Blind Deconvolution Using Convex Programming. Jiaming Cao

Size: px
Start display at page:

Download "Blind Deconvolution Using Convex Programming. Jiaming Cao"

Transcription

1 Blind Deconvolution Using Convex Programming Jiaming Cao

2 Problem Statement The basic problem Consider that the received signal is the circular convolution of two vectors w and x, both of length L. How can we recover the vectors w and x from the single received signal? 0 y = w x (or y ll = ll w ll * x[ll ll * 1 + 1] ) w =? x =?

3 Problem Statement Structural assumptions Assume that w and x live in subspaces with dimensions K and N respectively, i.e. where B is a L K matrix, and C is a L N matrix. Knowing matrices B and C, reconstructing w and x is euivalent to reconstructing m and h.

4 Problem Statement An intuition Ahmed et al (2014)

5 Proposed Algorithm Matrix Observation Expand the convolution euation using the structural assumption, y = m 1 w C < + + m N w C > = circ C < circ C > m 1 w m N w where circ C C denotes the L L circulant matrix constructed be nth column of matrix C.

6 Proposed Algorithm Matrix Observation Take the Fourier transform, let the DFT matrix by F. Then use CF = FC, BF = FB, and, yg = Fy = Δ < BF Δ > BF m 1 h m N h where Δ C = diag( LCF C ) Related to outer product of h and m, hm = m 1 h m N h

7 Proposed Algorithm Matrix Observation yg = Fy = Δ < BF Δ > BF m 1 h m N h Let X Q = hm, using the observation that the operation to get yg is linear, we can note the expression as, yg = A(X Q ) Further, X Q is a rank 1 matrix by definition. Now we have a way to formulate the recovery of X Q.

8 Proposed Algorithm Formulation arg min rank X s. t. yg = A(X) Xe = Convex relaxation arg min X s. t. yg = A(X) Let σ_u_ < v_ < be the best rank 1 approximation to Xc, then set h c = σ_u_ < and md = σ_v_ <

9 Performance Guarantee Definitions and Assumptions WOLG, assume columns in B to be orthonormal, such that, Define, B B = Bg Bg = h b g jb g j = I 0 jk< Let, μ nop μ y = L max <sjs0 μ nwc = L K max <sjs0 bg j h, bg j = L K min <sjs0 bg j [1, L/K] [0,1] [1, Kμnop ](h unity norm) C l, n ~N(0, L < )

10 Performance Guarantee Theorem 1 Under the above assumptions, fix α 1. Then there exists a constant C = O(α) depending only on α such that if, max (μ nop K, μ L y N) C (log L)ˆ then X Q = hm is the uniue solution to the neuclear norm minimization problem with probability 1 O(L < ), and we can recover both w and x within a scalar multiple from y = w x. When the coherences are low (i.e. μ nop and μ y are on the order of a constant), the ineuality is tight to within a logarithmic factor, as we always have max (K, N) L

11 Performance Guarantee Theorem 1 max μ nop K, μ y N L C (log L)ˆ As we would like to have the lower bound low, small μ nop and μ y (i.e. B spread out in freuency domain, or incoherent ) are preferred. Eg. when B = I K, μ 0 nop = μ nwc = 1

12 Performance Guarantee Theorem 2 (stability in presence of noise) Let the noisy observation be, yg = A X Q + z where z is an unknown noise vector with z δ. The optimization problem is now, arg min s. t. X yg A(X) δ

13 Performance Guarantee Theorem 2 (stability in presence of noise) Let λ nwc and λ nop be the smallest and largest non- zero eigenvalues of AA, then with probability 1 L <, the solution to the modified optimization problem will obey, Xc X Q for a fixed constant C. C λ nop λ nwc min (K, N)δ When A is sufficiently underdetermined, NK L(log L), then with high probability, λ nop λ nwc ~ μ nop μ nwc

14 Performance Guarantee Theorem 2 (stability in presence of noise) Set δ = Xc X Q, the there exists a constant C such that, h αh c Cmin ( m 1 α md Cmin ( δ, h h ) δ, m m ) for some scalar multiple α.

15 Numerical Simulations Phase Transition Ahmed et al (2014)

16 Numerical Simulations In Presence of Noise Ahmed et al (2014)

17 Toy Example Image Deblurring x R 0 represents an image of 256x256 pixels, and w R 0 represents a blur kernel with the same dimension. Therefore, L = = Let C be a set wavelet basis, and m be the active coefficients in wavelet domain. Let B be formed by a subset of columns in I matrix, and h is an unknown short vector.

