EXTINCTION IN NONAUTONOMOUS COMPETITIVE LOTKA-VOLTERRA SYSTEMS

Size: px
Start display at page:

Download "EXTINCTION IN NONAUTONOMOUS COMPETITIVE LOTKA-VOLTERRA SYSTEMS"

Transcription

1 PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Vome 124, Nmber 12, December 1996, Pages S ) EXTINCTION IN NONAUTONOMOUS COMPETITIVE LOTKA-VOLTERRA SYSTEMS FRANCISCO MONTES DE OCA AND MARY LOU ZEEMAN Commcaed by Lda Kee) Absrac. I s we kow ha for he wo speces aoomos compeve Loka-Voerra mode wh o fxed po he ope posve qadra, oe of he speces s drve o exco, whs he oher popao sabses a s ow carryg capacy. I hs paper we prove a geerasao of hs res o oaoomos sysems of arbrary fe dmeso. Tha s, for he speces oaoomos compeve Loka-Voerra mode, we exhb smpe agebrac crera o he parameers whch garaee ha a b oe of he speces s drve o exco. The resrco of he sysem o he remag axs s a oaoomos ogsc eqao, whch has a qe soo ) ha s srcy posve ad boded for a me; see Coema Mah. Bosc ), ) ad Ahmad Proc. Amer. Mah. Soc ), ). We prove addo ha a soos of he -dmesoa sysem wh srcy posve a codos are asympoc o ). 1. Irodco Ths paper coes Zeema [15] a aemp o geerase cassca ress abo Loka-Voerra sysems he dreco sggesed by Ahmad [3], Gopasamy [7] ad ohers [5, 13]. Cosder a commy of may compeg speces modeed by he oaoomos Loka-Voerra sysem 1.1) x ) =x ) b ) a j )x j ), =1,...,, where x ) s he popao sze of he h speces a me, adx deoes dx d. Each k-dmesoa coordae sbspace of R s vara der sysem 1.1), k {1,...,}), ad we adop he rado of resrcg aeo o he cosed posve coe R +. We deoe he ope posve coe by R +, ad ca a vecor x posve f x R +, srcy posve f x R +.Gvex, y R,wewrex y o deoe ha x y) s posve. Receved by he edors March 21, Mahemacs Sbjec Cassfcao. Prmary 34C35, 92D25; Secodary 34A26. Key words ad phrases. Loka-Voerra, oaoomos, Lapov, compeo, exco. The frs ahor was sppored par by he Dvso of Mahemacs ad Sascs a he Uversy of Texas a Sa Aoo. The secod ahor was sppored par by he Offce of Research Deveopme a he Uversy of Texas a Sa Aoo c 1996 Amerca Mahemaca Socey Lcese or copyrgh resrcos may appy o redsrbo; see hp://

2 3678 FRANCISCO MONTES DE OCA AND MARY LOU ZEEMAN The ma compeo bewee he speces dcaes ha a j ) > 0 for a j, ad for a. I addo we assme hrogho ha for a ad j, a j ) adb ) are coos fcos, boded above ad beow by srcy posve reas. Ths, whe we cosder sysem 1.1) resrced o he h coordae axs, we have he oaoomos ogsc eqao 1.2) x ) =x )b ) a )x )). I s we kow ha a aoomos ogsc eqao ẋ = xb ax) wh a, b > 0 has a goba aracor o R + a he carryg capacy x = b a. The combed ress of Ahmad [3] ad Coema [6], saed as Lemmas 1.1 ad 1.2 beow, show ha he oaoomos eqao 1.2) he roe of he gobay aracg carryg capacy of he aoomos eqao s payed by a we defed caoca soo x ) o whch a oher soos coverge. Lemma 1.1 Ahmad, Coema). Eqao 1.2) has a qe soo x ) whch s boded above ad beow by srcy posve reas for a. We ca x he caoca soo of eqao 1.2). Lemma 1.2 Coema). If ),v) are soos of 1.2), he) v)) 0 as. Ths ),v) x )as. I s a cassca res ha for a wo speces aoomos compeve Loka- Voerra mode wh o fxed po he ope posve coe R 2 +,oeofhe speces s drve o exco, whs he oher popao sabses a s ow carryg capacy. I [3], Ahmad proves a aaogos res for oaoomos wo-dmesoa compeve Loka-Voerra sysems. Tha s, der he assmpo ha each of he coeffce fcos s coos ad boded above ad beow by srcy posve mbers, he gves smpe agebrac crera der whch here s o coexsece of he wo speces. Oe of he speces s drve o exco, whs he oher speces sabses a he caoca soo of he ogsc eqao o ha axs. Ahmad ad Lazer [4], ad Zeema [15] geerase he cassca res a dffere dreco: o aoomos compeve Loka-Voerra sysems of arbrary fe dmeso. Ahmad ad Lazer fd agebrac crera der whch oe of he speces s drve o exco, whs he remag 1) speces coexs saby. Zeema fds agebrac crera der whch 1) of he speces are drve o exco, whs he remag speces sabses a s ow carryg capacy. I hs paper we mprove ad geerase he ress of [15] o he case of oaoomos compeve Loka-Voerra sysems of arbrary fe dmeso. See aso [5, 11] for frher geerasaos of hs work whch brdge he gap bewee he ress of Ahmad ad Lazer, ad hose of hese ahors. I seco 2 we sae or ma res Theorem 2.1) ad compare wh he ma res [15]. I seco 3 we gve a geomerc erpreao of or agebrac hypoheses, ad se hs o gve a geomerc skech of he proof. We make he proof rgoros secos 4-6. Lcese or copyrgh resrcos may appy o redsrbo; see hp://

3 NONAUTONOMOUS COMPETITIVE LOTKA-VOLTERRA SYSTEMS Saeme of res Reca ha we assme hrogho ha for a ad j, a j ) adb ) are coos fcos, boded above ad beow by srcy posve reas. To fx oao, e a j =f a j ), a j =sp a j ), b =f b ), ad b =sp b ). Noe ha he aoomos case, a j = a j = a j) for a. I seco 3 we gve a geomerc erpreao of eqaes 2.1) of he foowg heorem, whch shod hep o rave he sbscrps. Theorem 2.1. Gve sysem 1.1), sppose ha k >1, k <k j k, a < b 2.1) k kj a. k j The every rajecory wh a codo R + s asympoc o x 1. I oher words, for a srcy posve a codos, speces x 2,...,x are drve o exco, whs speces x 1 sabses a he qe boded soo x 1 of he ogsc eqao o he x 1 -axs. We prove Theorem 2.1 secos 4, 5 ad 6, provg he exco of speces x 2,...,x seco 5 Theorem 5.1), ad he covergece of rajecores o x 1 seco 6 Theorem 6.1). Aowg for reabeg of he axes, we have: Coroary 2.2. If here s a permao φ of he dces {1,...,} afer whch sysem 1.1) sasfes eqaes 2.1), he every rajecory wh a codo R + s asympoc o x φ 1 1) der he orga sysem. The foowg coroares reae Theorem 2.1 o he ress Ahmad [3] ad Zeema [15]. Coroary 2.3. Gve sysem 1.1), sppose ha k >1, j k, a < b 1 kj a. 1j The every rajecory wh a codo R + s asympoc o x 1. Proof. Coroary 2.3 foows drecy from Theorem 2.1 by seg k =1foreach k. Coroary 2.4. Gve sysem 1.1), sppose ha b j a jj < b 1 a 1j j >1, ad b k b j a jj b k > b k a kj k >j. The every rajecory wh a codo R + s asympoc o x 1. Proof. b k a kj < b j a jj b j a jj < b 1 a 1j k >j, Lcese or copyrgh resrcos may appy o redsrbo; see hp://

