2.160 System Identification, Estimation, and Learning Lecture Notes No. 17 April 24, 2006

Size: px
Start display at page:

Download "2.160 System Identification, Estimation, and Learning Lecture Notes No. 17 April 24, 2006"

Transcription

1 .6 System Idetfcato, Estmato, ad Learg Lectre Notes No. 7 Aprl 4, 6. Iformatve Expermets. Persstece of Exctato Iformatve data sets are closely related to Persstece of Exctato, a mportat cocept sed adaptve ad learg cotrols. See the block dagram of a drect adaptve cotrol system below. he cotrol system motors pt-otpt data order to detfy the plat model real, ad modfes the feedback cotrol as the plat dyamcs vary; hece the cotrol system s adaptve to varyg plat dyamcs. Adaptato Law Model + - Feedback Cotrol ( Plat y ( (Idrec Adaptve Cotrol Sccess of ths adaptve cotrol system hges o the data. he cetral qesto s whether the pt-otpt data obtaed real-tme are formatve eogh to detfy the plat model qely. hs s ofte qestoable, sce the cotrol system teds to drve the plat to a specfc set pot or to follow a specfc trajectory. he trajectory may ot be rch eogh to excte the system. he followg theory of persstet exctato ad formatve expermet are fdametal to these qestos. Defto 4 A qas-statoary sgal{ (}, wth spectrm Φ (ω ), s sad to be persstetly exctg of order, f the codto: mples where Φ ( ω) M () e M () e M ( s a arbtrary lear flter of form: M = mq + mq + + mq (3)

2 Remarks:. Note ( ω) e M Φ s the power spectrm of v ( = M ( t ). herefore, a sgal ( that s persstetly exctg of order caot be fltered to zero by ay (-)st order movg average flter (3), hece t s called persstetly exctg. ( M ( v (. Cosder fcto M ( z) M ( z ), assocated wth M. e M ( zm ) ( z ) = ( mz + mz + + mz )( mz+ mz + + mz) = ( m + m z+ + m z )( m + m z+ + m z ) If a+b s a zero of + M ( z) M ( z ) (4), a-b s also a zero, sce the fcto has all a b real coeffcets. Also, f a+b s a zero, the ts recprocal s also a zero a + b of the fcto sce the fcto s symmetrc wth respect to the t crcle, z z. See the fgre below. hs fcto ca have at most (-) zeros o the t crcle. herefore, M ( e ) = M ( e ) M ( e ) may be zero for at most (-) dfferet freqeces. I coseqece, f Φ ( ω) for at least dfferet freqeces; π < ω,, ω < π the ( s persstetly exctg. a + b a b a + b he followg lemma provdes a sefl method for checkg persstece of exctato: Lemma: Let ( be a qas-statoary sgal. Cosder the matrx gve by he ( R () R () R ( ) R R R R () () ( ) = R R ( ) R () s persstetly exctg of order f ad oly f R s o-sglar. (5)

3 Proof Pt the coeffcets of M ( to a -dmesoal vector: ( m m m ) R m =. Cosder a qadratc form: ( R s o-sglar ) ( m R m = m R m. It s kow that the followg two are eqvalet mples m = ) Compte m R m = ( ) mrm m m = ( m m ) R() R() m R () R () m R() m mr () + mr () + + mr mr () mr () + + mr ( ) + = mm R ( j ) = mm R ( j) j j j j j π M e ( ω) d π [ ] = E mt ( ) m t j = E M( qt ) j j = Φ π ω = mm je () t t ( j) = mm je ( t ) t j (6) herefore, m R m = M e ω ω ω meas, for almost all Φ. Matrx R s o- sglar, s eqvalet to M ( e ) Φ ( ω) M = herefore, ( s persstetly exctg of order f ad oly f R s o-sglar.. Codtos for Iformatve Expermets Based o the persstetly exctg codto, how ca we desg expermets so that ay two models of a model set ca be dstgshed,.e. formatve expermets? Cosder two models: =, of a model set M, 3