18 Toy Example Image Deblurring

19 Toy Example Image Deblurring Knowing the support of the original image in wavelet domain Not knowing the support of the original image in wavelet domain

20 Comments and Related Works Novelty: casting blind deconvolution to a low- rank matrix recovery problem Drawback: it is known that SDP is feasible but very expensive, esp. at large scales (Li et al.) Speed up using non- convex methods (in presence of noise): min n,y yÿ A(mh )

21 Sketch of Proof (Theorem 2) Let Xc = X Q + h, P A be the projection operator onto the row space of A. By triangular ineuality and definition, A(h) yÿ A X Q + A Xc yÿ 2δ Recovery error can be decomposed as, h = P A (h) + P A (h) It can be shown that (details not included, Proposition 1) since P A (h) lies in the null space of A, X Q + P A h X Q C P P A h By triangular ineuality, after rearranging, P P A h C P A h C min (K, N) P A (h) It can be shown that (details not included) since P A (h) lies in the null space of A, P P A h 2λnop P P A h Therefore, P A (h) = P P A h + P P A h (2λnop + 1) P P A h

22 Sketch of Proof (Theorem 2) Plug into the expression for recovery error, we get, h P A h + 2λ nop + 1 P P A h Knowing that Frobenius norm is no greater than nuclear norm, by applying the previous bound on nuclear norm, we have, A(h) P A h + C(2λ nop + 1)min (K, N) P A (h) Absorbing all constants into C, h Cλ nop min (K, N) P A h Cλ nop min (K, N) A A(h) where A is the pseudoinverse of A, whose norm is λ nwc. Also use the previously established ineuality on A(h), the conclusion follows.

23 Discussion What is the benefit of viewing blind deconvolutionas a low rank recovery problem?

24 References 1. Ahmed, Ali, Benjamin Recht, and Justin Romberg. "Blind deconvolution using convex programming." IEEE Transactions on Information Theory 60.3 (2014): Li, Xiaodong, et al. "Rapid, robust, and reliable blind deconvolution via nonconvex optimization." arxiv preprint arxiv: (2016).

Strengthened Sobolev inequalities for a random subspace of functions

Strengthened Sobolev inequalities for a random subspace of functions Strengthened Sobolev inequalities for a random subspace of functions Rachel Ward University of Texas at Austin April 2013 2 Discrete Sobolev inequalities Proposition (Sobolev inequality for discrete images)

More information

Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization

Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization Shuyang Ling Department of Mathematics, UC Davis Oct.18th, 2016 Shuyang Ling (UC Davis) 16w5136, Oaxaca, Mexico Oct.18th, 2016

More information

Blind Deconvolution using Convex Programming

Blind Deconvolution using Convex Programming Blind Deconvolution using Convex Programming Ali Ahmed, Benjamin Recht, and Justin Romberg DRAFT: 11:48pm, November 18, 2012 Abstract We consider the problem of recovering two unknown vectors, w and x,

More information

Self-Calibration and Biconvex Compressive Sensing

Self-Calibration and Biconvex Compressive Sensing Self-Calibration and Biconvex Compressive Sensing Shuyang Ling Department of Mathematics, UC Davis July 12, 2017 Shuyang Ling (UC Davis) SIAM Annual Meeting, 2017, Pittsburgh July 12, 2017 1 / 22 Acknowledgements

More information

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles Or: the equation Ax = b, revisited University of California, Los Angeles Mahler Lecture Series Acquiring signals Many types of real-world signals (e.g. sound, images, video) can be viewed as an n-dimensional

More information

Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees

Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees Lecture: Introduction to Compressed Sensing Sparse Recovery Guarantees http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html Acknowledgement: this slides is based on Prof. Emmanuel Candes and Prof. Wotao Yin

More information

Random projections. 1 Introduction. 2 Dimensionality reduction. Lecture notes 5 February 29, 2016

Random projections. 1 Introduction. 2 Dimensionality reduction. Lecture notes 5 February 29, 2016 Lecture notes 5 February 9, 016 1 Introduction Random projections Random projections are a useful tool in the analysis and processing of high-dimensional data. We will analyze two applications that use

More information

Solving Underdetermined Linear Equations and Overdetermined Quadratic Equations (using Convex Programming)

Solving Underdetermined Linear Equations and Overdetermined Quadratic Equations (using Convex Programming) Solving Underdetermined Linear Equations and Overdetermined Quadratic Equations (using Convex Programming) Justin Romberg Georgia Tech, ECE Caltech ROM-GR Workshop June 7, 2013 Pasadena, California Linear