4 3680 FRANCISCO MONTES DE OCA AND MARY LOU ZEEMAN ad whe j = k b k a kj = b j a jj < b 1 a. 1j Hece Coroary 2.4 foows from Coroary 2.3. Remark 2.5. I s cear from hs proof ha he hypoheses of Coroares 2.4 ad 2.6 may be reaxed o perm oe of he ses of eqaes o be weak eqaes. I he wo-dmesoa case, hs agrees wh he ress of Ahmad [3]. Coroary 2.6 foows drecy from Coroary 2.4. We cde o show how Theorem 2.1 mproves he ma heorem [15], whch s gve by appyg Coroary 2.6 o he aoomos case. Coroary 2.6. Gve sysem 1.1), sppose ha b j a jj < b a j <j, ad b j a jj > b a j >j. The every rajecory wh a codo R + s asympoc o x 1. Remark 2.7. I s eresg o compare he reave sreghs of he hypoheses of Theorem 2.1 hrogh Coroary 2.6, by cosderg he appcao of each o hree-dmesoa aoomos compeve Loka-Voerra sysems. These sysems were sded [14], ad cassfed o 33 ope eqvaece casses caed ce casses. I [15] was show ha sysems ce cass 1 are precsey hose sasfyg he hypoheses of Coroary 2.6, ad ha hs res s far from beg sharp, sce ce casses 2,3,7 ad 8 aso coss of sysems whch a b oe speces are drve o exco. I s sraghforward o verfy ha permg permao of he axes) he hypoheses of Coroary 2.4 are sasfed by sysems ce casses 1 ad 3; he hypoheses of Coroary 2.3 are sasfed by sysems ce casses 1, 3 ad 7; ad he hypoheses of Theorem 2.1 are sasfed by sysems ce casses 1, 2, 3 ad 7. Ths we see ha ahogh he ma res hs paper s cosderaby sroger ha ha [15], eve for he aoomos case, s s o sharp, as does o appy o he sysems ce cass Geomerc erpreao of he eqaes The aoomos case. Cosder he aoomos compeve Loka-Voerra sysem 3.1) x = x b a j x j, =1,...,, sasfyg he eqaes b k k >1, k <k j k, < b 3.2) k. a kj a k j Sysem 3.1) resrced o he posve x 1 -axs s a aoomos ogsc eqao wh a goba aracor a he carryg capacy b1 a 11. Theorem 2.1 es s ha he Lcese or copyrgh resrcos may appy o redsrbo; see hp://

5 NONAUTONOMOUS COMPETITIVE LOTKA-VOLTERRA SYSTEMS 3681 x 2 x 2 a) a 12 a 12 N 1 a 12 a a N 2 a 22 N 1 N 2 b) a 21 a 11 x 1 x 1 a 21 a 21 a 11 a 11 Fgre 1. Exampe of ces of a) a aoomos, ad b) a oaoomos wo-dmesoa compeve Loka-Voerra sysem sasfyg eqaes 2.1). po b1 a 11, 0,...,0) s fac a goba aracor o R + for he f sysem 3.1). Tha s, each of speces x 2,...,x s drve o exco. We proceed o rasae eqaes 3.2) o geomerc properes of sysem 3.1), ad o skech he proof of Theorem 2.1 for he aoomos case, o show how hese eqaes dcvey ead o he exco of each x k for k>1. A deaed proof of Theorem 2.1 s gve secos 5 ad 6. The h ce of sysem 3.1) s he se R + o whch ẋ =0. Isgveby {x =0} N where N s he hyperpae b = a jx j, whch has posve axa erceps b a j. See Fgre 1a) for a wo-dmesoa exampe. Ieqaes 3.2) gve a para orderg bewee he axa erceps of he hyperpaes N aog each axs, from whch we ca dedce o-erseco properes of he ces R +. A geomerc aayss of smar o-erseco properes was sed o prove he ress [15]. The o-erseco properes correspodg o eqaes 3.2) are cosderaby weaker ha hose sed [15], b everheess ead o he same cocso. For exampe, cosder he hyperpaes N ad N. By eqaes 3.2), b < b 3.3), j. a j a j Hece N ad N are dsjo R +. Moreover, N es erey above N, meag ha N s coaed he boded compoe of R + \ N. The foowg emma s proved he frs haf of he proof of Theorem 5.1 repacg by j he proof). Geomerc Lemma 3.1. Gve sysem 3.1), fhereexs, j sch ha N es erey above N j, he speces x j s drve o exco. Ths x s drve o exco by eqaes 3.3). We ow resrc aeo o he sbspace H 1 o whch x = 0, ad we cosder he resrco of he Lcese or copyrgh resrcos may appy o redsrbo; see hp://

6 3682 FRANCISCO MONTES DE OCA AND MARY LOU ZEEMAN hyperpaes N 1) ad N 1) o hs sbspace. By eqaes 3.2), b 1) a 1)j < b 1) a 1) j j 1), so N 1) es erey above N 1) H 1) +, ad hece x 1) s drve o exco he sbsysem correspodg o x =0. Smary, for each r>1, N r es erey above N r he r-dmesoa sbspace H r o whch x r+1),...,x vash, ad hece x r s drve o exco he correspodg sbsysem. Ths eqaes 3.2) ead dcvey o he exco of x k for each k>1, ad hece we prove Theorem 6.1 ha R 1 s gobay aracg o R +. The oaoomos case. Now cosder he oaoomos sysem 1.1) sasfyg eqaes 2.1). Defe he pper sysem of sysem 1.1) o be he aoomos sysem x = x b a j x j, =1,...,, ad defe he ower sysem by x = x b a j x j, =1,...,. The for each, he pper sysem has h ce N, as defed above ad whch mees he x j -axs a b. Smary, he ower sysem has h ce N a,whch j mees he x j axs a b a. j We se hese pper ad ower ces o defe a hckeed ce N for sysem 1.1) by N = {x R + : y N, z N y x z} I oher words, N s he rego R + bewee N ad N. See Fgre 1b) for a wo-dmesoa exampe. For each fxed, he h ce N ) of he aoomos sysem wh coeffces a j ),b ) mees he x j -axs a b) a.now, j) b a < b ) j a j ) < b a j =1,...,, j ad hece N ) N. I oher words, he h ce of he aoomos sysem correspodg o each fxed s coaed he h hckeed ce of he oaoomos sysem. Ieqaes 2.1) ca ow be erpreed, drec aaogy wh he aoomos case, as o-erseco properes of he hckeed ces. For exampe: N es erey above N, ad hece hckeed) N es erey above hckeed) N. Moreover, he proof of Theorem 5.1 shows ha he geomerc emma Lemma 3.1) hods for he oaoomos case as we as he aoomos case, ad hs he o-erseco properes ead o he exco of speces x 2,...,x js as before. Lcese or copyrgh resrcos may appy o redsrbo; see hp://

7 NONAUTONOMOUS COMPETITIVE LOTKA-VOLTERRA SYSTEMS A compac aracg rego There are may ways o fd a compac aracg rego for sysem 1.1). Lemma 4.1 ses a parcary smpe compac aracg rego o gve coarse bods o he compoes of a soo o sysem 1.1). These bods are eeded for he esmao secos 5 ad 6. A more decae ad opma compac aracg rego for sysem 1.1) s fod [16]. Lemma 4.1. If x) s a soo of sysem 1.1) wh a codo R +, he here exs r, δ > 0 ad T R sch ha for a >T, x ) δ ad 0 <x ) r, =1,...,. =1 Proof. I s cear ha he ope ad cosed posve coes are vara der sysem 1.1). Now choose { } { } b r 2max :, j =1,...,, δ 1 2 m b :, j =1,..., ad defe a j a j { } S = x R + : δ x ) r. We sha show ha S s a gobay aracg posvey vara compac se for R + \{0}.Thefx) s a soo of sysem 1.1) wh a codo R +, here exss T R sch ha for a >T,x) S, ad he cocso foows. Cosder he fco L : R + R + defed by Lx) = =1 x. The L = 1,...,1), ad he dervave of L aog rajecores of sysem 1.1) s gve by L = L.ẋ = ẋ = x ) b ) a j )x j ). =1 =1 I s easy o see ha L s Lapov-ke osde S. Tha s, by or choce of δ, f x R + \{0}sasfes =1 x δ he ẋ s o-egave for each, adsrcy posve for a eas oe vae of. So a each x sasfyg 0 <Lx) δ, Ls srcy posve. Smary, for each x sasfyg Lx) r, L s srcy egave. Hece [δ, r] s a compac aracg se for L aog each rajecory of sysem 1.1), ad hs S s a compac aracg se for he fow of sysem 1.1) o R + \{0}. =1 5. Exco of x 2,...,x Theorem 5.1. If sysem 1.1) sasfes eqaes 2.1) ad x) s a soo of sysem 1.1) wh x 0 ) R + for some 0, he for a =2,...,, a) b) x ) 0 as, ad 0 x )d <. Remark 5.2. Le H k deoe he k-dmesoa sbspace o whch x k+1,...,x a vash. Geerasg he mehod [15], cocso a) of Theorem 5.1 ca be proved by dcvey appyg he Lapov fcos V k x) =x b k k x b k k Lcese or copyrgh resrcos may appy o redsrbo; see hp://