4 G = G( q, ), H = H ( q, ), ε ε ( t, ) ( = (7) ad ther dfferece G = G( G, H = H ( H( (8) Note ε ( = y yˆ t = y ( ) [ H G + ( H ) y] = H y H G Let s compte the dfferece of predcto error betwee the two models: ε = ε ε = H y H G ε [ ε ] = H y G H = H G G G+ y Hε G H ε = + H [ Gqt Hq ε ] ( q Usg the tre system model: y = G ( + H e () ( t (9) ε ca be wrtte as t ε () t = H y H G [ ] = H G + H e G = ( G G ) ( + H e( H () Combg (9) ad () yelds, G G H ε() t = G H () t H () H + + e t H H () Aq Bq Sppose that the expermet s carred ot ope-loop, so that ( ad e ( are correlated. he mea of ε ( s gve by (See Lectre Note No.5. eq.(9)) 4

5 π E ε () t = A ( e ) Φ ( ω) + B ( e ) λ π π H (3) where λ = E[ e ( ] ad ( e ) dω G e G e Ae ω ω = Ge + H e H( e ) (4) B e ( e ) H = H e H( e ) (5) herefore, E ( ε t ε t ) E ( yˆ t yˆ t ) [ ] = [ ] = mples Ae ω ad Φ ( ω) : both mst be detcally zero. (6) Be ω ( e ) Φ ( ω) G (7) If (7) mples G ( e ) formatve eogh w.r.t. He ( ω ) Eq. (5), the the two models are eqal, ad the expermet s M. hs last codto s bascally eqvalet to the persstetly exctg codto gve by Defto 3 ad Lemma. heorem 3 Cosderg a cocrete model for G ( q, ) leads to the followg theorem. Cosder a model set { (, ), (, ) M } M G q H q D M of SISO systems: = (8) where G( q, ) s a ratoal fcto: ( b ) ( b + b q + + b q ) k B( q, ) q G( q, ) = = (9) F( q, ) + f q + + f b f q f 5

6 ad H ( q, ) s versely stable. he a ope-loop expermet wth a pt that s persstetly exctg of order b + f Proof For two dfferet models, G ad G ; herefore (7) becomes Relatg BF BF q s formatve eogh w.r.t. M. B B B F B F G( = = () F F F F B e F e B e F e Φ( ω) () M ( e ω) to ( e ) k M e ω (5), we fd that - Factorg ot does ot chage B F B F b + f - he remag part s a polyomal of order. Sce the pt( s persstetly exctg of order +, () mples BF BF,.e. G QED. he pot s: (he order of persstet exctato) ( he mber of parameters to be estmated) b f.3 Sgal-to-Nose Rato ad Covergece Speed From heorem we kow that, f a model set cldes the tre system, ad the data set s formatve eogh wth respect to the model set, the estmated model coverges to the tre system,.e. cosstet. Frthermore, from heorem 3 we kow that, as log as the pt seqece has the order of persstet exctato greater tha the mber of parameters volved the model set, the model coverges to the tre model. hs covergece s garateed regardless the magtde of ose. However, the covergece speed may deped o the ose magtde or, more specfcally, the sgal-to-ose rato. he followg s to exame the covergece characterstcs. Usg the tre system dyamcs gve by (), the predcto error of a model M ( ) = { G, H; D M } s gve by ε ( t, ) = H = H [ y( G ( ] = H [( G G ) ( + H e( ] [( G G ) ( + ( H H ) e ( ] + e ( () 6