More information

Lecture Notes 9: Constrained Optimization

Lecture Notes 9: Constrained Optimization Optimization-based data analysis Fall 017 Lecture Notes 9: Constrained Optimization 1 Compressed sensing 1.1 Underdetermined linear inverse problems Linear inverse problems model measurements of the form

More information

PHASE RETRIEVAL OF SPARSE SIGNALS FROM MAGNITUDE INFORMATION. A Thesis MELTEM APAYDIN

PHASE RETRIEVAL OF SPARSE SIGNALS FROM MAGNITUDE INFORMATION. A Thesis MELTEM APAYDIN PHASE RETRIEVAL OF SPARSE SIGNALS FROM MAGNITUDE INFORMATION A Thesis by MELTEM APAYDIN Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the

More information

LINEARIZED BREGMAN ITERATIONS FOR FRAME-BASED IMAGE DEBLURRING

LINEARIZED BREGMAN ITERATIONS FOR FRAME-BASED IMAGE DEBLURRING LINEARIZED BREGMAN ITERATIONS FOR FRAME-BASED IMAGE DEBLURRING JIAN-FENG CAI, STANLEY OSHER, AND ZUOWEI SHEN Abstract. Real images usually have sparse approximations under some tight frame systems derived

More information

arxiv: v1 [cs.it] 21 Feb 2013

arxiv: v1 [cs.it] 21 Feb 2013 q-ary Compressive Sensing arxiv:30.568v [cs.it] Feb 03 Youssef Mroueh,, Lorenzo Rosasco, CBCL, CSAIL, Massachusetts Institute of Technology LCSL, Istituto Italiano di Tecnologia and IIT@MIT lab, Istituto

More information

Compressed Sensing and Sparse Recovery

Compressed Sensing and Sparse Recovery ELE 538B: Sparsity, Structure and Inference Compressed Sensing and Sparse Recovery Yuxin Chen Princeton University, Spring 217 Outline Restricted isometry property (RIP) A RIPless theory Compressed sensing

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Low-rank matrix recovery via convex relaxations Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Lecture 7: Matrix completion Yuejie Chi The Ohio State University Page 1 Reference Guaranteed Minimum-Rank Solutions of Linear

More information

Introduction to Compressed Sensing

Introduction to Compressed Sensing Introduction to Compressed Sensing Alejandro Parada, Gonzalo Arce University of Delaware August 25, 2016 Motivation: Classical Sampling 1 Motivation: Classical Sampling Issues Some applications Radar Spectral

More information

5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER /$ IEEE

5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER /$ IEEE 5742 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER 2009 Uncertainty Relations for Shift-Invariant Analog Signals Yonina C. Eldar, Senior Member, IEEE Abstract The past several years

More information

Combining Sparsity with Physically-Meaningful Constraints in Sparse Parameter Estimation

Combining Sparsity with Physically-Meaningful Constraints in Sparse Parameter Estimation UIUC CSL Mar. 24 Combining Sparsity with Physically-Meaningful Constraints in Sparse Parameter Estimation Yuejie Chi Department of ECE and BMI Ohio State University Joint work with Yuxin Chen (Stanford).

More information

ROBUST BLIND SPIKES DECONVOLUTION. Yuejie Chi. Department of ECE and Department of BMI The Ohio State University, Columbus, Ohio 43210

ROBUST BLIND SPIKES DECONVOLUTION. Yuejie Chi. Department of ECE and Department of BMI The Ohio State University, Columbus, Ohio 43210 ROBUST BLIND SPIKES DECONVOLUTION Yuejie Chi Department of ECE and Department of BMI The Ohio State University, Columbus, Ohio 4 ABSTRACT Blind spikes deconvolution, or blind super-resolution, deals with

More information

A New Estimate of Restricted Isometry Constants for Sparse Solutions

A New Estimate of Restricted Isometry Constants for Sparse Solutions A New Estimate of Restricted Isometry Constants for Sparse Solutions Ming-Jun Lai and Louis Y. Liu January 12, 211 Abstract We show that as long as the restricted isometry constant δ 2k < 1/2, there exist

More information

Sparse Recovery Beyond Compressed Sensing

Sparse Recovery Beyond Compressed Sensing Sparse Recovery Beyond Compressed Sensing Carlos Fernandez-Granda www.cims.nyu.edu/~cfgranda Applied Math Colloquium, MIT 4/30/2018 Acknowledgements Project funded by NSF award DMS-1616340 Separable Nonlinear

More information

Three Generalizations of Compressed Sensing

Three Generalizations of Compressed Sensing Thomas Blumensath School of Mathematics The University of Southampton June, 2010 home prev next page Compressed Sensing and beyond y = Φx + e x R N or x C N x K is K-sparse and x x K 2 is small y R M or

More information

Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization

Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization Xiaodong Li, Shuyang Ling, Thomas Strohmer, and Ke Wei June 15, 016 Abstract We study the question of reconstructing two signals

More information

DS-GA 1002 Lecture notes 10 November 23, Linear models

DS-GA 1002 Lecture notes 10 November 23, Linear models DS-GA 2 Lecture notes November 23, 2 Linear functions Linear models A linear model encodes the assumption that two quantities are linearly related. Mathematically, this is characterized using linear functions.