8 3684 FRANCISCO MONTES DE OCA AND MARY LOU ZEEMAN o each H k. However, we sha eed cocso b) o prove ha soos are asympoc o x 1, so we se he dea behd he Lapov fcos V k o deveop a egrao proof here. Proof of Theorem 5.1. Le x) be a soo of sysem 1.1) wh x 0 ) R + for some 0. By Lemma 4.1 we may assme ha x 0 ) S. We prove Theorem 5.1 by dco. Frs we show ha cocsos a) ad b) hod for x ). Le = gve by eqaes 2.1). By defo ẋ ) x ) b a j x j) ad ẋ ) x ) b a j x j), so d d x b ) )x b ) ẋ = b ) x ) ) b ) ẋ ) x ) b a j b a ) j xj ) { max j b a j b a } j x j ). Hece, for > 0 d d x b ) { )x b ) max j b a j b j} a δ<δ for some rea δ < 0, by Lemma 4.1 ad eqaes 2.1). Iegrag hs eqao we have ad so for > 0 x b ) )x b ) <δ 0 ) 0 x b )<Ce δ 0), where C = xb 0 ) x b 0 ) rb. Ths x ) <K e ε 0), > 0, where ε = δ < 0adK b >0. Cocsos a) ad b) for x foow drecy. We ow prove ha for 1 <r<, x r 0as der he assmpo ha for r<j, x j 0as. The mehod s esseay he same as ha sed above for x.nowe= r gve by eqaes 2.1). The ẋ ) x ) b a j x j) ad ẋ r ) x r ) b r a rj x j), Lcese or copyrgh resrcos may appy o redsrbo; see hp://

9 NONAUTONOMOUS COMPETITIVE LOTKA-VOLTERRA SYSTEMS 3685 so d d x b r ) )x b r ) ẋr = b ) x r ) = r ) b r ) ẋ ) x ) b r a j ) b a rj xj ) b r a j ) b a rj xj )+ j=r+1 b r a j ) b a rj xj ). By eqaes 2.1) each erm he frs smmao s srcy egave. The eqaes do o gve s coro over he sg of he secod smmao. Isead we se he assmpo ha x j 0as,forj>r, as foows. Frsy, oe ha for sffcey arge r x j) > δ 2,whereδs gve by Lemma 4.1. Secody, choose ν>0sch ha ν< max j r b r a j b a rj )δ 2,ad oe ha for sffcey arge j=r+1 b r a j b a rj )x j) <ν.thshereexss r Rsch ha for > r d ) d x b r )x b r ) < max j r b r a j b a rj) δ 2 + ν = δ r < 0. Iegrag hs eqao we have ) x b r )x b r ) <δ r r ) r ad so for > r xr)<kre εr r), where ε r = δr b < 0adK r >0. Cocsos a) ad b) foow drecy. 6. Covergece o x 1 Reca from seco 1 ha x 1 s he caoca soo o he oaoomos ogsc eqao obaed by resrcg sysem 1.1) o he x 1 -axs. Theorem 6.1. If sysem 1.1) sasfes eqaes 2.1) ad x) s a soo of sysem 1.1) wh x 0 ) R + for some 0,hex 1 ) x 1 )as. Proof. By Lemma 4.1, we may assme ha x 0 ) S R +. The for a > 0, x) Sad x 1 ) s boded above ad beow by posve cosas. Le 1 ) be a soo of he oaoomos ogsc eqao 1.2) sch ha 1 0 ) x 1 0 ). The 1 ) >x 1 ) for a > 0 see Ahmad [1], Lemma 2.8 or Teo ad Avarez [12], Proposo 2.1), ad 1 ) s boded Lemmas 1.1 ad 1.2). We ow foow a echqe smar o ha sed he proof of he prevos heorem o compare 1 ) adx 1 )as : d x ) 1) d 1 ) = ẋ1) x 1 ) 1) 1 ) = a 11 ) 1 ) x 1 )) a 1j )x j ), j=2 Lcese or copyrgh resrcos may appy o redsrbo; see hp://

10 3686 FRANCISCO MONTES DE OCA AND MARY LOU ZEEMAN so 1 ) x 1 ) 1 d a x ) 1) + a 1j )x j ). 11 d 1 ) j=2 Iegrag hs eqay we have 1 ) x 1 )) d 1 x 1) 0 a 11 1 ) + a 1j )x j )d 0 j=2 0 1 ) x1 ) 1 0 ) a + a 1j x j )d 11 1 )x 1 0 ) j=2 0 < K <, where K s some cosa depede of, scex 1 ), 1 ) are boded by posve cosas, ad for j>1, x j )d < Theorem 5.1). Ths 0 1 ) x 1 )) d <, 0 ad so x 1 ) 1 ) as, sce 1 ) x 1 ) s a o-egave dffereabe fco sch ha 1 ) ẋ 1 ) s boded o [ 0, ). Moreover, by Lemma ) x 1 ) as, ad hece x 1 ) x 1 ) as. Theorem 2.1 s ow a coroary of Theorems 5.1 ad 6.1. Ackowedgme We wod ke o hak Shar Ahmad for rodcg s o hs probem ad for hepf dscssos. Refereces [1] S. Ahmad. Covergece ad Umae Bods of Soos of he Noaoomos Voerra- Loka Compeo Eqaos, J. Mah. Aa. App ), MR 89a:92032 [2] S. Ahmad. O Amos Perodc Soos of he Compeg Speces Probems, Proc. Amer. Mah. Soc ), MR 89f:92055 [3] S. Ahmad. O he Noaoomos Voerra-Loka Compeo Eqaos, Proc. Amer. Mah. Soc ), MR 93c:34109 [4] S.AhmadadA.C.Lazer.Oe Speces Exco a Aoomos Compeo Mode, Proc. Frs Word Cogress Noear Aayss, Waer DeGryer, Ber, [5] S. Ahmad ad A. C. Lazer O he Noaoomos N-Compeg Speces Probem, App. Aa. 1995) To appear. [6] B. D. Coema. Noaoomos Logsc Eqaos as Modes of he Adjsme of Popaos o Evromea Chage, Mah. Bosc ), MR 80f:92012 [7] K. Gopasamy. Gobay Asympoc Saby a Perodc Loka-Voerra Sysem, J. Mah. Aa. App ), MR 86f:34094 Lcese or copyrgh resrcos may appy o redsrbo; see hp://

11 NONAUTONOMOUS COMPETITIVE LOTKA-VOLTERRA SYSTEMS 3687 [8] M. W. Hrsch. Sysems of Dfferea Eqaos ha are Compeve or Cooperave. III: Compeg Speces, Noeary ), MR 90d:58070 [9] J. Hofbaer ad K. Sgmd. The Theory of Evoo ad Dyamca Sysems. Cambrdge Uv. Press, Cambrdge, MR 91h:92019 [10] R. M. May. Saby ad Compexy Mode Ecosysems. Prceo Uv. Press, Prceo, NJ, [11] F. Moes de Oca ad M. L. Zeema. Baacg Srvva ad Exco Noaoomos Compeve Loka-Voerra Sysems, J. Mah. Aa. App ), MR 96c:92017 [12] A. Teo ad C. Avarez. A Dffere Cosderao abo he Gobay Asympocay Sabe Soo of he Perodc -Compeg Speces Probem, J. Mah. Aa. App ), MR 93d:34080 [13] A. Teo. O he Asympoc Behavor of some Popao Modes, J. Mah. Aa. App ), MR 93g:92027 [14] M. L. Zeema. Hopf Bfrcaos Compeve Three-Dmesoa Loka-Voerra Sysems, Dyamcs Saby Sysems ), MR 94j:34044 [15] M. L. Zeema. Exco Compeve Loka-Voerra Sysems, Proc. Amer. Mah. Soc ), MR 95c:92019 [16] M. L. Zeema. Thckeed Carryg Smpces Noaoomos Compeve Loka-Voerra Sysems, To appear. Uversdad Ceroccdea, Lsadro Avarado, Barqsmeo, Veezea Dvso of Mahemacs ad Sascs, Uversy of Texas a Sa Aoo, Sa Aoo, Texas E-ma address: zeema@rger.cs.sa.ed Lcese or copyrgh resrcos may appy o redsrbo; see hp://