7 Note that the secod term the last expresso, ( ) H H e() t, does ot cota e () t bt s a fcto of e (, becase both H ad H are moc. herefore, the three terms are correlated to each other. As a reslt, the power spectrm of ε(, t ) s gve by Φ G G H H ε ( ω, ) = Φ ( ω) + λ + λ (3) H H where Φ ( ω) s the power spectrm of the pt, ad λ s the varace of the Whte ose. Applyg eq.(9) Lectre Note No 5 to the above power spectrm Φ ε ( ω, ), we obta the followg reslt. heorem 4 Let ε(, t ) be the predcto error of a model a lear tme-varat model set M ( ) = { G, H; D M }. Assme that the tre system gve by y ( = G ( + H( e ( ad the model process are qas-statoary processes, the the optmal parameter that mmzes the mea sqared predcto error V( ) = E[ ε( t, ) ] s gve by π H( e ) H ( e ) Φ ω π H( e ) H( e ) ˆ = arg m { G ( e ) G ( e ) + λ } dω (4) DM where Φ ( ω) s the power spectrm of the pt (, ad λ s the varace of the Whte ose e () t. he proof s obvos. he covergece process of the above system s complcated. If we assme that the ose model H s kow or fxed: H q = H q (5) the (4) redces to ˆ Φ ( ω) = arg m G( e ) G( e, ) dω (6) H ( e ) he followg observato ca be made for ths smplfed expresso. Remarks: 7

8 he model G s pshed towards the tre system Go( sch a way that the weghted mea sqared dfferece the freqecy doma be mmzed. Φ ( ω) he weght,, s the rato of the pt power spectrm to the ose H ( e ) power spectrm (f the varace of e o ( s ty). I other words, t s a sgal-toose rato. At freqeces where the sgal-to-ose rato s hgher, the model coverges to the tre system more rapdly. See the fgre below. G ( e ) Good agreemet for hgh S/N weght Model Poor agreemet as the S/N becomes small Hgh freqecy ose Ipt magtde re system 8

B-spline curves. 1. Properties of the B-spline curve. control of the curve shape as opposed to global control by using a special set of blending

B-spline curves. 1. Properties of the B-spline curve. control of the curve shape as opposed to global control by using a special set of blending B-sple crve Copyrght@, YZU Optmal Desg Laboratory. All rghts reserved. Last pdated: Yeh-Lag Hs (--9). ote: Ths s the corse materal for ME Geometrc modelg ad compter graphcs, Ya Ze Uversty. art of ths materal

More information

DISTURBANCE TERMS. is a scalar and x i

DISTURBANCE TERMS. is a scalar and x i DISTURBANCE TERMS I a feld of research desg, we ofte have the qesto abot whether there s a relatoshp betwee a observed varable (sa, ) ad the other observed varables (sa, x ). To aswer the qesto, we ma

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

LINEAR EQUALIZERS & NONLINEAR EQUALIZERS. Prepared by Deepa.T, Asst.Prof. /TCE

LINEAR EQUALIZERS & NONLINEAR EQUALIZERS. Prepared by Deepa.T, Asst.Prof. /TCE LINEAR EQUALIZERS & NONLINEAR EQUALIZERS Prepared by Deepa.T, Asst.Prof. /TCE Eqalzers The goal of eqalzers s to elmate tersymbol terferece (ISI) ad the addtve ose as mch as possble. Itersymbol terferece(isi)

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic.

COV. Violation of constant variance of ε i s but they are still independent. The error term (ε) is said to be heteroscedastic. c Pogsa Porchawseskul, Faculty of Ecoomcs, Chulalogkor Uversty olato of costat varace of s but they are stll depedet. C,, he error term s sad to be heteroscedastc. c Pogsa Porchawseskul, Faculty of Ecoomcs,

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

Lecture 2: The Simple Regression Model

Lecture 2: The Simple Regression Model Lectre Notes o Advaced coometrcs Lectre : The Smple Regresso Model Takash Yamao Fall Semester 5 I ths lectre we revew the smple bvarate lear regresso model. We focs o statstcal assmptos to obta based estmators.