More information

Optimization-based sparse recovery: Compressed sensing vs. super-resolution

Optimization-based sparse recovery: Compressed sensing vs. super-resolution Optimization-based sparse recovery: Compressed sensing vs. super-resolution Carlos Fernandez-Granda, Google Computational Photography and Intelligent Cameras, IPAM 2/5/2014 This work was supported by a

More information

Recovering overcomplete sparse representations from structured sensing

Recovering overcomplete sparse representations from structured sensing Recovering overcomplete sparse representations from structured sensing Deanna Needell Claremont McKenna College Feb. 2015 Support: Alfred P. Sloan Foundation and NSF CAREER #1348721. Joint work with Felix

More information

SPARSE signal representations have gained popularity in recent

SPARSE signal representations have gained popularity in recent 6958 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011 Blind Compressed Sensing Sivan Gleichman and Yonina C. Eldar, Senior Member, IEEE Abstract The fundamental principle underlying

More information

Compressive Sensing and Beyond

Compressive Sensing and Beyond Compressive Sensing and Beyond Sohail Bahmani Gerorgia Tech. Signal Processing Compressed Sensing Signal Models Classics: bandlimited The Sampling Theorem Any signal with bandwidth B can be recovered

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Lecture 3: Sparse signal recovery: A RIPless analysis of l 1 minimization Yuejie Chi The Ohio State University Page 1 Outline

More information

Compressed Sensing and Robust Recovery of Low Rank Matrices

Compressed Sensing and Robust Recovery of Low Rank Matrices Compressed Sensing and Robust Recovery of Low Rank Matrices M. Fazel, E. Candès, B. Recht, P. Parrilo Electrical Engineering, University of Washington Applied and Computational Mathematics Dept., Caltech

More information

Low-Rank Matrix Recovery

Low-Rank Matrix Recovery ELE 538B: Mathematics of High-Dimensional Data Low-Rank Matrix Recovery Yuxin Chen Princeton University, Fall 2018 Outline Motivation Problem setup Nuclear norm minimization RIP and low-rank matrix recovery

More information

Sparse Optimization Lecture: Sparse Recovery Guarantees

Sparse Optimization Lecture: Sparse Recovery Guarantees Those who complete this lecture will know Sparse Optimization Lecture: Sparse Recovery Guarantees Sparse Optimization Lecture: Sparse Recovery Guarantees Instructor: Wotao Yin Department of Mathematics,

More information

Sensing systems limited by constraints: physical size, time, cost, energy

Sensing systems limited by constraints: physical size, time, cost, energy Rebecca Willett Sensing systems limited by constraints: physical size, time, cost, energy Reduce the number of measurements needed for reconstruction Higher accuracy data subject to constraints Original

More information

Lecture 3. Random Fourier measurements

Lecture 3. Random Fourier measurements Lecture 3. Random Fourier measurements 1 Sampling from Fourier matrices 2 Law of Large Numbers and its operator-valued versions 3 Frames. Rudelson s Selection Theorem Sampling from Fourier matrices Our

More information

Constrained optimization

Constrained optimization Constrained optimization DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Compressed sensing Convex constrained

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee227c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee227c@berkeley.edu

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Low-rank matrix recovery via nonconvex optimization Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Fast Angular Synchronization for Phase Retrieval via Incomplete Information

Fast Angular Synchronization for Phase Retrieval via Incomplete Information Fast Angular Synchronization for Phase Retrieval via Incomplete Information Aditya Viswanathan a and Mark Iwen b a Department of Mathematics, Michigan State University; b Department of Mathematics & Department

More information

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work. Assignment 1 Math 5341 Linear Algebra Review Give complete answers to each of the following questions Show all of your work Note: You might struggle with some of these questions, either because it has

More information

An algebraic perspective on integer sparse recovery

An algebraic perspective on integer sparse recovery An algebraic perspective on integer sparse recovery Lenny Fukshansky Claremont McKenna College (joint work with Deanna Needell and Benny Sudakov) Combinatorics Seminar USC October 31, 2018 From Wikipedia:

More information

Signal Recovery from Permuted Observations

Signal Recovery from Permuted Observations EE381V Course Project Signal Recovery from Permuted Observations 1 Problem Shanshan Wu (sw33323) May 8th, 2015 We start with the following problem: let s R n be an unknown n-dimensional real-valued signal,

More information

Universal low-rank matrix recovery from Pauli measurements

Universal low-rank matrix recovery from Pauli measurements Universal low-rank matrix recovery from Pauli measurements Yi-Kai Liu Applied and Computational Mathematics Division National Institute of Standards and Technology Gaithersburg, MD, USA yi-kai.liu@nist.gov

More information

Sparse Legendre expansions via l 1 minimization

Sparse Legendre expansions via l 1 minimization Sparse Legendre expansions via l 1 minimization Rachel Ward, Courant Institute, NYU Joint work with Holger Rauhut, Hausdorff Center for Mathematics, Bonn, Germany. June 8, 2010 Outline Sparse recovery

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

LOW-RANK SPECTRAL OPTIMIZATION

LOW-RANK SPECTRAL OPTIMIZATION LOW-RANK SPECTRAL OPTIMIZATION MICHAEL P. FRIEDLANDER AND IVES MACÊDO Abstract. Various applications in signal processing and machine learning give rise to highly structured spectral optimization problems

More information

Sparse Sensing in Colocated MIMO Radar: A Matrix Completion Approach

Sparse Sensing in Colocated MIMO Radar: A Matrix Completion Approach Sparse Sensing in Colocated MIMO Radar: A Matrix Completion Approach Athina P. Petropulu Department of Electrical and Computer Engineering Rutgers, the State University of New Jersey Acknowledgments Shunqiao

More information

Exact Low-rank Matrix Recovery via Nonconvex M p -Minimization

Exact Low-rank Matrix Recovery via Nonconvex M p -Minimization Exact Low-rank Matrix Recovery via Nonconvex M p -Minimization Lingchen Kong and Naihua Xiu Department of Applied Mathematics, Beijing Jiaotong University, Beijing, 100044, People s Republic of China E-mail:

More information

The Singular Value Decomposition

The Singular Value Decomposition The Singular Value Decomposition We are interested in more than just sym+def matrices. But the eigenvalue decompositions discussed in the last section of notes will play a major role in solving general

More information

CSC 576: Variants of Sparse Learning

CSC 576: Variants of Sparse Learning CSC 576: Variants of Sparse Learning Ji Liu Department of Computer Science, University of Rochester October 27, 205 Introduction Our previous note basically suggests using l norm to enforce sparsity in

More information

ELE 538B: Sparsity, Structure and Inference. Super-Resolution. Yuxin Chen Princeton University, Spring 2017

ELE 538B: Sparsity, Structure and Inference. Super-Resolution. Yuxin Chen Princeton University, Spring 2017 ELE 538B: Sparsity, Structure and Inference Super-Resolution Yuxin Chen Princeton University, Spring 2017 Outline Classical methods for parameter estimation Polynomial method: Prony s method Subspace method:

More information

6 The SVD Applied to Signal and Image Deblurring

6 The SVD Applied to Signal and Image Deblurring 6 The SVD Applied to Signal and Image Deblurring We will discuss the restoration of one-dimensional signals and two-dimensional gray-scale images that have been contaminated by blur and noise. After an

More information

Analysis of Robust PCA via Local Incoherence

Analysis of Robust PCA via Local Incoherence Analysis of Robust PCA via Local Incoherence Huishuai Zhang Department of EECS Syracuse University Syracuse, NY 3244 hzhan23@syr.edu Yi Zhou Department of EECS Syracuse University Syracuse, NY 3244 yzhou35@syr.edu

More information

8 The SVD Applied to Signal and Image Deblurring

8 The SVD Applied to Signal and Image Deblurring 8 The SVD Applied to Signal and Image Deblurring We will discuss the restoration of one-dimensional signals and two-dimensional gray-scale images that have been contaminated by blur and noise. After an

More information

Conditions for Robust Principal Component Analysis

Conditions for Robust Principal Component Analysis Rose-Hulman Undergraduate Mathematics Journal Volume 12 Issue 2 Article 9 Conditions for Robust Principal Component Analysis Michael Hornstein Stanford University, mdhornstein@gmail.com Follow this and

More information

8 The SVD Applied to Signal and Image Deblurring

8 The SVD Applied to Signal and Image Deblurring 8 The SVD Applied to Signal and Image Deblurring We will discuss the restoration of one-dimensional signals and two-dimensional gray-scale images that have been contaminated by blur and noise. After an

