argue that all the forces acting on a particular moving body at ti me / depend only on its position x(i) and its velocity x'(r). He could then use Newton's second law to express mas.s times acceleration as mx" (t ) and write an equation for x(1) in the fo m1 mx"(1) = F(x(1), x 1 (1)). where F is some function of two vari ables. One of the best-known equations of this type is the spring-mass equation mx" +bx' + kx = f(r), ( I. I) in which x(r) is the position at ti me r of an object of mass m sm-pended on a spring, and band k are the damping coefficient and s pring constant, respectively. The function f represents an external force acting on the system. Notice that in (1. 1 ), where x is a function

2 2 1. Introduction to Differential Equations of a single variable, we have used the convention of omitting the independent variable 1, and have written x, x', and x" for x(t) and its derivatives. Jn both of the examples, the problem has been written in the fonn of a di fferential equation, and the solution of the problem lies in finding a function P(t), or x(t), which makes the equation true Basic Terminology Before beginni ng to tackle tl1e problem of formul ating and solving di fferential equations, it is necessa1y to understand some basic tem1inology. Our first and most fundamental definition is that of a differential equation itself. Definition I.I. A differential equation is any equation involving an unknown function and one or more of its derivatives. I. TI1e following are examples of differential equations: P 1 (t) = rp(t)(i - P(t)/N)- H harvested population growth drr d' x + 09dx. Tr +2x = 0! "(1) + 4/(1) = sin(w1) y' 1 (1) + µ(y 2 (r ) - l )y 1 (1) + y(1) = 0 ;j2 J2 Jx'Tll(X. y) + JY'Ill(X. y) = 0 spring-mass equation RLC circuit showing "beats" van der Pol equation Laplace's equation A \\\1\\1\ \\\\\\\\\ '\ '\ H '>< Y.I'<. '\' : \\\\'\\\'\) For the first four equations the graphs abo'e illustrate different ways of picturing the solution curves Ordinary vs. Partial Differential Equations Differential equations fall into two veiy broad categories, called ordinary di fferential equations and partial differential equations. If the unknown function in the equation is a function of only one variable, the equation is called an ordinary differential equation. ln the list of ex amples, equations l-4 are ordinary dj fferential equations, with the unknown functions being P(t ), x(t ), / (1), and y(r) respectively. lf the unknown function in the equation depends on more than one independent variable, the equation is called a partial different ial equation, and in this ca.>;e, the derivat'.ives appeari ng in the equation wi ll be partial derivatives. Equation 5 is an example of an umportant partial differential equation, called Laplace's equation, which arises in several areas of applied mathematics. In equation 5, u is a function of the two independent variable.s x and y. In this book, we will not consider

3 1.1. Basic Terminology 3 methods for solving partial differenti al equations. One of the basic methods involves reducing the partial differential equation to the solution of two or more ordinary di fferential equations, so it is important to have a solid g rounding in ordinary di fferential equati ons first Independent Variables, Oependent Variables, and Parameters Three different types of quantities can appear in a differential equation. TI1e unknown function, for which the equation is to be sohoed, is called the dependent variable, and since we w ill be considering only ordinary differential equations, the dependent variable is a function of a single independent ''ariable. [n addition to d1e independent and dependent variables, a third type of variable, called a pnrameter, may appear in the equation. A parameter is a quantity that remains fixed in any specification of the problem, but can vary from problem to problem. In this book, parameters will usually be real numbers, such as '" N, and H in equation 1, tu in equation 3, andµ in equation Order of a Differential Equation Another important way in which differential equations are classified is in tem1s of their order. Definition 1.2. The order of a differential e quation is the order o f the highest derivative of the unknown function that appears in the equation. The differential equation I is a first-order equation and the others are al l second-order. Even though equati on 5 is a partial di fferential equation, it is still said to be of second order since no de rivatives (in this case partial derivatives) of order higher than two appear in the equation. You may have noticed in the Table of Contents that some of the chapter headings refer to first-order or second-order di fferential equations. In some sense, first-order equations are thought of as being simpler than second-order equations. By the time you have worked through Chapter 2, you may not want to believe that this is true, and there are special cases where it defi nitely is not true; however, it is a useful way to distinguish between equati ons to which different methods of solution apply. In Chapter 4, we will see that solving ordinary differential equations of order greater than one can always be reduced to solving a system of first-order equations What is a Solution? Given a differential equation, exactly what d!o we mean by a solution? h is fi rst important to real ize that we are looking for a function, and therefore it needs to be defined on some interval of its independent variable. Before computers were available, a solution of a differential equation usually referred to an a nalytic solution; that is, a fonnula obtained by algebraic methods or other methods of mathematical analysis such a~ integration and differentiation, from which exact values of the unknown function could be obtained. Definition 1.3. An analytic solution of a differential equation is a sufficiently differentiable function that, if substituted into the equation, together with the necessary derivatives,