More information

1 Lyapunov Stability Theory

1 Lyapunov Stability Theory Lyapuov Stablty heory I ths secto we cosder proofs of stablty of equlbra of autoomous systems. hs s stadard theory for olear systems, ad oe of the most mportat tools the aalyss of olear systems. It may

More information

Lecture 07: Poles and Zeros

Lecture 07: Poles and Zeros Lecture 07: Poles ad Zeros Defto of poles ad zeros The trasfer fucto provdes a bass for determg mportat system respose characterstcs wthout solvg the complete dfferetal equato. As defed, the trasfer fucto

More information

Fundamentals of Regression Analysis

Fundamentals of Regression Analysis Fdametals of Regresso Aalyss Regresso aalyss s cocered wth the stdy of the depedece of oe varable, the depedet varable, o oe or more other varables, the explaatory varables, wth a vew of estmatg ad/or

More information

Motion Estimation Based on Unit Quaternion Decomposition of the Rotation Matrix

Motion Estimation Based on Unit Quaternion Decomposition of the Rotation Matrix Moto Estmato Based o Ut Qatero Decomposto of the Rotato Matrx Hag Y Ya Baozog (Isttte of Iformato Scece orther Jaotog Uversty Bejg 00044 PR Cha Abstract Based o the t qatero decomposto of rotato matrx

More information

A Robust Total Least Mean Square Algorithm For Nonlinear Adaptive Filter

A Robust Total Least Mean Square Algorithm For Nonlinear Adaptive Filter A Robust otal east Mea Square Algorthm For Nolear Adaptve Flter Ruxua We School of Electroc ad Iformato Egeerg X'a Jaotog Uversty X'a 70049, P.R. Cha rxwe@chare.com Chogzhao Ha, azhe u School of Electroc

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix.

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix. Revew + v, + y = v, + v, + y, + y, Cato! v, + y, + v, + y geeral Let A be a atr Let f,g : Ω R ( ) ( ) R y R Ω R h( ) f ( ) g ( ) ( ) ( ) ( ( )) ( ) dh = f dg + g df A, y y A Ay = = r= c= =, : Ω R he Proof

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

An Expansion of the Derivation of the Spline Smoothing Theory Alan Kaylor Cline

An Expansion of the Derivation of the Spline Smoothing Theory Alan Kaylor Cline A Epaso of the Derato of the Sple Smoothg heory Ala Kaylor Cle he classc paper "Smoothg by Sple Fctos", Nmersche Mathematk 0, 77-83 967) by Chrsta Resch showed that atral cbc sples were the soltos to a

More information

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity ECONOMETRIC THEORY MODULE VIII Lecture - 6 Heteroskedastcty Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur . Breusch Paga test Ths test ca be appled whe the replcated data

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES

Lecture 12 APPROXIMATION OF FIRST ORDER DERIVATIVES FDM: Appromato of Frst Order Dervatves Lecture APPROXIMATION OF FIRST ORDER DERIVATIVES. INTRODUCTION Covectve term coservato equatos volve frst order dervatves. The smplest possble approach for dscretzato

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

Open and Closed Networks of M/M/m Type Queues (Jackson s Theorem for Open and Closed Networks) Copyright 2015, Sanjay K. Bose 1

Open and Closed Networks of M/M/m Type Queues (Jackson s Theorem for Open and Closed Networks) Copyright 2015, Sanjay K. Bose 1 Ope ad Closed Networks of //m Type Qees Jackso s Theorem for Ope ad Closed Networks Copyrght 05, Saay. Bose p osso Rate λp osso rocess Average Rate λ p osso Rate λp N p p N osso Rate λp N Splttg a osso

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

A scalar t is an eigenvalue of A if and only if t satisfies the characteristic equation of A: det (A ti) =0

A scalar t is an eigenvalue of A if and only if t satisfies the characteristic equation of A: det (A ti) =0 Chapter 5 a glace: Let e a lear operator whose stadard matrx s wth sze x. he, a ozero vector x s sad to e a egevector of ad f there exsts a scalar sch that (x) x x. he scalar s called a egevale of (or