Chapter 1 - Free Vibration of Multi-Degree-of-Freedom Systems - I

Chapter 1 - Free Vibration of Multi-Degree-of-Freedom Systems - I CEE49b Chaper - Free Vbrao of M-Degree-of-Freedo Syses - I Free Udaped Vbrao The basc ype of respose of -degree-of-freedo syses s free daped vbrao Aaogos o sge degree of freedo syses he aayss of free vbrao

More information

Optimality of Distributed Control for n n Hyperbolic Systems with an Infinite Number of Variables

Optimality of Distributed Control for n n Hyperbolic Systems with an Infinite Number of Variables Advaces Pure Mahemacs 3 3 598-68 hp://dxdoorg/436/apm33677 Pubshed Oe Sepember 3 (hp://wwwscrporg/joura/apm) Opmay of Dsrbued Coro for Hyperboc Sysems wh a Ife Number of Varabes Aham Hasa amo Deparme of

More information

Key words: Fractional difference equation, oscillatory solutions,

Key words: Fractional difference equation, oscillatory solutions, OSCILLATION PROPERTIES OF SOLUTIONS OF FRACTIONAL DIFFERENCE EQUATIONS Musafa BAYRAM * ad Ayd SECER * Deparme of Compuer Egeerg, Isabul Gelsm Uversy Deparme of Mahemacal Egeerg, Yldz Techcal Uversy * Correspodg

More information

SOLUTION OF PARABOLA EQUATION BY USING REGULAR,BOUNDARY AND CORNER FUNCTIONS

SOLUTION OF PARABOLA EQUATION BY USING REGULAR,BOUNDARY AND CORNER FUNCTIONS SOLUTION OF PAABOLA EQUATION BY USING EGULA,BOUNDAY AND CONE FUNCTIONS Dr. Hayder Jabbar Abood, Dr. Ifchar Mdhar Talb Deparme of Mahemacs, College of Edcao, Babylo Uversy. Absrac:- we solve coverge seqece

More information

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA

QR factorization. Let P 1, P 2, P n-1, be matrices such that Pn 1Pn 2... PPA QR facorzao Ay x real marx ca be wre as AQR, where Q s orhogoal ad R s upper ragular. To oba Q ad R, we use he Householder rasformao as follows: Le P, P, P -, be marces such ha P P... PPA ( R s upper ragular.

More information

Final Exam Applied Econometrics

Final Exam Applied Econometrics Fal Eam Appled Ecoomercs. 0 Sppose we have he followg regresso resl: Depede Varable: SAT Sample: 437 Iclded observaos: 437 Whe heeroskedasc-cosse sadard errors & covarace Varable Coeffce Sd. Error -Sasc

More information

Asymptotic Behavior of Solutions of Nonlinear Delay Differential Equations With Impulse

Asymptotic Behavior of Solutions of Nonlinear Delay Differential Equations With Impulse P a g e Vol Issue7Ver,oveber Global Joural of Scece Froer Research Asypoc Behavor of Soluos of olear Delay Dffereal Equaos Wh Ipulse Zhag xog GJSFR Classfcao - F FOR 3 Absrac Ths paper sudes he asypoc

More information

Reliability Equivalence of a Parallel System with Non-Identical Components

Reliability Equivalence of a Parallel System with Non-Identical Components Ieraoa Mahemaca Forum 3 8 o. 34 693-7 Reaby Equvaece of a Parae Syem wh No-Ideca ompoe M. Moaer ad mmar M. Sarha Deparme of Sac & O.R. oege of Scece Kg Saud Uvery P.O.ox 455 Ryadh 45 Saud raba aarha@yahoo.com

More information

Novel Bounds for Solutions of Nonlinear Differential Equations

Novel Bounds for Solutions of Nonlinear Differential Equations Appe Mahemacs, 5, 6, 8-94 Pubshe Oe Jauary 5 ScRes. hp://www.scrp.org/joura/am hp://.o.org/.436/am.5.68 Nove Bous for Souos of Noear Dfferea Equaos A. A. Maryyu S.P. Tmosheo Isue of Mechacs of NAS of Urae,

More information

Real-Time Systems. Example: scheduling using EDF. Feasibility analysis for EDF. Example: scheduling using EDF

Real-Time Systems. Example: scheduling using EDF. Feasibility analysis for EDF. Example: scheduling using EDF EDA/DIT6 Real-Tme Sysems, Chalmers/GU, 0/0 ecure # Updaed February, 0 Real-Tme Sysems Specfcao Problem: Assume a sysem wh asks accordg o he fgure below The mg properes of he asks are gve he able Ivesgae

More information

Partial Molar Properties of solutions

Partial Molar Properties of solutions Paral Molar Properes of soluos A soluo s a homogeeous mxure; ha s, a soluo s a oephase sysem wh more ha oe compoe. A homogeeous mxures of wo or more compoes he gas, lqud or sold phase The properes of a

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Joura of Mathematca Sceces: Advaces ad Appcatos Voume 4 umber 2 2 Pages 33-34 COVERGECE OF HE PROJECO YPE SHKAWA ERAO PROCESS WH ERRORS FOR A FE FAMY OF OSEF -ASYMPOCAY QUAS-OEXPASVE MAPPGS HUA QU ad S-SHEG

More information

Moments of Order Statistics from Nonidentically Distributed Three Parameters Beta typei and Erlang Truncated Exponential Variables

Moments of Order Statistics from Nonidentically Distributed Three Parameters Beta typei and Erlang Truncated Exponential Variables Joural of Mahemacs ad Sascs 6 (4): 442-448, 200 SSN 549-3644 200 Scece Publcaos Momes of Order Sascs from Nodecally Dsrbued Three Parameers Bea ype ad Erlag Trucaed Expoeal Varables A.A. Jamoom ad Z.A.

More information

Linear Regression Linear Regression with Shrinkage

Linear Regression Linear Regression with Shrinkage Lear Regresso Lear Regresso h Shrkage Iroduco Regresso meas predcg a couous (usuall scalar oupu from a vecor of couous pus (feaures x. Example: Predcg vehcle fuel effcec (mpg from 8 arbues: Lear Regresso

More information

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting

The Mean Residual Lifetime of (n k + 1)-out-of-n Systems in Discrete Setting Appled Mahemacs 4 5 466-477 Publshed Ole February 4 (hp//wwwscrporg/oural/am hp//dxdoorg/436/am45346 The Mea Resdual Lfeme of ( + -ou-of- Sysems Dscree Seg Maryam Torab Sahboom Deparme of Sascs Scece ad

More information

A note on Turán number Tk ( 1, kn, )

A note on Turán number Tk ( 1, kn, ) A oe o Turá umber T (,, ) L A-Pg Beg 00085, P.R. Cha apl000@sa.com Absrac: Turá umber s oe of prmary opcs he combaorcs of fe ses, hs paper, we wll prese a ew upper boud for Turá umber T (,, ). . Iroduco

More information

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables Joural of Sceces Islamc epublc of Ira 6(: 63-67 (005 Uvers of ehra ISSN 06-04 hp://scecesuacr Some Probabl Iequales for Quadrac Forms of Negavel Depede Subgaussa adom Varables M Am A ozorga ad H Zare 3

More information

FORCED VIBRATION of MDOF SYSTEMS

FORCED VIBRATION of MDOF SYSTEMS FORCED VIBRAION of DOF SSES he respose of a N DOF sysem s govered by he marx equao of moo: ] u C] u K] u 1 h al codos u u0 ad u u 0. hs marx equao of moo represes a sysem of N smulaeous equaos u ad s me

More information

Chapter 5. Long Waves

Chapter 5. Long Waves ape 5. Lo Waes Wae e s o compaed ae dep: < < L π Fom ea ae eo o s s ; amos ozoa moo z p s ; dosac pesse Dep-aeaed coseao o mass

More information

The Properties of Probability of Normal Chain

The Properties of Probability of Normal Chain I. J. Coep. Mah. Sceces Vol. 8 23 o. 9 433-439 HIKARI Ld www.-hkar.co The Properes of Proaly of Noral Cha L Che School of Maheacs ad Sascs Zheghou Noral Uversy Zheghou Cy Hea Provce 4544 Cha cluu6697@sa.co

More information

NUMERICAL SOLUTIONS TO ORDINARY DIFFERENTIAL EQUATIONS

NUMERICAL SOLUTIONS TO ORDINARY DIFFERENTIAL EQUATIONS NUMERICAL SOLUTIONS TO ORDINARY DIFFERENTIAL EQUATIONS If e eqao coas dervaves of a - order s sad o be a - order dffereal eqao. For eample a secod-order eqao descrbg e oscllao of a weg aced po b a sprg

More information

The Poisson Process Properties of the Poisson Process

The Poisson Process Properties of the Poisson Process Posso Processes Summary The Posso Process Properes of he Posso Process Ierarrval mes Memoryless propery ad he resdual lfeme paradox Superposo of Posso processes Radom seleco of Posso Pos Bulk Arrvals ad

More information

Solution to Some Open Problems on E-super Vertex Magic Total Labeling of Graphs

Solution to Some Open Problems on E-super Vertex Magic Total Labeling of Graphs Aalable a hp://paed/aa Appl Appl Mah ISS: 9-9466 Vol 0 Isse (Deceber 0) pp 04- Applcaos ad Appled Maheacs: A Ieraoal Joral (AAM) Solo o Soe Ope Probles o E-sper Verex Magc Toal Labelg o Graphs G Marh MS

More information

For the plane motion of a rigid body, an additional equation is needed to specify the state of rotation of the body.