4 4 1. Introduction to Different ial Equations makes the equation an identity (a true statement for al l values of the independent variable) over some interval of the independent variab le. It is now possible, however, using sophisticated computer packages, to numerically approximate solutions to a differential equation to any desired degree of accuracy, even if no formul a for the solution can be found. You w ill be introduced to numerical methods in Chapter2, and many of the equations in later chapters will only be solvable using numerical or graphical methods. Given an analytic solution, it is usually fairly easy to check whether or not it satisfies the equation. ln Examples I. I. I and I. 1.2 a formula for the solution is ghen and you are only asked to veri fy that it satisfies the given differential equation. Example Show that che function p(t) = e- 21 is a solution of che di fferential equation x" + 3x 1 + 2" = 0. Solution To show that ic is a solution, compute the first and second derivatives of p(1): p 1 (1) = -2e- 21 p" (r) = 4e- 2 '. With the three functions p(1), p'(1), and p"(t) substituted into the differential equation in place of x, x', and x", ic becomes which is an ide ntity (in the independent varia ble 1) for all real values of 1. When showing that both sides of an equation are identical for al I values of the variables, we wi I I use the equivalence sign = This wi IL be used as a convention throughouc the book. For practice, show that the function q(1) = Je- 1 is also a solution of the equation x" + 3x' + 2x = 0. le may seem surprising t hat two completely different functions satisfy this equation, but we will soon see that differential equations can have many solutions, in fact infi nitely man)'. In the above ex runple, the solutions p and q turned out to be functions that are defi ned for all real values of 1. tn the next example, things are not quite as simple. Example Show that the function (1) = ( I ) = v1l=t2 is a solucion of thedifferentialequation x' = -1/x. Sofwion First, notice that (1) is not even defined oucside of che interval -I :;: 1 :;: l. In the interval - I < 1 < I, (1) cru1 be differentiated by the chain ru le (for powers of functions): t/1'(1)= ( 1/ 2)(1-1 2 ) (-21) = -1/(1-1 2 ) The 1ight-hand side of the equationx' = -r /x, with (1) substituted for x, is -t/ t/1(1) = -1/(J -,2)112, which is identically equal to t/1'(1) wherever</> and ' are both defined. Therefore, (1) is a solution of the differential equation x' = -1/x on the interval (-1. I).

5 1. 1. Basic Terminology 5 You may be wondering if there are any solutions of x' = -I / x that ex ist outside of the interval - I < r < I, since the dj fferentiail equation is certainly defined outside of that interval. This problem wi ll be revisited in Section 2.4 when we study the ex istence and uniqueness of solutions, and it wi ll be shown that solutions do exist throughout the entire (1, x )-plane Systems of Differential Equations In Chapter 4 we are going to study systems <>f differential equations, where two or more dependent variables are related to each other by differential equations. Linked equations of this sort appear in many real-world appl ications. As an example, ecologists studying the interaction between competing species in a particular ecosystem may find that the growth (think derivative, or rate of change) of each population can depend on the size of some or all of the other populations. To show that a set of formulas for the unknown populations is a solution of a system of this type, it must be shown that the functions, together with their derivatives, make every equation in the system an identity. The fo llowing simple example shows how this is done. Example Show that the functions x (r) = e- 1, y(r) = -4e- 1 form a solution of the system of dj fferential equati ons x 1 (1) = 3x + y y'(1) = -4x - 2y. (1.2) So/utio11 The derivatives that we need are x' (t) = -e- 1 and y'(t) = -(-4e-') = 4e-'. Then substitution into ( 1.2) gives 3x + y = 3(e- 1 ) + (-4e- 1 ) = (3-4)e- 1 = -e- 1 = x'(t), -4x - 2y = - 4(e- 1 )-2(-4e- 1 ) = ( )e- 1 = 4e- 1 = y'(1); therefore, the given functions for x and y fom1 a solution for the system. Exerd ses 1.1. For each equation 1-8 below, determine its order. Name the independem variable, the dependent variable, and any parameters in the equation. l.dy/dr= y 2 -I 2. d P/ dr = rp(i - P/ k) 3. dp/ dr = rp(i- P/k)- ff PP\ a-+ 4. mx" +bx' + kx = 21 5, assuming x is a function of r 5. x"' + 2, " + x' + 3x = sin(wr). assumj ngx is a fu nction of r 6. (ty' (1))' = ae 1 7. d 2 9/ dt 2 + sin(9) = 4cos(1)