More information

Dimensionality Reduction and Learning

Dimensionality Reduction and Learning CMSC 35900 (Sprg 009) Large Scale Learg Lecture: 3 Dmesoalty Reducto ad Learg Istructors: Sham Kakade ad Greg Shakharovch L Supervsed Methods ad Dmesoalty Reducto The theme of these two lectures s that

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

Suggested Answers, Problem Set 4 ECON The R 2 for the unrestricted model is by definition u u u u

Suggested Answers, Problem Set 4 ECON The R 2 for the unrestricted model is by definition u u u u Da Hgerma Fall 9 Sggested Aswers, Problem Set 4 ECON 333 The F-test s defed as ( SSEr The R for the restrcted model s by defto SSE / ( k ) R ( SSE / SST ) so therefore, SSE SST ( R ) ad lkewse SSEr SST

More information

Taylor s Series and Interpolation. Interpolation & Curve-fitting. CIS Interpolation. Basic Scenario. Taylor Series interpolates at a specific

Taylor s Series and Interpolation. Interpolation & Curve-fitting. CIS Interpolation. Basic Scenario. Taylor Series interpolates at a specific CIS 54 - Iterpolato Roger Crawfs Basc Scearo We are able to prod some fucto, but do ot kow what t really s. Ths gves us a lst of data pots: [x,f ] f(x) f f + x x + August 2, 25 OSU/CIS 54 3 Taylor s Seres

More information

Training Sample Model: Given n observations, [[( Yi, x i the sample model can be expressed as (1) where, zero and variance σ

Training Sample Model: Given n observations, [[( Yi, x i the sample model can be expressed as (1) where, zero and variance σ Stat 74 Estmato for Geeral Lear Model Prof. Goel Broad Outle Geeral Lear Model (GLM): Trag Samle Model: Gve observatos, [[( Y, x ), x = ( x,, xr )], =,,, the samle model ca be exressed as Y = µ ( x, x,,

More information

Mean is only appropriate for interval or ratio scales, not ordinal or nominal.

Mean is only appropriate for interval or ratio scales, not ordinal or nominal. Mea Same as ordary average Sum all the data values ad dvde by the sample sze. x = ( x + x +... + x Usg summato otato, we wrte ths as x = x = x = = ) x Mea s oly approprate for terval or rato scales, ot

More information

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations

Derivation of 3-Point Block Method Formula for Solving First Order Stiff Ordinary Differential Equations Dervato of -Pot Block Method Formula for Solvg Frst Order Stff Ordary Dfferetal Equatos Kharul Hamd Kharul Auar, Kharl Iskadar Othma, Zara Bb Ibrahm Abstract Dervato of pot block method formula wth costat

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measure of Cetral Tedecy: Measures of Cetral Tedecy ad Dsperso ) Mathematcal Average: a) Arthmetc mea (A.M.) b) Geometrc mea (G.M.) c) Harmoc mea (H.M.) ) Averages of Posto: a) Meda

More information

CHANNEL IMPAIRMENTS & EQUALIZATION. Prepared by Deepa.T, Asst.Prof. /TCE

CHANNEL IMPAIRMENTS & EQUALIZATION. Prepared by Deepa.T, Asst.Prof. /TCE CHANNEL IMPAIRMENTS & EQUALIZATION Prepared by Deepa.T, Asst.Prof. /TCE Revew of Relevat Cocepts Fadg: 1) Flat Fadg 2) Freqecy Selectve Fadg 3) Other Mlt path Cocers Flat Fadg Flat Fadg s cased by absorbers

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

ENGI 4421 Propagation of Error Page 8-01

ENGI 4421 Propagation of Error Page 8-01 ENGI 441 Propagato of Error Page 8-01 Propagato of Error [Navd Chapter 3; ot Devore] Ay realstc measuremet procedure cotas error. Ay calculatos based o that measuremet wll therefore also cota a error.

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uversty Mchael Bar Sprg 5 Mdterm am, secto Soluto Thursday, February 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes eam.. No calculators of ay kd are allowed..