More information

Introduction How it works Theory behind Compressed Sensing. Compressed Sensing. Huichao Xue. CS3750 Fall 2011

Introduction How it works Theory behind Compressed Sensing. Compressed Sensing. Huichao Xue. CS3750 Fall 2011 Compressed Sensing Huichao Xue CS3750 Fall 2011 Table of Contents Introduction From News Reports Abstract Definition How it works A review of L 1 norm The Algorithm Backgrounds for underdetermined linear

More information

1 Regression with High Dimensional Data

1 Regression with High Dimensional Data 6.883 Learning with Combinatorial Structure ote for Lecture 11 Instructor: Prof. Stefanie Jegelka Scribe: Xuhong Zhang 1 Regression with High Dimensional Data Consider the following regression problem:

More information

Stability and Robustness of Weak Orthogonal Matching Pursuits

Stability and Robustness of Weak Orthogonal Matching Pursuits Stability and Robustness of Weak Orthogonal Matching Pursuits Simon Foucart, Drexel University Abstract A recent result establishing, under restricted isometry conditions, the success of sparse recovery

More information

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true. 1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

Structured matrix factorizations. Example: Eigenfaces

Structured matrix factorizations. Example: Eigenfaces Structured matrix factorizations Example: Eigenfaces An extremely large variety of interesting and important problems in machine learning can be formulated as: Given a matrix, find a matrix and a matrix

More information

Tensor-Tensor Product Toolbox

Tensor-Tensor Product Toolbox Tensor-Tensor Product Toolbox 1 version 10 Canyi Lu canyilu@gmailcom Carnegie Mellon University https://githubcom/canyilu/tproduct June, 018 1 INTRODUCTION Tensors are higher-order extensions of matrices

More information

EE731 Lecture Notes: Matrix Computations for Signal Processing

EE731 Lecture Notes: Matrix Computations for Signal Processing EE731 Lecture Notes: Matrix Computations for Signal Processing James P. Reilly c Department of Electrical and Computer Engineering McMaster University September 22, 2005 0 Preface This collection of ten

More information

Exact Topology Identification of Large-Scale Interconnected Dynamical Systems from Compressive Observations

Exact Topology Identification of Large-Scale Interconnected Dynamical Systems from Compressive Observations Exact Topology Identification of arge-scale Interconnected Dynamical Systems from Compressive Observations Borhan M Sanandaji, Tyrone Vincent, and Michael B Wakin Abstract In this paper, we consider the

More information

Principal Component Analysis

Principal Component Analysis Machine Learning Michaelmas 2017 James Worrell Principal Component Analysis 1 Introduction 1.1 Goals of PCA Principal components analysis (PCA) is a dimensionality reduction technique that can be used

More information

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit II: Numerical Linear Algebra Lecturer: Dr. David Knezevic Unit II: Numerical Linear Algebra Chapter II.3: QR Factorization, SVD 2 / 66 QR Factorization 3 / 66 QR Factorization

More information

AN INTRODUCTION TO COMPRESSIVE SENSING

AN INTRODUCTION TO COMPRESSIVE SENSING AN INTRODUCTION TO COMPRESSIVE SENSING Rodrigo B. Platte School of Mathematical and Statistical Sciences APM/EEE598 Reverse Engineering of Complex Dynamical Networks OUTLINE 1 INTRODUCTION 2 INCOHERENCE

More information

of Orthogonal Matching Pursuit

of Orthogonal Matching Pursuit A Sharp Restricted Isometry Constant Bound of Orthogonal Matching Pursuit Qun Mo arxiv:50.0708v [cs.it] 8 Jan 205 Abstract We shall show that if the restricted isometry constant (RIC) δ s+ (A) of the measurement

More information

Review of some mathematical tools

Review of some mathematical tools MATHEMATICAL FOUNDATIONS OF SIGNAL PROCESSING Fall 2016 Benjamín Béjar Haro, Mihailo Kolundžija, Reza Parhizkar, Adam Scholefield Teaching assistants: Golnoosh Elhami, Hanjie Pan Review of some mathematical

More information

Signal Recovery, Uncertainty Relations, and Minkowski Dimension

Signal Recovery, Uncertainty Relations, and Minkowski Dimension Signal Recovery, Uncertainty Relations, and Minkowski Dimension Helmut Bőlcskei ETH Zurich December 2013 Joint work with C. Aubel, P. Kuppinger, G. Pope, E. Riegler, D. Stotz, and C. Studer Aim of this