6 6 1. Introduction to Differential Equations 8. y" + s(y 2 - l)y' + y = 0, assuming y is a fu nction of / For each equation 9-17 below, show that the given function is a solution. Determine the largest intel>'al or intervals of the independent vari able over which the solution is defined, and satisfies the equation. 9. 2Y" + 6x' + 4x = 0. x(1) = e x" + 4x = 0. x(1) = s in(21) + cos(21) x " + 31x' + x = 0. x(t) = l/ x " + 31x' + x = 0, x(i) = ln(1)/ P' = rp, P(1) =Ce", C any real number 14. P' = rp( I - P). P (1) = 1/ ( 1 + ce-r 1 ), C any real number 15. x' = (1 + 2)/ x, x(1) = -J I 16. x " - 21x' + 6x = 0, x(1) = r y" + 1y' + (1 2 - ±)Y = 0. y(1) = "'? In the nex t four problems, show that the given functions form a solution of the system. Detenn ine the largest intel>'al of the independent variable over which the solution is defined, and satisfies the equations. 18. System: x' = x - y. y' = - 4x + y, solution is x = e- 1 -e 31. y = 2e- 1 +2e System: x' = x - y. y' = 4x + y. wlution is x = e 1 cos21 - te 1 sin 21, y = e 1 cos21 + 2e 1 sin System: x' = y, y' = - I Ox - 2y, solution is x = e- 1 sin(31), y - e- 1 (3 cos(31) - sin(3r)). 21. System: x' = x + 3y, y' - 4x + 2y, solution is x - 3es 1 + e-2 1, y _ 4es' _ e Families of Solutions, Initial-value Problems In this section the solutions of some vel)' simple differential equations will be examined in order to give you an understanding of the tenns 11-parameter family of solutions and general solution of a differential equation. You will also be shown how to use certain types of infom1ation to pick one particular solution out of a set of solutions. While you do not yet have any formal mefihods for solving differential equations, there are some \ery simple equations that can be solved by inspection. One of t11ese is.x' =.. -r. (1.3) This first-order di fferential equation asks you to find a function x(1) which is equal to its own derivative al evel)' value of t. Any calculus student knows one function that satisfies this property, namely the exponential functio:n x(1) = e 1 In fact, one reason mathematicians use e as the basis of their exponential function is that e 1 is the only function of the

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Chapter 1 Introduction and Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known

More information

Lecture 8: Ordinary Differential Equations

Lecture 8: Ordinary Differential Equations MIT-WHOI Joint Program Summer Math Review Summer 2015 Lecture 8: Ordinary Differential Equations Lecturer: Isabela Le Bras Date: 31 July 2015 Disclaimer: These notes are for the purposes of this review

More information

Introduction to Differential Equations

Introduction to Differential Equations Chapter 1 Introduction to Differential Equations 1.1 Basic Terminology Most of the phenomena studied in the sciences and engineering involve processes that change with time. For example, it is well known

More information

1 Which sets have volume 0?

1 Which sets have volume 0? Math 540 Spring 0 Notes #0 More on integration Which sets have volume 0? The theorem at the end of the last section makes this an important question. (Measure theory would supersede it, however.) Theorem

More information

Solutions to Math 53 Math 53 Practice Final

Solutions to Math 53 Math 53 Practice Final Solutions to Math 5 Math 5 Practice Final 20 points Consider the initial value problem y t 4yt = te t with y 0 = and y0 = 0 a 8 points Find the Laplace transform of the solution of this IVP b 8 points

More information

MATH 353 LECTURE NOTES: WEEK 1 FIRST ORDER ODES

MATH 353 LECTURE NOTES: WEEK 1 FIRST ORDER ODES MATH 353 LECTURE NOTES: WEEK 1 FIRST ORDER ODES J. WONG (FALL 2017) What did we cover this week? Basic definitions: DEs, linear operators, homogeneous (linear) ODEs. Solution techniques for some classes

More information

Second order Unit Impulse Response. 1. Effect of a Unit Impulse on a Second order System

Second order Unit Impulse Response. 1. Effect of a Unit Impulse on a Second order System Effect of a Unit Impulse on a Second order System We consider a second order system mx + bx + kx = f (t) () Our first task is to derive the following If the input f (t) is an impulse cδ(t a), then the

More information

4.9 Anti-derivatives. Definition. An anti-derivative of a function f is a function F such that F (x) = f (x) for all x.

4.9 Anti-derivatives. Definition. An anti-derivative of a function f is a function F such that F (x) = f (x) for all x. 4.9 Anti-derivatives Anti-differentiation is exactly what it sounds like: the opposite of differentiation. That is, given a function f, can we find a function F whose derivative is f. Definition. An anti-derivative

More information

Math 307 A - Spring 2015 Final Exam June 10, 2015

Math 307 A - Spring 2015 Final Exam June 10, 2015 Name: Math 307 A - Spring 2015 Final Exam June 10, 2015 Student ID Number: There are 8 pages of questions. In addition, the last page is the basic Laplace transform table. Make sure your exam contains

More information

General Response of Second Order System

General Response of Second Order System General Response of Second Order System Slide 1 Learning Objectives Learn to analyze a general second order system and to obtain the general solution Identify the over-damped, under-damped, and critically

More information

Section 9.8 Higher Order Linear Equations

Section 9.8 Higher Order Linear Equations Section 9.8 Higher Order Linear Equations Key Terms: Higher order linear equations Equivalent linear systems for higher order equations Companion matrix Characteristic polynomial and equation A linear

More information

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University Old Math 330 Exams David M. McClendon Department of Mathematics Ferris State University Last updated to include exams from Fall 07 Contents Contents General information about these exams 3 Exams from Fall

More information

Course roadmap. ME451: Control Systems. Example of Laplace transform. Lecture 2 Laplace transform. Laplace transform

Course roadmap. ME451: Control Systems. Example of Laplace transform. Lecture 2 Laplace transform. Laplace transform ME45: Control Systems Lecture 2 Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Transfer function Models for systems electrical mechanical electromechanical Block

More information

3.3. SYSTEMS OF ODES 1. y 0 " 2y" y 0 + 2y = x1. x2 x3. x = y(t) = c 1 e t + c 2 e t + c 3 e 2t. _x = A x + f; x(0) = x 0.