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory

C-1: Aerodynamics of Airfoils 1 C-2: Aerodynamics of Airfoils 2 C-3: Panel Methods C-4: Thin Airfoil Theory ROAD MAP... AE301 Aerodyamcs I UNIT C: 2-D Arfols C-1: Aerodyamcs of Arfols 1 C-2: Aerodyamcs of Arfols 2 C-3: Pael Methods C-4: Th Arfol Theory AE301 Aerodyamcs I Ut C-3: Lst of Subects Problem Solutos?

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Alternating Direction Implicit Method

Alternating Direction Implicit Method Alteratg Drecto Implct Method Whle dealg wth Ellptc Eqatos the Implct form the mber of eqatos to be solved are N M whch are qte large mber. Thogh the coeffcet matrx has may zeros bt t s ot a baded system.

More information

13. Parametric and Non-Parametric Uncertainties, Radial Basis Functions and Neural Network Approximations

13. Parametric and Non-Parametric Uncertainties, Radial Basis Functions and Neural Network Approximations Lecture 7 3. Parametrc ad No-Parametrc Ucertates, Radal Bass Fuctos ad Neural Network Approxmatos he parameter estmato algorthms descrbed prevous sectos were based o the assumpto that the system ucertates

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

Linear Regression with One Regressor

Linear Regression with One Regressor Lear Regresso wth Oe Regressor AIM QA.7. Expla how regresso aalyss ecoometrcs measures the relatoshp betwee depedet ad depedet varables. A regresso aalyss has the goal of measurg how chages oe varable,

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

LINEAR REGRESSION ANALYSIS

LINEAR REGRESSION ANALYSIS LINEAR REGRESSION ANALYSIS MODULE V Lecture - Correctg Model Iadequaces Through Trasformato ad Weghtg Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Aalytcal methods for

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information

u(x, t) = u 0 (x ct). This Riemann invariant u is constant along characteristics λ with x = x 0 +ct (u(x, t) = u 0 (x 0 )):

u(x, t) = u 0 (x ct). This Riemann invariant u is constant along characteristics λ with x = x 0 +ct (u(x, t) = u 0 (x 0 )): x, t, h x The Frst-Order Wave Eqato The frst-order wave advecto eqato s c > 0 t + c x = 0, x, t = 0 = 0x. The solto propagates the tal data 0 to the rght wth speed c: x, t = 0 x ct. Ths Rema varat s costat

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

( q Modal Analysis. Eigenvectors = Mode Shapes? Eigenproblem (cont) = x x 2 u 2. u 1. x 1 (4.55) vector and M and K are matrices.

( q Modal Analysis. Eigenvectors = Mode Shapes? Eigenproblem (cont) = x x 2 u 2. u 1. x 1 (4.55) vector and M and K are matrices. 4.3 - Modal Aalyss Physcal coordates are ot always the easest to work Egevectors provde a coveet trasformato to modal coordates Modal coordates are lear combato of physcal coordates Say we have physcal

More information

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model

12.2 Estimating Model parameters Assumptions: ox and y are related according to the simple linear regression model 1. Estmatg Model parameters Assumptos: ox ad y are related accordg to the smple lear regresso model (The lear regresso model s the model that says that x ad y are related a lear fasho, but the observed

More information

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem Joural of Amerca Scece ;6( Cubc Nopolyomal Sple Approach to the Soluto of a Secod Order Two-Pot Boudary Value Problem W.K. Zahra, F.A. Abd El-Salam, A.A. El-Sabbagh ad Z.A. ZAk * Departmet of Egeerg athematcs

More information

Third handout: On the Gini Index

Third handout: On the Gini Index Thrd hadout: O the dex Corrado, a tala statstca, proposed (, 9, 96) to measure absolute equalt va the mea dfferece whch s defed as ( / ) where refers to the total umber of dvduals socet. Assume that. The

More information

Model Fitting, RANSAC. Jana Kosecka

Model Fitting, RANSAC. Jana Kosecka Model Fttg, RANSAC Jaa Kosecka Fttg: Issues Prevous strateges Le detecto Hough trasform Smple parametrc model, two parameters m, b m + b Votg strateg Hard to geeralze to hgher dmesos a o + a + a 2 2 +

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Generalized Linear Models. Statistical Models. Classical Linear Regression Why easy formulation if complicated formulation exists?