For the plane motion of a rigid body, an additional equation is needed to specify the state of rotation of the body. The kecs of rgd bodes reas he relaoshps bewee he exeral forces acg o a body ad he correspodg raslaoal ad roaoal moos of he body. he kecs of he parcle, we foud ha wo force equaos of moo were requred o defe

More information

(1) Cov(, ) E[( E( ))( E( ))]

(1) Cov(, ) E[( E( ))( E( ))] Impac of Auocorrelao o OLS Esmaes ECON 3033/Evas Cosder a smple bvarae me-seres model of he form: y 0 x The four key assumpos abou ε hs model are ) E(ε ) = E[ε x ]=0 ) Var(ε ) =Var(ε x ) = ) Cov(ε, ε )

More information

Input-to-state stability of switched nonlinear systems

Input-to-state stability of switched nonlinear systems Scece Cha Seres F: Iforao Sceces 28 SCIENCE IN CHINA PRESS Sprer www.sccha.co fo.sccha.co www.sprerk.co Ipu-o-sae saby of swched oear syses FENG We,2 & ZHANG JFe 2 Coee of Iforao Sceces ad Eeer, Shado

More information

Continuous Time Markov Chains

Continuous Time Markov Chains Couous me Markov chas have seay sae probably soluos f a oly f hey are ergoc, us lke scree me Markov chas. Fg he seay sae probably vecor for a couous me Markov cha s o more ffcul ha s he scree me case,

More information

An Improvement on Disc Separation of the Schur Complement and Bounds for Determinants of Diagonally Dominant Matrices

An Improvement on Disc Separation of the Schur Complement and Bounds for Determinants of Diagonally Dominant Matrices ISSN 746-7659, Egd, UK Jor of Iformo d Compg See Vo. 5, No. 3, 2, pp. 224-232 A Improveme o Ds Sepro of he Shr Compeme d Bods for Deerms of Dgoy Dom Mres Zhohog Hg, Tgzh Hg Shoo of Mhem Sees, Uversy of

More information

Cyclone. Anti-cyclone

Cyclone. Anti-cyclone Adveco Cycloe A-cycloe Lorez (963) Low dmesoal aracors. Uclear f hey are a good aalogy o he rue clmae sysem, bu hey have some appealg characerscs. Dscusso Is he al codo balaced? Is here a al adjusme

More information

Stability and Throughput of Buffered Aloha with Backoff

Stability and Throughput of Buffered Aloha with Backoff EE ND DI: TBIITY ND THROUGHPUT OF BUFFERED OH WITH BCOFF aby ad Throghp of Bffered oha wh Backoff Toy T. ee, Feow, IEEE, ad Da, Member, IEEE bsrac Ths paper sdes he bffered oha wh -expoea backoff coso

More information

Orbital Euclidean stability of the solutions of impulsive equations on the impulsive moments

Orbital Euclidean stability of the solutions of impulsive equations on the impulsive moments Pure ad Appled Mahemacs Joural 25 4(: -8 Publshed ole Jauary 23 25 (hp://wwwscecepublshggroupcom/j/pamj do: 648/jpamj254 ISSN: 2326-979 (Pr ISSN: 2326-982 (Ole Orbal ucldea sably of he soluos of mpulsve

More information

Bianchi Type II Stiff Fluid Tilted Cosmological Model in General Relativity

Bianchi Type II Stiff Fluid Tilted Cosmological Model in General Relativity Ieraoal Joural of Mahemacs esearch. IN 0976-50 Volume 6, Number (0), pp. 6-7 Ieraoal esearch Publcao House hp://www.rphouse.com Bach ype II ff Flud led Cosmologcal Model Geeral elay B. L. Meea Deparme

More information

Supplement Material for Inverse Probability Weighted Estimation of Local Average Treatment Effects: A Higher Order MSE Expansion

Supplement Material for Inverse Probability Weighted Estimation of Local Average Treatment Effects: A Higher Order MSE Expansion Suppleme Maeral for Iverse Probably Weged Esmao of Local Average Treame Effecs: A Hger Order MSE Expaso Sepe G. Doald Deparme of Ecoomcs Uversy of Texas a Aus Yu-C Hsu Isue of Ecoomcs Academa Sca Rober

More information

Mixed Integral Equation of Contact Problem in Position and Time

Mixed Integral Equation of Contact Problem in Position and Time Ieraoal Joural of Basc & Appled Sceces IJBAS-IJENS Vol: No: 3 ed Iegral Equao of Coac Problem Poso ad me. A. Abdou S. J. oaquel Deparme of ahemacs Faculy of Educao Aleadra Uversy Egyp Deparme of ahemacs

More information

Solving fuzzy linear programming problems with piecewise linear membership functions by the determination of a crisp maximizing decision

Solving fuzzy linear programming problems with piecewise linear membership functions by the determination of a crisp maximizing decision Frs Jo Cogress o Fuzzy ad Iellge Sysems Ferdows Uversy of Mashhad Ira 9-3 Aug 7 Iellge Sysems Scefc Socey of Ira Solvg fuzzy lear programmg problems wh pecewse lear membershp fucos by he deermao of a crsp

More information

14. Poisson Processes

14. Poisson Processes 4. Posso Processes I Lecure 4 we roduced Posso arrvals as he lmg behavor of Bomal radom varables. Refer o Posso approxmao of Bomal radom varables. From he dscusso here see 4-6-4-8 Lecure 4 " arrvals occur

More information

Parameters Estimation in a General Failure Rate Semi-Markov Reliability Model

Parameters Estimation in a General Failure Rate Semi-Markov Reliability Model Joura of Saca Theory ad Appcao Vo. No. (Sepember ) - Parameer Emao a Geera Faure Rae Sem-Marov Reaby Mode M. Fahzadeh ad K. Khorhda Deparme of Sac Facuy of Mahemaca Scece Va-e-Ar Uvery of Rafaja Rafaja

More information

Continuous Indexed Variable Systems

Continuous Indexed Variable Systems Ieraoal Joural o Compuaoal cece ad Mahemacs. IN 0974-389 Volume 3, Number 4 (20), pp. 40-409 Ieraoal Research Publcao House hp://www.rphouse.com Couous Idexed Varable ysems. Pouhassa ad F. Mohammad ghjeh

More information

Probability Bracket Notation and Probability Modeling. Xing M. Wang Sherman Visual Lab, Sunnyvale, CA 94087, USA. Abstract

Probability Bracket Notation and Probability Modeling. Xing M. Wang Sherman Visual Lab, Sunnyvale, CA 94087, USA. Abstract Probably Bracke Noao ad Probably Modelg Xg M. Wag Sherma Vsual Lab, Suyvale, CA 94087, USA Absrac Ispred by he Drac oao, a ew se of symbols, he Probably Bracke Noao (PBN) s proposed for probably modelg.

More information

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction

Determination of Antoine Equation Parameters. December 4, 2012 PreFEED Corporation Yoshio Kumagae. Introduction refeed Soluos for R&D o Desg Deermao of oe Equao arameers Soluos for R&D o Desg December 4, 0 refeed orporao Yosho Kumagae refeed Iroduco hyscal propery daa s exremely mpora for performg process desg ad

More information

On subsets of the hypercube with prescribed Hamming distances

On subsets of the hypercube with prescribed Hamming distances O subses of he hypercube wh prescrbed Hammg dsaces Hao Huag Oleksy Klurma Cosm Pohoaa Absrac A celebraed heorem of Klema exremal combaorcs saes ha a colleco of bary vecors {0, 1} wh dameer d has cardaly

More information

Algebraic Properties of Modular Addition Modulo a Power of Two

Algebraic Properties of Modular Addition Modulo a Power of Two Agebac Popees of Moda Addo Modo a Powe of Two S M Dehav Aeza Rahmpo Facy of Mahemaca ad Compe Sceces Khaazm Uvesy Teha Ia sd_dehavsm@hac Facy of Sceces Qom Uvesy Qom Ia aahmpo@sqomac Absac; Moda addo modo

More information

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below.