3.3. SYSTEMS OF ODES 1. y 0  2y y 0 + 2y = x1. x2 x3. x = y(t) = c 1 e t + c 2 e t + c 3 e 2t. _x = A x + f; x(0) = x 0. .. SYSTEMS OF ODES. Systems of ODEs MATH 94 FALL 98 PRELIM # 94FA8PQ.tex.. a) Convert the third order dierential equation into a rst oder system _x = A x, with y " y" y + y = x = @ x x x b) The equation

More information

Lecture 1, August 21, 2017

Lecture 1, August 21, 2017 Engineering Mathematics 1 Fall 2017 Lecture 1, August 21, 2017 What is a differential equation? A differential equation is an equation relating a function (known sometimes as the unknown) to some of its

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Concepts Paul Dawkins Table of Contents Preface... Basic Concepts... 1 Introduction... 1 Definitions... Direction Fields... 8 Final Thoughts...19 007 Paul Dawkins i http://tutorial.math.lamar.edu/terms.aspx

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

8.3 Partial Fraction Decomposition

8.3 Partial Fraction Decomposition 8.3 partial fraction decomposition 575 8.3 Partial Fraction Decomposition Rational functions (polynomials divided by polynomials) and their integrals play important roles in mathematics and applications,

More information

Core Mathematics 3 Differentiation

Core Mathematics 3 Differentiation http://kumarmaths.weebly.com/ Core Mathematics Differentiation C differentiation Page Differentiation C Specifications. By the end of this unit you should be able to : Use chain rule to find the derivative

More information

An Introduction to Differential Equations

An Introduction to Differential Equations An Introduction to Differential Equations Let's start with a definition of a differential equation. A differential equation is an equation that defines a relationship between a function and one or more

More information

Unit #16 : Differential Equations

Unit #16 : Differential Equations Unit #16 : Differential Equations Goals: To introduce the concept of a differential equation. Discuss the relationship between differential equations and slope fields. Discuss Euler s method for solving

More information

MAC 2311 Calculus I Spring 2004

MAC 2311 Calculus I Spring 2004 MAC 2 Calculus I Spring 2004 Homework # Some Solutions.#. Since f (x) = d dx (ln x) =, the linearization at a = is x L(x) = f() + f ()(x ) = ln + (x ) = x. The answer is L(x) = x..#4. Since e 0 =, and

More information

Coordinate systems and vectors in three spatial dimensions

Coordinate systems and vectors in three spatial dimensions PHYS2796 Introduction to Modern Physics (Spring 2015) Notes on Mathematics Prerequisites Jim Napolitano, Department of Physics, Temple University January 7, 2015 This is a brief summary of material on

More information

Problem Score Possible Points Total 150

Problem Score Possible Points Total 150 Math 250 Spring 2010 Final Exam NAME: ID No: SECTION: This exam contains 17 problems on 14 pages (including this title page) for a total of 150 points. The exam has a multiple choice part, and partial

More information

Outline. Calculus for the Life Sciences. What is a Differential Equation? Introduction. Lecture Notes Introduction to Differential Equa

Outline. Calculus for the Life Sciences. What is a Differential Equation? Introduction. Lecture Notes Introduction to Differential Equa Outline Calculus for the Life Sciences Lecture Notes to Differential Equations Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu 1 Department of Mathematics and Statistics Dynamical Systems Group Computational

More information

Ma 221 Final Exam Solutions 5/14/13

Ma 221 Final Exam Solutions 5/14/13 Ma 221 Final Exam Solutions 5/14/13 1. Solve (a) (8 pts) Solution: The equation is separable. dy dx exy y 1 y0 0 y 1e y dy e x dx y 1e y dy e x dx ye y e y dy e x dx ye y e y e y e x c The last step comes

More information

These notes are based mostly on [3]. They also rely on [2] and [1], though to a lesser extent.

These notes are based mostly on [3]. They also rely on [2] and [1], though to a lesser extent. Chapter 1 Introduction These notes are based mostly on [3]. They also rely on [2] and [1], though to a lesser extent. 1.1 Definitions and Terminology 1.1.1 Background and Definitions The words "differential

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt =

More information

You may hold onto this portion of the test and work on it some more after you have completed the no calculator portion of the test.

You may hold onto this portion of the test and work on it some more after you have completed the no calculator portion of the test. MTH 5 Winter Term 010 Test 1- Calculator Portion Name You may hold onto this portion of the test and work on it some more after you have completed the no calculator portion of the test. 1. Consider the

More information

Chapter -1: Di erential Calculus and Regular Surfaces

Chapter -1: Di erential Calculus and Regular Surfaces Chapter -1: Di erential Calculus and Regular Surfaces Peter Perry August 2008 Contents 1 Introduction 1 2 The Derivative as a Linear Map 2 3 The Big Theorems of Di erential Calculus 4 3.1 The Chain Rule............................