Generalized Linear Models. Statistical Models. Classical Linear Regression Why easy formulation if complicated formulation exists? Statstcal Models Geeralzed Lear Models Classcal lear regresso complcated formlato of smple model, strctral ad radom compoet of the model Lectre 5 Geeralzed Lear Models Geeralzed lear models geeral descrpto

More information

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter

The number of observed cases The number of parameters. ith case of the dichotomous dependent variable. the ith case of the jth parameter LOGISTIC REGRESSION Notato Model Logstc regresso regresses a dchotomous depedet varable o a set of depedet varables. Several methods are mplemeted for selectg the depedet varables. The followg otato s

More information

Rademacher Complexity. Examples

Rademacher Complexity. Examples Algorthmc Foudatos of Learg Lecture 3 Rademacher Complexty. Examples Lecturer: Patrck Rebesch Verso: October 16th 018 3.1 Itroducto I the last lecture we troduced the oto of Rademacher complexty ad showed

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Marquette Uverst Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Coprght 08 b Marquette Uverst Maxmum Lkelhood Estmato We have bee sag that ~

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

The equation is sometimes presented in form Y = a + b x. This is reasonable, but it s not the notation we use.

The equation is sometimes presented in form Y = a + b x. This is reasonable, but it s not the notation we use. INTRODUCTORY NOTE ON LINEAR REGREION We have data of the form (x y ) (x y ) (x y ) These wll most ofte be preseted to us as two colum of a spreadsheet As the topc develops we wll see both upper case ad

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uverst Mchael Bar Sprg 5 Mdterm xam, secto Soluto Thursda, Februar 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes exam.. No calculators of a kd are allowed..

More information

Wu-Hausman Test: But if X and ε are independent, βˆ. ECON 324 Page 1

Wu-Hausman Test: But if X and ε are independent, βˆ. ECON 324 Page 1 Wu-Hausma Test: Detectg Falure of E( ε X ) Caot drectly test ths assumpto because lack ubased estmator of ε ad the OLS resduals wll be orthogoal to X, by costructo as ca be see from the momet codto X'

More information

Processing of Information with Uncertain Boundaries Fuzzy Sets and Vague Sets

Processing of Information with Uncertain Boundaries Fuzzy Sets and Vague Sets Processg of Iformato wth Ucerta odares Fzzy Sets ad Vage Sets JIUCHENG XU JUNYI SHEN School of Electroc ad Iformato Egeerg X'a Jaotog Uversty X'a 70049 PRCHIN bstract: - I the paper we aalyze the relatoshps

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Aalyss of Varace ad Desg of Exermets-I MODULE II LECTURE - GENERAL LINEAR HYPOTHESIS AND ANALYSIS OF VARIANCE Dr Shalabh Deartmet of Mathematcs ad Statstcs Ida Isttute of Techology Kaur Tukey s rocedure

More information

n -dimensional vectors follow naturally from the one

n -dimensional vectors follow naturally from the one B. Vectors ad sets B. Vectors Ecoomsts study ecoomc pheomea by buldg hghly stylzed models. Uderstadg ad makg use of almost all such models requres a hgh comfort level wth some key mathematcal sklls. I

More information

A Method for Damping Estimation Based On Least Square Fit

A Method for Damping Estimation Based On Least Square Fit Amerca Joural of Egeerg Research (AJER) 5 Amerca Joural of Egeerg Research (AJER) e-issn: 3-847 p-issn : 3-936 Volume-4, Issue-7, pp-5-9 www.ajer.org Research Paper Ope Access A Method for Dampg Estmato

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Beam Warming Second-Order Upwind Method