FALL HOMEWORK NO. 6 - SOLUTION Problem 1.: Use the Storage-Indication Method to route the Input hydrograph tabulated below. Jorge A. Ramírez HOMEWORK NO. 6 - SOLUTION Problem 1.: Use he Sorage-Idcao Mehod o roue he Ipu hydrograph abulaed below. Tme (h) Ipu Hydrograph (m 3 /s) Tme (h) Ipu Hydrograph (m 3 /s) 0 0 90 450 6 50

More information

Sliding mode: Basic theory and new perspectives

Sliding mode: Basic theory and new perspectives Dep o Elecrcal ad Elecroc Eg. Uversy o Caglar 5 h Worshop o Srcral Dyamcal Sysems: Compaoal Aspecs Capolo (BA) Ialy Sldg mode: Basc heory ad ew perspecves Elo USAI esa@dee.ca. SDS 8 - Capolo (BA) Je 8

More information

The Linear Regression Of Weighted Segments

The Linear Regression Of Weighted Segments The Lear Regresso Of Weghed Segmes George Dael Maeescu Absrac. We proposed a regresso model where he depede varable s made o up of pos bu segmes. Ths suao correspods o he markes hroughou he da are observed

More information

Available online Journal of Scientific and Engineering Research, 2014, 1(1): Research Article

Available online  Journal of Scientific and Engineering Research, 2014, 1(1): Research Article Avalable ole wwwjsaercom Joural o Scec ad Egeerg Research, 0, ():0-9 Research Arcle ISSN: 39-630 CODEN(USA): JSERBR NEW INFORMATION INEUALITIES ON DIFFERENCE OF GENERALIZED DIVERGENCES AND ITS APPLICATION

More information

Cyclically Interval Total Colorings of Cycles and Middle Graphs of Cycles

Cyclically Interval Total Colorings of Cycles and Middle Graphs of Cycles Ope Joural of Dsree Mahemas 2017 7 200-217 hp://wwwsrporg/joural/ojdm ISSN Ole: 2161-7643 ISSN Pr: 2161-7635 Cylally Ierval Toal Colorgs of Cyles Mddle Graphs of Cyles Yogqag Zhao 1 Shju Su 2 1 Shool of

More information

Sherzod M. Mirakhmedov,

Sherzod M. Mirakhmedov, Approxao by ora dsrbuo for a sape su sapg whou repacee fro a fe popuao Ibrah B Mohaed Uversy of Maaya Maaysa ohaed@ueduy Sherzod M Mrahedov Isue of Maheacs Tashe shrahedov@yahooco Absrac A su of observaos

More information

( ) ( ) Weibull Distribution: k ti. u u. Suppose t 1, t 2, t n are times to failure of a group of n mechanisms. The likelihood function is

( ) ( ) Weibull Distribution: k ti. u u. Suppose t 1, t 2, t n are times to failure of a group of n mechanisms. The likelihood function is Webll Dsbo: Des Bce Dep of Mechacal & Idsal Egeeg The Uvesy of Iowa pdf: f () exp Sppose, 2, ae mes o fale of a gop of mechasms. The lelhood fco s L ( ;, ) exp exp MLE: Webll 3//2002 page MLE: Webll 3//2002

More information

As evident from the full-sample-model, we continue to assume that individual errors are identically and

As evident from the full-sample-model, we continue to assume that individual errors are identically and Maxmum Lkelhood smao Greee Ch.4; App. R scrp modsa, modsb If we feel safe makg assumpos o he sascal dsrbuo of he error erm, Maxmum Lkelhood smao (ML) s a aracve alerave o Leas Squares for lear regresso

More information

Redundancy System Fault Sampling Under Imperfect Maintenance

Redundancy System Fault Sampling Under Imperfect Maintenance A publcao of CHEMICAL EGIEERIG TRASACTIOS VOL. 33, 03 Gues Edors: Erco Zo, Pero Barald Copyrgh 03, AIDIC Servz S.r.l., ISB 978-88-95608-4-; ISS 974-979 The Iala Assocao of Chemcal Egeerg Ole a: www.adc./ce

More information

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations Joural of aheacs ad copuer Scece (4 39-38 Soluo of Ipulsve Dffereal Equaos wh Boudary Codos Ters of Iegral Equaos Arcle hsory: Receved Ocober 3 Acceped February 4 Avalable ole July 4 ohse Rabba Depare

More information

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending CUIC SLINE CURVES Cubc Sples Marx formulao Normalsed cubc sples Alerae ed codos arabolc bledg AML7 CAD LECTURE CUIC SLINE The ame sple comes from he physcal srume sple drafsme use o produce curves A geeral

More information

Fixed Point Theorems for (, )-Uniformly Locally Generalized Contractions

Fixed Point Theorems for (, )-Uniformly Locally Generalized Contractions Global Joral o Pre ad Applied Mahemaics. ISSN 0973-768 Volme 4 Nmber 9 (208) pp. 77-83 Research Idia Pblicaios hp://www.ripblicaio.com Fied Poi Theorems or ( -Uiormly Locally Geeralized Coracios G. Sdhaamsh

More information

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall 8. Queueg sysems lec8. S-38.45 - Iroduco o Teleraffc Theory - Fall 8. Queueg sysems Coes Refresher: Smle eleraffc model M/M/ server wag laces M/M/ servers wag laces 8. Queueg sysems Smle eleraffc model

More information

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus Browa Moo Sochasc Calculus Xogzh Che Uversy of Hawa a Maoa earme of Mahemacs Seember, 8 Absrac Ths oe s abou oob decomoso he bascs of Suare egrable margales Coes oob-meyer ecomoso Suare Iegrable Margales

More information

2.160 System Identification, Estimation, and Learning Lecture Notes No. 17 April 24, 2006

2.160 System Identification, Estimation, and Learning Lecture Notes No. 17 April 24, 2006 .6 System Idetfcato, Estmato, ad Learg Lectre Notes No. 7 Aprl 4, 6. Iformatve Expermets. Persstece of Exctato Iformatve data sets are closely related to Persstece of Exctato, a mportat cocept sed adaptve

More information

Chapter 8. Simple Linear Regression

Chapter 8. Simple Linear Regression Chaper 8. Smple Lear Regresso Regresso aalyss: regresso aalyss s a sascal mehodology o esmae he relaoshp of a respose varable o a se of predcor varable. whe here s jus oe predcor varable, we wll use smple

More information

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD

Least squares and motion. Nuno Vasconcelos ECE Department, UCSD Leas squares ad moo uo Vascocelos ECE Deparme UCSD Pla for oda oda we wll dscuss moo esmao hs s eresg wo was moo s ver useful as a cue for recogo segmeao compresso ec. s a grea eample of leas squares problem

More information

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3.

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3. C. Trael me cures for mulple reflecors The ray pahs ad rael mes for mulple layers ca be compued usg ray-racg, as demosraed Lab. MATLAB scrp reflec_layers_.m performs smple ray racg. (m) ref(ms) ref(ms)

More information

Solutions for HW4. x k n+1. k! n(n + 1) (n + k 1) =.