More information

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions For Quetion -6, rewrite the piecewie function uing tep function, ketch their graph, and find F () = Lf(t). 0 0 < t < 2. f(t) = (t 2 4) 2 < t In tep-function form, f(t) = u 2 (t 2 4) The graph i the olid

More information

Multiple Choice Answers. MA 114 Calculus II Spring 2013 Final Exam 1 May Question

Multiple Choice Answers. MA 114 Calculus II Spring 2013 Final Exam 1 May Question MA 114 Calculus II Spring 2013 Final Exam 1 May 2013 Name: Section: Last 4 digits of student ID #: This exam has six multiple choice questions (six points each) and five free response questions with points

More information

Time Response of Systems

Time Response of Systems Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

More information

Laplace Transform Problems

Laplace Transform Problems AP Calculus BC Name: Laplace Transformation Day 3 2 January 206 Laplace Transform Problems Example problems using the Laplace Transform.. Solve the differential equation y! y = e t, with the initial value

More information

Section Mass Spring Systems

Section Mass Spring Systems Asst. Prof. Hottovy SM212-Section 3.1. Section 5.1-2 Mass Spring Systems Name: Purpose: To investigate the mass spring systems in Chapter 5. Procedure: Work on the following activity with 2-3 other students

More information

Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3)

Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3) Final Exam Review AP Calculus AB Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3) Use the graph to evaluate the limit. 2) lim x

More information

Chapter 6. Second order differential equations

Chapter 6. Second order differential equations Chapter 6. Second order differential equations A second order differential equation is of the form y = f(t, y, y ) where y = y(t). We shall often think of t as parametrizing time, y position. In this case

More information

MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November

MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November 6 2017 Name: Student ID Number: I understand it is against the rules to cheat or engage in other academic misconduct

More information

) sm wl t. _.!!... e -pt sinh y t. Vo + mx" + cx' + kx = 0 (26) has a unique tions x(o) solution for t ;?; 0 satisfying given initial condi

) sm wl t. _.!!... e -pt sinh y t. Vo + mx + cx' + kx = 0 (26) has a unique tions x(o) solution for t ;?; 0 satisfying given initial condi 1 48 Chapter 2 Linear Equations of Higher Order 28. (Overdamped) If Xo = 0, deduce from Problem 27 that x(t) Vo = e -pt sinh y t. Y 29. (Overdamped) Prove that in this case the mass can pass through its

More information

FINAL EXAM SOLUTIONS, MATH 123

FINAL EXAM SOLUTIONS, MATH 123 FINAL EXAM SOLUTIONS, MATH 23. Find the eigenvalues of the matrix ( 9 4 3 ) So λ = or 6. = λ 9 4 3 λ = ( λ)( 3 λ) + 36 = λ 2 7λ + 6 = (λ 6)(λ ) 2. Compute the matrix inverse: ( ) 3 3 = 3 4 ( 4/3 ) 3. Let

More information

Aircraft Dynamics First order and Second order system

Aircraft Dynamics First order and Second order system Aircraft Dynamics First order and Second order system Prepared by A.Kaviyarasu Assistant Professor Department of Aerospace Engineering Madras Institute Of Technology Chromepet, Chennai Aircraft dynamic

More information

General Recipe for Constant-Coefficient Equations

General Recipe for Constant-Coefficient Equations General Recipe for Constant-Coefficient Equations We want to look at problems like y (6) + 10y (5) + 39y (4) + 76y + 78y + 36y = (x + 2)e 3x + xe x cos x + 2x + 5e x. This example is actually more complicated

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

How to Use Calculus Like a Physicist

How to Use Calculus Like a Physicist How to Use Calculus Like a Physicist Physics A300 Fall 2004 The purpose of these notes is to make contact between the abstract descriptions you may have seen in your calculus classes and the applications

More information

Lecture 7: Differential Equations

Lecture 7: Differential Equations Math 94 Professor: Padraic Bartlett Lecture 7: Differential Equations Week 7 UCSB 205 This is the seventh week of the Mathematics Subject Test GRE prep course; here, we review various techniques used to

More information

dx n a 1(x) dy

dx n a 1(x) dy HIGHER ORDER DIFFERENTIAL EQUATIONS Theory of linear equations Initial-value and boundary-value problem nth-order initial value problem is Solve: a n (x) dn y dx n + a n 1(x) dn 1 y dx n 1 +... + a 1(x)

More information

Computer Problems for Methods of Solving Ordinary Differential Equations

Computer Problems for Methods of Solving Ordinary Differential Equations Computer Problems for Methods of Solving Ordinary Differential Equations 1. Have a computer make a phase portrait for the system dx/dt = x + y, dy/dt = 2y. Clearly indicate critical points and separatrices.

More information

CHAPTER 6 VECTOR CALCULUS. We ve spent a lot of time so far just looking at all the different ways you can graph

CHAPTER 6 VECTOR CALCULUS. We ve spent a lot of time so far just looking at all the different ways you can graph CHAPTER 6 VECTOR CALCULUS We ve spent a lot of time so far just looking at all the different ways you can graph things and describe things in three dimensions, and it certainly seems like there is a lot

More information

y = 7x 2 + 2x 7 ( x, f (x)) y = 3x + 6 f (x) = 3( x 3) 2 dy dx = 3 dy dx =14x + 2 dy dy dx = 2x = 6x 18 dx dx = 2ax + b

y = 7x 2 + 2x 7 ( x, f (x)) y = 3x + 6 f (x) = 3( x 3) 2 dy dx = 3 dy dx =14x + 2 dy dy dx = 2x = 6x 18 dx dx = 2ax + b Rates of hange III Differentiation Workbook Limits For question, 1., draw up a artesian plane and plot your point [( x + h), f ( x + h) ] ( x, f (x)), and your point and visualise how the limit from first