Beam Warming Second-Order Upwind Method Beam Warmg Secod-Order Upwd Method Petr Valeta Jauary 6, 015 Ths documet s a part of the assessmet work for the subject 1DRP Dfferetal Equatos o Computer lectured o FNSPE CTU Prague. Abstract Ths documet

More information

A unified matrix representation for degree reduction of Bézier curves

A unified matrix representation for degree reduction of Bézier curves Computer Aded Geometrc Desg 21 2004 151 164 wwwelsevercom/locate/cagd A ufed matrx represetato for degree reducto of Bézer curves Hask Suwoo a,,1, Namyog Lee b a Departmet of Mathematcs, Kokuk Uversty,

More information

Convergence of the Desroziers scheme and its relation to the lag innovation diagnostic

Convergence of the Desroziers scheme and its relation to the lag innovation diagnostic Covergece of the Desrozers scheme ad ts relato to the lag ovato dagostc chard Méard Evromet Caada, Ar Qualty esearch Dvso World Weather Ope Scece Coferece Motreal, August 9, 04 o t t O x x x y x y Oservato

More information

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression

Overview. Basic concepts of Bayesian learning. Most probable model given data Coin tosses Linear regression Logistic regression Overvew Basc cocepts of Bayesa learg Most probable model gve data Co tosses Lear regresso Logstc regresso Bayesa predctos Co tosses Lear regresso 30 Recap: regresso problems Iput to learg problem: trag

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations HP 30S Statstcs Averages ad Stadard Devatos Average ad Stadard Devato Practce Fdg Averages ad Stadard Devatos HP 30S Statstcs Averages ad Stadard Devatos Average ad stadard devato The HP 30S provdes several

More information

: At least two means differ SST

: At least two means differ SST Formula Card for Eam 3 STA33 ANOVA F-Test: Completely Radomzed Desg ( total umber of observatos, k = Number of treatmets,& T = total for treatmet ) Step : Epress the Clam Step : The ypotheses: :... 0 A

More information

Median as a Weighted Arithmetic Mean of All Sample Observations

Median as a Weighted Arithmetic Mean of All Sample Observations Meda as a Weghted Arthmetc Mea of All Sample Observatos SK Mshra Dept. of Ecoomcs NEHU, Shllog (Ida). Itroducto: Iumerably may textbooks Statstcs explctly meto that oe of the weakesses (or propertes) of

More information

Analysis of Variance with Weibull Data

Analysis of Variance with Weibull Data Aalyss of Varace wth Webull Data Lahaa Watthaacheewaul Abstract I statstcal data aalyss by aalyss of varace, the usual basc assumptos are that the model s addtve ad the errors are radomly, depedetly, ad

More information

6.867 Machine Learning

6.867 Machine Learning 6.867 Mache Learg Problem set Due Frday, September 9, rectato Please address all questos ad commets about ths problem set to 6.867-staff@a.mt.edu. You do ot eed to use MATLAB for ths problem set though

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

MOLECULAR VIBRATIONS

MOLECULAR VIBRATIONS MOLECULAR VIBRATIONS Here we wsh to vestgate molecular vbratos ad draw a smlarty betwee the theory of molecular vbratos ad Hückel theory. 1. Smple Harmoc Oscllator Recall that the eergy of a oe-dmesoal

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Logistic regression (continued)

Logistic regression (continued) STAT562 page 138 Logstc regresso (cotued) Suppose we ow cosder more complex models to descrbe the relatoshp betwee a categorcal respose varable (Y) that takes o two (2) possble outcomes ad a set of p explaatory

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statstc ad Radom Samples A parameter s a umber that descrbes the populato. It s a fxed umber, but practce we do ot kow ts value. A statstc s a fucto of the sample data,.e., t s a quatty whose

More information

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II CEE49b Chapter - Free Vbrato of Mult-Degree-of-Freedom Systems - II We ca obta a approxmate soluto to the fudametal atural frequecy through a approxmate formula developed usg eergy prcples by Lord Raylegh

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information