Solutions for HW4. x k n+1. k! n(n + 1) (n + k 1) =. Exercse 13 (a Proe Soutos for HW4 (1 + x 1 + x 2 1 + (1 + x 2 + x 2 2 + (1 + x + x 2 + by ducto o M(Sν x S x ν(x Souto: Frst ote that sce the mutsets o {x 1 } are determed by ν(x 1 the set of mutsets o

More information

March 23, TiCC TR Generalized Residue Codes. Bulgarian Academy of Sciences, Bulgaria and. TiCC, Tilburg University

March 23, TiCC TR Generalized Residue Codes. Bulgarian Academy of Sciences, Bulgaria and. TiCC, Tilburg University Tburg cere for Creave Copug P.O. Bo 90 Tburg Uversy 000 LE Tburg, The Neherads hp://www.uv./cc Ea: cc@uv. Copyrgh S.M. Doduekov, A. Bojov ad A.J. va Zae 00. March, 00 TCC TR 00-00 Geerazed Resdue Codes

More information

Asymptotic Regional Boundary Observer in Distributed Parameter Systems via Sensors Structures

Asymptotic Regional Boundary Observer in Distributed Parameter Systems via Sensors Structures Sesors,, 37-5 sesors ISSN 44-8 by MDPI hp://www.mdp.e/sesors Asympoc Regoal Boudary Observer Dsrbued Parameer Sysems va Sesors Srucures Raheam Al-Saphory Sysems Theory Laboraory, Uversy of Perpga, 5, aveue

More information

Second-Order Asymptotic Expansion for the Ruin Probability of the Sparre Andersen Risk Process with Reinsurance and Stronger Semiexponential Claims

Second-Order Asymptotic Expansion for the Ruin Probability of the Sparre Andersen Risk Process with Reinsurance and Stronger Semiexponential Claims Ieraoal Joral of Sascs ad Acaral Scece 7; (: 4-45 p://www.scecepblsggrop.com/j/jsas do:.648/j.jsas.7. Secod-Order Asympoc Expaso for e R Probably of e Sparre Aderse Rs Process w Resrace ad Sroger Semexpoeal

More information

Mechanical Design Technology (Free-form Surface) April 28, /12

Mechanical Design Technology (Free-form Surface) April 28, /12 Mechacal Desg echolog Free-form Srface Prof. amos Mrakam Assgme #: Free-form Srface Geerao Make a program ha geeraes a bcbc eer srface from 4 4 defg polgo e pos ad dsplas he srface graphcall a a ha allos

More information

Stability Criterion for BAM Neural Networks of Neutral- Type with Interval Time-Varying Delays

Stability Criterion for BAM Neural Networks of Neutral- Type with Interval Time-Varying Delays Avalable ole a www.scecedrec.com Proceda Egeerg 5 (0) 86 80 Advaced Corol Egeergad Iformao Scece Sably Crero for BAM Neural Neworks of Neural- ype wh Ierval me-varyg Delays Guoqua Lu a* Smo X. Yag ab a

More information

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters Leas Squares Fg LSQF wh a complcaed fuco Theeampleswehavelookedasofarhavebeelearheparameers ha we have bee rg o deerme e.g. slope, ercep. For he case where he fuco s lear he parameers we ca fd a aalc soluo

More information

ONE APPROACH FOR THE OPTIMIZATION OF ESTIMATES CALCULATING ALGORITHMS A.A. Dokukin

ONE APPROACH FOR THE OPTIMIZATION OF ESTIMATES CALCULATING ALGORITHMS A.A. Dokukin Iero Jor "Iforo Theore & co" Vo 463 ONE PPROH FOR THE OPTIIZTION OF ETITE UTING GORITH Do rc: I h rce he ew roch for ozo of eo ccg gorh ggeed I c e ed for fdg he correc gorh of coexy he coex of gerc roch

More information

Midterm Exam. Tuesday, September hour, 15 minutes

Midterm Exam. Tuesday, September hour, 15 minutes Ecoomcs of Growh, ECON560 Sa Fracsco Sae Uvers Mchael Bar Fall 203 Mderm Exam Tuesda, Sepember 24 hour, 5 mues Name: Isrucos. Ths s closed boo, closed oes exam. 2. No calculaors of a d are allowed. 3.

More information

Geometric Modeling

Geometric Modeling Geomerc Modelg 9.58. Crves coed Cc Bezer ad B-Sle Crves Far Chaers 4-5 8 Moreso Chaers 4 5 4 Tycal Tyes of Paramerc Crves Corol os flece crve shae. Ierolag Crve asses hrogh all corol os. Herme Defed y

More information

International Journal Of Engineering And Computer Science ISSN: Volume 5 Issue 12 Dec. 2016, Page No.

International Journal Of Engineering And Computer Science ISSN: Volume 5 Issue 12 Dec. 2016, Page No. www.jecs. Ieraoal Joural Of Egeerg Ad Compuer Scece ISSN: 19-74 Volume 5 Issue 1 Dec. 16, Page No. 196-1974 Sofware Relably Model whe mulple errors occur a a me cludg a faul correco process K. Harshchadra

More information

ON TOTAL TIME ON TEST TRANSFORM ORDER ABSTRACT

ON TOTAL TIME ON TEST TRANSFORM ORDER ABSTRACT V M Chacko E CONVE AND INCREASIN CONVE OAL IME ON ES RANSORM ORDER R&A # 4 9 Vol. Decembe ON OAL IME ON ES RANSORM ORDER V. M. Chacko Depame of Sascs S. homas Collee hss eala-68 Emal: chackovm@mal.com

More information

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution

Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution Joural of Mahemacs ad Sascs 6 (2): 1-14, 21 ISSN 1549-3644 21 Scece Publcaos Comarso of he Bayesa ad Maxmum Lkelhood Esmao for Webull Dsrbuo Al Omar Mohammed Ahmed, Hadeel Salm Al-Kuub ad Noor Akma Ibrahm

More information

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X ECON 37: Ecoomercs Hypohess Tesg Iervl Esmo Wh we hve doe so fr s o udersd how we c ob esmors of ecoomcs reloshp we wsh o sudy. The queso s how comforble re we wh our esmors? We frs exme how o produce

More information

Stabilization of LTI Switched Systems with Input Time Delay. Engineering Letters, 14:2, EL_14_2_14 (Advance online publication: 16 May 2007) Lin Lin

Stabilization of LTI Switched Systems with Input Time Delay. Engineering Letters, 14:2, EL_14_2_14 (Advance online publication: 16 May 2007) Lin Lin Egeerg Leers, 4:2, EL_4_2_4 (Advace ole publcao: 6 May 27) Sablzao of LTI Swched Sysems wh Ipu Tme Delay L L Absrac Ths paper deals wh sablzao of LTI swched sysems wh pu me delay. A descrpo of sysems sablzao

More information

Synchronization of Complex Network System with Time-Varying Delay Via Periodically Intermittent Control

Synchronization of Complex Network System with Time-Varying Delay Via Periodically Intermittent Control Sychrozao of Complex ework Sysem wh me-varyg Delay Va Perodcally Ierme Corol JIAG Ya Deparme of Elecrcal ad Iformao Egeerg Hua Elecrcal College of echology Xaga 4, Cha Absrac he sychrozao corol problem

More information

Time-Domain Finite Element Method in Electromagnetics A Brief Review

Time-Domain Finite Element Method in Electromagnetics A Brief Review Tme-Doma Fe leme ehod lecromagecs A ref Revew y D. Xe Ph.D. Tme doma compao of awell eqaos s reqred elecromagec radao scaerg ad propagao problems. I addo s ofe more ecoomcal o ge freqecy doma resls va

More information

Suppose we have observed values t 1, t 2, t n of a random variable T.

Suppose we have observed values t 1, t 2, t n of a random variable T. Sppose we have obseved vales, 2, of a adom vaable T. The dsbo of T s ow o belog o a cea ype (e.g., expoeal, omal, ec.) b he veco θ ( θ, θ2, θp ) of ow paamees assocaed wh s ow (whee p s he mbe of ow paamees).

More information

Computational Fluid Dynamics CFD. Solving system of equations, Grid generation

Computational Fluid Dynamics CFD. Solving system of equations, Grid generation Compaoal ld Dyamcs CD Solvg sysem of eqaos, Grd geerao Basc seps of CD Problem Dscrezao Resl Gov. Eq. BC I. Cod. Solo OK??,,... Solvg sysem of eqaos he ype of eqaos decdes solo sraegy Marchg problems Eqlbrm

More information

Delay-Dependent Robust Asymptotically Stable for Linear Time Variant Systems

Delay-Dependent Robust Asymptotically Stable for Linear Time Variant Systems Delay-Depede Robus Asypocally Sable for Lear e Vara Syses D. Behard, Y. Ordoha, S. Sedagha ABSRAC I hs paper, he proble of delay depede robus asypocally sable for ucera lear e-vara syse wh ulple delays

More information

The algebraic immunity of a class of correlation immune H Boolean functions

The algebraic immunity of a class of correlation immune H Boolean functions Ieraoal Coferece o Advaced Elecroc Scece ad Techology (AEST 06) The algebrac mmuy of a class of correlao mmue H Boolea fucos a Jgla Huag ad Zhuo Wag School of Elecrcal Egeerg Norhwes Uversy for Naoales

More information

Reliability and Sensitivity Analysis of a System with Warm Standbys and a Repairable Service Station

Reliability and Sensitivity Analysis of a System with Warm Standbys and a Repairable Service Station Ieraoa Joura of Operaos Research Vo. 1, No. 1, 61 7 (4) Reaby ad Sesvy Aayss of a Sysem wh Warm Sadbys ad a Reparabe Servce Sao Kuo-Hsug Wag, u-ju a, ad Jyh-B Ke Deparme of Apped Mahemacs, Naoa Chug-Hsg

More information

Unit 10. The Lie Algebra of Vector Fields

Unit 10. The Lie Algebra of Vector Fields U 10. The Le Algebra of Vecor Felds ================================================================================================================================================================ -----------------------------------

More information

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005.