More information

8.7 MacLaurin Polynomials

8.7 MacLaurin Polynomials 8.7 maclaurin polynomials 67 8.7 MacLaurin Polynomials In this chapter you have learned to find antiderivatives of a wide variety of elementary functions, but many more such functions fail to have an antiderivative

More information

Problem Score Possible Points Total 150

Problem Score Possible Points Total 150 Math 250 Fall 2010 Final Exam NAME: ID No: SECTION: This exam contains 17 problems on 13 pages (including this title page) for a total of 150 points. There are 10 multiple-choice problems and 7 partial

More information

Higher-order differential equations

Higher-order differential equations Higher-order differential equations Peyam Tabrizian Wednesday, November 16th, 2011 This handout is meant to give you a couple more example of all the techniques discussed in chapter 6, to counterbalance

More information

Topic 5 Notes Jeremy Orloff. 5 Homogeneous, linear, constant coefficient differential equations

Topic 5 Notes Jeremy Orloff. 5 Homogeneous, linear, constant coefficient differential equations Topic 5 Notes Jeremy Orloff 5 Homogeneous, linear, constant coefficient differential equations 5.1 Goals 1. Be able to solve homogeneous constant coefficient linear differential equations using the method

More information

Topic 3 Notes Jeremy Orloff

Topic 3 Notes Jeremy Orloff Topic 3 Notes Jeremy Orloff 3 Input-response models 3.1 Goals 1. Be able to use the language of systems and signals. 2. Be familiar with the physical examples in these notes. 3.2 Introduction In 18.03

More information

Math 3313: Differential Equations Second-order ordinary differential equations

Math 3313: Differential Equations Second-order ordinary differential equations Math 3313: Differential Equations Second-order ordinary differential equations Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX Outline Mass-spring & Newton s 2nd law Properties

More information

Chapter1. Ordinary Differential Equations

Chapter1. Ordinary Differential Equations Chapter1. Ordinary Differential Equations In the sciences and engineering, mathematical models are developed to aid in the understanding of physical phenomena. These models often yield an equation that

More information

x(t + t) = x(t) + Ix(t) t.

x(t + t) = x(t) + Ix(t) t. 6 2. Modeling by first order linear ODEs 2.1. The savings account model. Modeling a savings account gives a good way to visualize the significance of many of the features of a general first order linear

More information

Differential equations

Differential equations Differential equations Math 27 Spring 2008 In-term exam February 5th. Solutions This exam contains fourteen problems numbered through 4. Problems 3 are multiple choice problems, which each count 6% of

More information

1 Some general theory for 2nd order linear nonhomogeneous

1 Some general theory for 2nd order linear nonhomogeneous Math 175 Honors ODE I Spring, 013 Notes 5 1 Some general theory for nd order linear nonhomogeneous equations 1.1 General form of the solution Suppose that p; q; and g are continuous on an interval I; and

More information

c 2007 Je rey A. Miron

c 2007 Je rey A. Miron Review of Calculus Tools. c 007 Je rey A. Miron Outline 1. Derivatives. Optimization 3. Partial Derivatives. Optimization again 5. Optimization subject to constraints 1 Derivatives The basic tool we need

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

MATH 415, WEEKS 7 & 8: Conservative and Hamiltonian Systems, Non-linear Pendulum

MATH 415, WEEKS 7 & 8: Conservative and Hamiltonian Systems, Non-linear Pendulum MATH 415, WEEKS 7 & 8: Conservative and Hamiltonian Systems, Non-linear Pendulum Reconsider the following example from last week: dx dt = x y dy dt = x2 y. We were able to determine many qualitative features

More information

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS III: Autonomous Planar Systems David Levermore Department of Mathematics University of Maryland

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS III: Autonomous Planar Systems David Levermore Department of Mathematics University of Maryland FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS III: Autonomous Planar Systems David Levermore Department of Mathematics University of Maryland 4 May 2012 Because the presentation of this material

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH *

UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH * 4.4 UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH 19 Discussion Problems 59. Two roots of a cubic auxiliary equation with real coeffi cients are m 1 1 and m i. What is the corresponding homogeneous

More information

Predicting the future with Newton s Second Law

Predicting the future with Newton s Second Law Predicting the future with Newton s Second Law To represent the motion of an object (ignoring rotations for now), we need three functions x(t), y(t), and z(t), which describe the spatial coordinates of

More information

The Laplace transform

The Laplace transform The Laplace transform Samy Tindel Purdue University Differential equations - MA 266 Taken from Elementary differential equations by Boyce and DiPrima Samy T. Laplace transform Differential equations 1

More information

Spring 2017 Midterm 1 04/26/2017

Spring 2017 Midterm 1 04/26/2017 Math 2B Spring 2017 Midterm 1 04/26/2017 Time Limit: 50 Minutes Name (Print): Student ID This exam contains 10 pages (including this cover page) and 5 problems. Check to see if any pages are missing. Enter

More information

Chapter 3 : Linear Differential Eqn. Chapter 3 : Linear Differential Eqn.