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

Constructing Explicit RIP Matrices and the Square-Root Bottleneck

Constructing Explicit RIP Matrices and the Square-Root Bottleneck Constructing Explicit RIP Matrices and the Square-Root Bottleneck Ryan Cinoman July 18, 2018 Ryan Cinoman Constructing Explicit RIP Matrices July 18, 2018 1 / 36 Outline 1 Introduction 2 Restricted Isometry

More information

Sparse and Low-Rank Matrix Decompositions

Sparse and Low-Rank Matrix Decompositions Forty-Seventh Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 30 - October 2, 2009 Sparse and Low-Rank Matrix Decompositions Venkat Chandrasekaran, Sujay Sanghavi, Pablo A. Parrilo,

More information

October 25, 2013 INNER PRODUCT SPACES

October 25, 2013 INNER PRODUCT SPACES October 25, 2013 INNER PRODUCT SPACES RODICA D. COSTIN Contents 1. Inner product 2 1.1. Inner product 2 1.2. Inner product spaces 4 2. Orthogonal bases 5 2.1. Existence of an orthogonal basis 7 2.2. Orthogonal

More information

AIR FORCE RESEARCH LABORATORY Directed Energy Directorate 3550 Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM

AIR FORCE RESEARCH LABORATORY Directed Energy Directorate 3550 Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM AFRL-DE-PS-JA-2007-1004 AFRL-DE-PS-JA-2007-1004 Noise Reduction in support-constrained multi-frame blind-deconvolution restorations as a function of the number of data frames and the support constraint

More information

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit New Coherence and RIP Analysis for Wea 1 Orthogonal Matching Pursuit Mingrui Yang, Member, IEEE, and Fran de Hoog arxiv:1405.3354v1 [cs.it] 14 May 2014 Abstract In this paper we define a new coherence

More information

Towards a Mathematical Theory of Super-resolution

Towards a Mathematical Theory of Super-resolution Towards a Mathematical Theory of Super-resolution Carlos Fernandez-Granda www.stanford.edu/~cfgranda/ Information Theory Forum, Information Systems Laboratory, Stanford 10/18/2013 Acknowledgements This

More information

Gauge optimization and duality

Gauge optimization and duality 1 / 54 Gauge optimization and duality Junfeng Yang Department of Mathematics Nanjing University Joint with Shiqian Ma, CUHK September, 2015 2 / 54 Outline Introduction Duality Lagrange duality Fenchel

More information

Going off the grid. Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison

Going off the grid. Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison Going off the grid Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison Joint work with Badri Bhaskar Parikshit Shah Gonnguo Tang We live in a continuous world... But we work

More information

Low-rank Matrix Completion with Noisy Observations: a Quantitative Comparison

Low-rank Matrix Completion with Noisy Observations: a Quantitative Comparison Low-rank Matrix Completion with Noisy Observations: a Quantitative Comparison Raghunandan H. Keshavan, Andrea Montanari and Sewoong Oh Electrical Engineering and Statistics Department Stanford University,

More information

On the exponential convergence of. the Kaczmarz algorithm

On the exponential convergence of. the Kaczmarz algorithm On the exponential convergence of the Kaczmarz algorithm Liang Dai and Thomas B. Schön Department of Information Technology, Uppsala University, arxiv:4.407v [cs.sy] 0 Mar 05 75 05 Uppsala, Sweden. E-mail:

More information

1 Linearity and Linear Systems

1 Linearity and Linear Systems Mathematical Tools for Neuroscience (NEU 34) Princeton University, Spring 26 Jonathan Pillow Lecture 7-8 notes: Linear systems & SVD Linearity and Linear Systems Linear system is a kind of mapping f( x)

More information

INVESTIGATING THE NUMERICAL RANGE AND Q-NUMERICAL RANGE OF NON SQUARE MATRICES. Aikaterini Aretaki, John Maroulas

INVESTIGATING THE NUMERICAL RANGE AND Q-NUMERICAL RANGE OF NON SQUARE MATRICES. Aikaterini Aretaki, John Maroulas Opuscula Mathematica Vol. 31 No. 3 2011 http://dx.doi.org/10.7494/opmath.2011.31.3.303 INVESTIGATING THE NUMERICAL RANGE AND Q-NUMERICAL RANGE OF NON SQUARE MATRICES Aikaterini Aretaki, John Maroulas Abstract.