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005. Techc Appedx fo Iveoy geme fo Assemy Sysem wh Poduc o Compoe eus ecox d Zp geme Scece 2005 Lemm µ µ s c Poof If J d µ > µ he ˆ 0 µ µ µ µ µ µ µ µ Sm gumes essh he esu f µ ˆ > µ > µ > µ o K ˆ If J he so

More information

Theory and application of the generalized integral representation method (GIRM) in advection diffusion problem

Theory and application of the generalized integral representation method (GIRM) in advection diffusion problem Appled ad ompaoal Mahemacs 4; 4: 7-49 blshed ole Ags 4 hp://www.scecepblshggrop.com//acm do:.648/.acm.44.5 IN: 8-565 r; IN: 8-56 Ole Theory ad applcao of he geeralzed egral represeao mehod IRM adveco dffso

More information

4 5 = So 2. No, as = ± and invariant factor 6. Solution 3 Each of (1, 0),(1, 2),(0, 2) has order 2 and generates a C

4 5 = So 2. No, as = ± and invariant factor 6. Solution 3 Each of (1, 0),(1, 2),(0, 2) has order 2 and generates a C Soluos (page 7) ρ 5 4 4 Soluo = ρ as 4 4 5 = So ρ, ρ s a Z bass of Z ad 5 4 ( m, m ) = (,7) = (,9) No, as 5 7 4 5 6 = ± Soluo The 6 elemes of Z K are: g = K + e + e, g = K + e, g = K + e, 4g = K + e, 5g

More information

Fully Fuzzy Linear Systems Solving Using MOLP

Fully Fuzzy Linear Systems Solving Using MOLP World Appled Sceces Joural 12 (12): 2268-2273, 2011 ISSN 1818-4952 IDOSI Publcaos, 2011 Fully Fuzzy Lear Sysems Solvg Usg MOLP Tofgh Allahvraloo ad Nasser Mkaelvad Deparme of Mahemacs, Islamc Azad Uversy,

More information

Axiomatic Definition of Probability. Problems: Relative Frequency. Event. Sample Space Examples

Axiomatic Definition of Probability. Problems: Relative Frequency. Event. Sample Space Examples Rado Sgals robabl & Rado Varables: Revew M. Sa Fadal roessor o lecrcal geerg Uvers o evada Reo Soe phscal sgals ose cao be epressed as a eplc aheacal orla. These sgals s be descrbed probablsc ers. ose

More information

Quantum Mechanics II Lecture 11 Time-dependent perturbation theory. Time-dependent perturbation theory (degenerate or non-degenerate starting state)

Quantum Mechanics II Lecture 11 Time-dependent perturbation theory. Time-dependent perturbation theory (degenerate or non-degenerate starting state) Pro. O. B. Wrgh, Auum Quaum Mechacs II Lecure Tme-depede perurbao heory Tme-depede perurbao heory (degeerae or o-degeerae sarg sae) Cosder a sgle parcle whch, s uperurbed codo wh Hamloa H, ca exs a superposo

More information

The Signal, Variable System, and Transformation: A Personal Perspective

The Signal, Variable System, and Transformation: A Personal Perspective The Sgal Varable Syem ad Traformao: A Peroal Perpecve Sherv Erfa 35 Eex Hall Faculy of Egeerg Oule Of he Talk Iroduco Mahemacal Repreeao of yem Operaor Calculu Traformao Obervao O Laplace Traform SSB A

More information

Multi-Period Portfolio Selection with No-Shorting Constraints: Duality Analysis

Multi-Period Portfolio Selection with No-Shorting Constraints: Duality Analysis Joura of Maheaca Face 7 7 75-768 hp://wwwscrporg/oura/f ISSN Oe: 6-44 ISSN Pr: 6-434 Mu-Perod Porfoo Seeco wh No-Shorg Cosras: Duay Aayss Ju Q La Y Maagee Schoo Ja Uversy Guagzhou Cha How o ce hs paper:

More information

4. THE DENSITY MATRIX

4. THE DENSITY MATRIX 4. THE DENSTY MATRX The desy marx or desy operaor s a alerae represeao of he sae of a quaum sysem for whch we have prevously used he wavefuco. Alhough descrbg a quaum sysem wh he desy marx s equvale o

More information

Complementary Tree Paired Domination in Graphs

Complementary Tree Paired Domination in Graphs IOSR Joural of Mahemacs (IOSR-JM) e-issn: 2278-5728, p-issn: 239-765X Volume 2, Issue 6 Ver II (Nov - Dec206), PP 26-3 wwwosrjouralsorg Complemeary Tree Pared Domao Graphs A Meeaksh, J Baskar Babujee 2

More information

On an algorithm of the dynamic reconstruction of inputs in systems with time-delay

On an algorithm of the dynamic reconstruction of inputs in systems with time-delay Ieraoal Joural of Advaces Appled Maemacs ad Mecacs Volume, Issue 2 : (23) pp. 53-64 Avalable ole a www.jaamm.com IJAAMM ISSN: 2347-2529 O a algorm of e dyamc recosruco of pus sysems w me-delay V. I. Maksmov

More information

Analysis of a Stochastic Lotka-Volterra Competitive System with Distributed Delays

Analysis of a Stochastic Lotka-Volterra Competitive System with Distributed Delays Ieraoal Coferece o Appled Maheac Sulao ad Modellg (AMSM 6) Aaly of a Sochac Loa-Volerra Copeve Sye wh Drbued Delay Xagu Da ad Xaou L School of Maheacal Scece of Togre Uvery Togre 5543 PR Cha Correpodg

More information

A Loss Allocation Mechanism for Power System Transactions

A Loss Allocation Mechanism for Power System Transactions Bu Power Sysem Dyamcs ad Coro IV - esrucurg, Augus 4-8, Saor, Greece A Loss Aocao echasm for Power Sysem Trasacos George Gross Deparme of Eecrca ad Compuer Egeerg Uversy of Ios a Urbaa-Champag Urbaa, IL

More information

NUMERICAL EVALUATION of DYNAMIC RESPONSE

NUMERICAL EVALUATION of DYNAMIC RESPONSE NUMERICAL EVALUATION of YNAMIC RESPONSE Aalycal solo of he eqao of oo for a sgle degree of freedo syse s sally o ossble f he excao aled force or grod accelerao ü g -vares arbrarly h e or f he syse s olear.

More information

The textbook expresses the stock price as the present discounted value of the dividend paid and the price of the stock next period.

The textbook expresses the stock price as the present discounted value of the dividend paid and the price of the stock next period. ublc Affars 974 Meze D. Ch Fall Socal Sceces 748 Uversy of Wscos-Madso Sock rces, News ad he Effce Markes Hypohess (rev d //) The rese Value Model Approach o Asse rcg The exbook expresses he sock prce

More information

CSIR NET - MATHEMATICAL SCIENCE

CSIR NET - MATHEMATICAL SCIENCE CSIR NET - MATHEMATICAL SCIENCE SAMPLE THEORY SEQUENCES, SERIES AND LIMIT POINTS OF SEQUENCES SEQUENCES LIMITS : INFERIOR & SUPERIOR ALGEBRA OF SEQUENCES SEQUENCE TESTS FOURIER SERIES SOME PROBLEMS For

More information

Upper Bound For Matrix Operators On Some Sequence Spaces

Upper Bound For Matrix Operators On Some Sequence Spaces Suama Uer Bou formar Oeraors Uer Bou For Mar Oeraors O Some Sequece Saces Suama Dearme of Mahemacs Gaah Maa Uersy Yogyaara 558 INDONESIA Emal: suama@ugmac masomo@yahoocom Isar D alam aer aa susa masalah

More information