Chapter 3 : Linear Differential Eqn. Chapter 3 : Linear Differential Eqn. 1.0 Introduction Linear differential equations is all about to find the total solution y(t), where : y(t) = homogeneous solution [ y h (t) ] + particular solution y p (t) General form of differential equation

More information

Logic. Quantifiers. (real numbers understood). x [x is rotten in Denmark]. x<x+x 2 +1

Logic. Quantifiers. (real numbers understood). x [x is rotten in Denmark]. x<x+x 2 +1 Logic One reason for studying logic is that we need a better notation than ordinary English for expressing relationships among various assertions or hypothetical states of affairs. A solid grounding in

More information

Relations and Functions

Relations and Functions Algebra 1, Quarter 2, Unit 2.1 Relations and Functions Overview Number of instructional days: 10 (2 assessments) (1 day = 45 60 minutes) Content to be learned Demonstrate conceptual understanding of linear

More information

Topic Subtopics Essential Knowledge (EK)

Topic Subtopics Essential Knowledge (EK) Unit/ Unit 1 Limits [BEAN] 1.1 Limits Graphically Define a limit (y value a function approaches) One sided limits. Easy if it s continuous. Tricky if there s a discontinuity. EK 1.1A1: Given a function,

More information

1 Lesson 13: Methods of Integration

1 Lesson 13: Methods of Integration Lesson 3: Methods of Integration Chapter 6 Material: pages 273-294 in the textbook: Lesson 3 reviews integration by parts and presents integration via partial fraction decomposition as the third of the

More information

y 2y = 4 x, Name Form Solution method

y 2y = 4 x, Name Form Solution method An Introduction to Higher-Order Differential Equations Up to this point in the class, we have only specifically studied solution techniques for first-order differential equations, i.e. equations whose

More information

Ordinary Differential Equations (ODEs) Background. Video 17

Ordinary Differential Equations (ODEs) Background. Video 17 Ordinary Differential Equations (ODEs) Background Video 17 Daniel J. Bodony Department of Aerospace Engineering University of Illinois at Urbana-Champaign In this video you will learn... 1 What ODEs are

More information

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes Paper Reference(s) 6667/0 Edexcel GCE Further Pure Mathematics FP Bronze Level B Time: hour 30 minutes Materials required for examination papers Mathematical Formulae (Green) Items included with question

More information

Slope Fields: Graphing Solutions Without the Solutions

Slope Fields: Graphing Solutions Without the Solutions 8 Slope Fields: Graphing Solutions Without the Solutions Up to now, our efforts have been directed mainly towards finding formulas or equations describing solutions to given differential equations. Then,

More information

We first review various rules for easy differentiation of common functions: The same procedure works for a larger number of terms.

We first review various rules for easy differentiation of common functions: The same procedure works for a larger number of terms. 1 Math 182 Lecture Notes 1. Review of Differentiation To differentiate a function y = f(x) is to find its derivative f '(x). Another standard notation for the derivative is Dx(f(x)). Recall the meanings

More information

CHAPTER 8. Approximation Theory

CHAPTER 8. Approximation Theory CHAPTER 8 Approximation Theory 1. Introduction We consider two types of problems in this chapter: (1) Representing a function by a simpler function that is easier to evaluate. () Fitting functions to given

More information

Introduction - Motivation. Many phenomena (physical, chemical, biological, etc.) are model by differential equations. f f(x + h) f(x) (x) = lim

Introduction - Motivation. Many phenomena (physical, chemical, biological, etc.) are model by differential equations. f f(x + h) f(x) (x) = lim Introduction - Motivation Many phenomena (physical, chemical, biological, etc.) are model by differential equations. Recall the definition of the derivative of f(x) f f(x + h) f(x) (x) = lim. h 0 h Its

More information

SIMPLE HARMONIC MOTION: NEWTON S LAW

SIMPLE HARMONIC MOTION: NEWTON S LAW SIMPLE HARMONIC MOTION: NEWTON S LAW siple not siple PRIOR READING: Main 1.1, 2.1 Taylor 5.1, 5.2 http://www.yoops.org/twocw/it/nr/rdonlyres/physics/8-012fall-2005/7cce46ac-405d-4652-a724-64f831e70388/0/chp_physi_pndul.jpg

More information

VANDERBILT UNIVERSITY. MATH 2610 ORDINARY DIFFERENTIAL EQUATIONS Practice for test 1 solutions

VANDERBILT UNIVERSITY. MATH 2610 ORDINARY DIFFERENTIAL EQUATIONS Practice for test 1 solutions VANDERBILT UNIVERSITY MATH 2610 ORDINARY DIFFERENTIAL EQUATIONS Practice for test 1 solutions The first test will cover all material discussed up to (including) section 4.5. Important: The solutions below

More information

Math 266: Ordinary Differential Equations

Math 266: Ordinary Differential Equations Math 266: Ordinary Differential Equations Long Jin Purdue University, Spring 2018 Basic information Lectures: MWF 8:30-9:20(111)/9:30-10:20(121), UNIV 103 Instructor: Long Jin (long249@purdue.edu) Office