More information

A NEW ITERATIVE METHOD FOR THE SPLIT COMMON FIXED POINT PROBLEM IN HILBERT SPACES. Fenghui Wang

A NEW ITERATIVE METHOD FOR THE SPLIT COMMON FIXED POINT PROBLEM IN HILBERT SPACES. Fenghui Wang A NEW ITERATIVE METHOD FOR THE SPLIT COMMON FIXED POINT PROBLEM IN HILBERT SPACES Fenghui Wang Department of Mathematics, Luoyang Normal University, Luoyang 470, P.R. China E-mail: wfenghui@63.com ABSTRACT.

More information

Sparse Parameter Estimation: Compressed Sensing meets Matrix Pencil

Sparse Parameter Estimation: Compressed Sensing meets Matrix Pencil Sparse Parameter Estimation: Compressed Sensing meets Matrix Pencil Yuejie Chi Departments of ECE and BMI The Ohio State University Colorado School of Mines December 9, 24 Page Acknowledgement Joint work

More information

An Introduction to Sparse Approximation

An Introduction to Sparse Approximation An Introduction to Sparse Approximation Anna C. Gilbert Department of Mathematics University of Michigan Basic image/signal/data compression: transform coding Approximate signals sparsely Compress images,

More information

THE SINGULAR VALUE DECOMPOSITION MARKUS GRASMAIR

THE SINGULAR VALUE DECOMPOSITION MARKUS GRASMAIR THE SINGULAR VALUE DECOMPOSITION MARKUS GRASMAIR 1. Definition Existence Theorem 1. Assume that A R m n. Then there exist orthogonal matrices U R m m V R n n, values σ 1 σ 2... σ p 0 with p = min{m, n},

More information

Inverse problems and sparse models (6/6) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France.

Inverse problems and sparse models (6/6) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France. Inverse problems and sparse models (6/6) Rémi Gribonval INRIA Rennes - Bretagne Atlantique, France remi.gribonval@inria.fr Overview of the course Introduction sparsity & data compression inverse problems

More information

Lecture 22: More On Compressed Sensing

Lecture 22: More On Compressed Sensing Lecture 22: More On Compressed Sensing Scribed by Eric Lee, Chengrun Yang, and Sebastian Ament Nov. 2, 207 Recap and Introduction Basis pursuit was the method of recovering the sparsest solution to an

More information

Large Scale Data Analysis Using Deep Learning

Large Scale Data Analysis Using Deep Learning Large Scale Data Analysis Using Deep Learning Linear Algebra U Kang Seoul National University U Kang 1 In This Lecture Overview of linear algebra (but, not a comprehensive survey) Focused on the subset

More information

Design of Spectrally Shaped Binary Sequences via Randomized Convex Relaxations

Design of Spectrally Shaped Binary Sequences via Randomized Convex Relaxations Design of Spectrally Shaped Binary Sequences via Randomized Convex Relaxations Dian Mo Department of Electrical and Computer Engineering University of Massachusetts Amherst, MA 3 mo@umass.edu Marco F.

More information

Contents. 0.1 Notation... 3

Contents. 0.1 Notation... 3 Contents 0.1 Notation........................................ 3 1 A Short Course on Frame Theory 4 1.1 Examples of Signal Expansions............................ 4 1.2 Signal Expansions in Finite-Dimensional

More information

Compressed sensing techniques for hyperspectral image recovery

Compressed sensing techniques for hyperspectral image recovery Compressed sensing techniques for hyperspectral image recovery A. Abrardo, M. Barni, C. M. Carretti, E. Magli, S. Kuiteing Kamdem, R. Vitulli ABSTRACT Compressed Sensing (CS) theory is progressively gaining

More information

14 Singular Value Decomposition

14 Singular Value Decomposition 14 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

Fast and Robust Phase Retrieval

Fast and Robust Phase Retrieval Fast and Robust Phase Retrieval Aditya Viswanathan aditya@math.msu.edu CCAM Lunch Seminar Purdue University April 18 2014 0 / 27 Joint work with Yang Wang Mark Iwen Research supported in part by National

More information

ECE 275A Homework #3 Solutions

ECE 275A Homework #3 Solutions ECE 75A Homework #3 Solutions. Proof of (a). Obviously Ax = 0 y, Ax = 0 for all y. To show sufficiency, note that if y, Ax = 0 for all y, then it must certainly be true for the particular value of y =

More information

MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications. Class 19: Data Representation by Design

MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications. Class 19: Data Representation by Design MIT 9.520/6.860, Fall 2017 Statistical Learning Theory and Applications Class 19: Data Representation by Design What is data representation? Let X be a data-space X M (M) F (M) X A data representation

More information

Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering

Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering Shuyang Ling Courant Institute of Mathematical Sciences, NYU Aug 13, 2018 Joint

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information