More information

3.1 Derivatives of Polynomials and Exponential Functions. m(x) = f(x) + g(x) m (x) = f (x) + g (x) (The Sum Rule)

3.1 Derivatives of Polynomials and Exponential Functions. m(x) = f(x) + g(x) m (x) = f (x) + g (x) (The Sum Rule) f Chapter 3 Differentiation Rules 3.1 Derivatives of Polynomials and Exponential Functions Aka The Short Cuts! Yay! f(x) c f (x) 0 g(x) x g (x) 1 h(x) x n h (x) n x n1 (The Power Rule) k(x) c f(x) k (x)

More information

1.1. BASIC ANTI-DIFFERENTIATION 21 + C.

1.1. BASIC ANTI-DIFFERENTIATION 21 + C. .. BASIC ANTI-DIFFERENTIATION and so e x cos xdx = ex sin x + e x cos x + C. We end this section with a possibly surprising complication that exists for anti-di erentiation; a type of complication which

More information

dt 2 The Order of a differential equation is the order of the highest derivative that occurs in the equation. Example The differential equation

dt 2 The Order of a differential equation is the order of the highest derivative that occurs in the equation. Example The differential equation Lecture 18 : Direction Fields and Euler s Method A Differential Equation is an equation relating an unknown function and one or more of its derivatives. Examples Population growth : dp dp = kp, or = kp

More information

AP CALCULUS BC 2010 SCORING GUIDELINES

AP CALCULUS BC 2010 SCORING GUIDELINES AP CALCULUS BC 2010 SCORING GUIDELINES Question 3 2 A particle is moving along a curve so that its position at time t is ( x() t, y() t ), where xt () = t 4t+ 8 and yt () is not explicitly given. Both

More information

Second-Order Linear ODEs

Second-Order Linear ODEs Chap. 2 Second-Order Linear ODEs Sec. 2.1 Homogeneous Linear ODEs of Second Order On pp. 45-46 we extend concepts defined in Chap. 1, notably solution and homogeneous and nonhomogeneous, to second-order

More information

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts Week #7: Substitutions and by Parts, Area Between Curves Goals: The Method of Substitution Areas Integration by Parts 1 Week 7 The Indefinite Integral The Fundamental Theorem of Calculus, b a f(x) dx =

More information

Second Order Linear Equations

Second Order Linear Equations October 13, 2016 1 Second And Higher Order Linear Equations In first part of this chapter, we consider second order linear ordinary linear equations, i.e., a differential equation of the form L[y] = d

More information

Thursday, August 4, 2011

Thursday, August 4, 2011 Chapter 16 Thursday, August 4, 2011 16.1 Springs in Motion: Hooke s Law and the Second-Order ODE We have seen alrealdy that differential equations are powerful tools for understanding mechanics and electro-magnetism.

More information

Differential Equations

Differential Equations Differential Equations A differential equation (DE) is an equation which involves an unknown function f (x) as well as some of its derivatives. To solve a differential equation means to find the unknown

More information

Taylor series. Chapter Introduction From geometric series to Taylor polynomials

Taylor series. Chapter Introduction From geometric series to Taylor polynomials Chapter 2 Taylor series 2. Introduction The topic of this chapter is find approximations of functions in terms of power series, also called Taylor series. Such series can be described informally as infinite

More information

Math Lecture 1: Differential Equations - What Are They, Where Do They Come From, and What Do They Want?

Math Lecture 1: Differential Equations - What Are They, Where Do They Come From, and What Do They Want? Math 2280 - Lecture 1: Differential Equations - What Are They, Where Do They Come From, and What Do They Want? Dylan Zwick Fall 2013 Newton s fundamental discovery, the one which he considered necessary

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS 1. Basic Terminology A differential equation is an equation that contains an unknown function together with one or more of its derivatives. 1 Examples: 1. y = 2x + cos x 2. dy dt

More information

22.2. Applications of Eigenvalues and Eigenvectors. Introduction. Prerequisites. Learning Outcomes

22.2. Applications of Eigenvalues and Eigenvectors. Introduction. Prerequisites. Learning Outcomes Applications of Eigenvalues and Eigenvectors 22.2 Introduction Many applications of matrices in both engineering and science utilize eigenvalues and, sometimes, eigenvectors. Control theory, vibration

More information

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017

Physics 2A Chapter 3 - Motion in Two Dimensions Fall 2017 These notes are seen pages. A quick summary: Projectile motion is simply horizontal motion at constant elocity with ertical motion at constant acceleration. An object moing in a circular path experiences

More information

Section 4.3 Vector Fields

Section 4.3 Vector Fields Section 4.3 Vector Fields DEFINITION: A vector field in R n is a map F : A R n R n that assigns to each point x in its domain A a vector F(x). If n = 2, F is called a vector field in the plane, and if

More information

I. Impulse Response and Convolution

I. Impulse Response and Convolution I. Impulse Response and Convolution 1. Impulse response. Imagine a mass m at rest on a frictionless track, then given a sharp kick at time t =. We model the kick as a constant force F applied to the mass

More information

Math 341 Fall 2008 Friday December 12

Math 341 Fall 2008 Friday December 12 FINAL EXAM: Differential Equations Math 341 Fall 2008 Friday December 12 c 2008 Ron Buckmire 1:00pm-4:00pm Name: Directions: Read all problems first before answering any of them. There are 17 pages in

More information