Broken Extremals. Variational Methods & Optimal Control lecture 20. Broken extremals. Broken extremals

Size: px
Start display at page:

Download "Broken Extremals. Variational Methods & Optimal Control lecture 20. Broken extremals. Broken extremals"

Transcription

1 Broken etremals Variational Methods & Optimal Control lecture 2 Matthew Roughan <matthew.roughan@adelaide.edu.au> Discipline of Applied Mathematics School of Mathematical Sciences Universit of Adelaide April 4, 26 Broken etremals are continuous etremals for which the gradient has a discontinuit at one of more points. If a variational problem has a smooth etremal (that therefore satisfies the E-L equations), this will be better than a broken one, e.g. Brachstochrone Variational Methods & Optimal Control: lecture 2 p./32 Variational Methods & Optimal Control: lecture 2 p.3/32 Broken etremals Broken Etremals Until now we have required that etremal curves have at least two well-defined derivatives. Obviousl this is not alwas true (see for instance Snell s law). In this lecture we consider the alternatives. But some problems don t admit smooth etremals Eample: Find () to minimize subject to ( )= and ()=. F{}= 2 ( ) 2 d Variational Methods & Optimal Control: lecture 2 p.2/32 Variational Methods & Optimal Control: lecture 2 p.4/32

2 Broken etremals eample Broken etremals eample There is no eplicit dependence inside the integral, so we can find H(, )= f f = const Find c and c 2 from ( c 2 ) 2 = 2 c 2 ( 2)( ) 2 ( ) 2 = c If c = we get the singular solutions 2 ( )( + 2 ) = c 2 ( )( ) = c 2 ( 2 ) = c = and =±+B Neither of these satisfies both end-points conditions ( )= and ()=, so c (we think) using the end-points. Combine the two equations ( ) = ( c 2 ) 2 = c () = ( c 2 ) 2 = c ( c 2 ) 2 = +(+c 2 ) 2 which has solutions c 2 = /4, and so c = 9/6 2 =(+/4) 2 9/6 Broken etremals eample Given c Variational Methods & Optimal Control: lecture 2 p.5/32 Broken etremals eample Variational Methods & Optimal Control: lecture 2 p.7/32 The end-points are on opposite branches of the hperbola! 2 ( 2 ) = c 2 = 2 c 2 d = ± 2 c d d = ± d 2 c (,) ( /4,) (,) = ± 2 c + c 2 ( c 2 ) 2 = 2 c The solution is a rectangular hperbola 2 There is NO smooth etremal curve that connects(,) and(,) Variational Methods & Optimal Control: lecture 2 p.6/32 Variational Methods & Optimal Control: lecture 2 p.8/32

3 Broken etremal sometimes there is no smooth etremal we must seek a broken etremal still want a continuous etremal what should we do? previous smoothness results suggest that we should use a smooth etremal when we can, and so we will tr to minimize the number of corners. We ll start b looking for curves with one corner But can we appl E-L equations? Smoothness theorem Theorem: If the smooth curve () gives an etremal of a functional F{} over the class of all admissible curves in some ε neighborhood of, then () also gives an etremal of a functional F{} over the class of all piecewise smooth curves in the same neighborhood. Meaning: we can etend our results to piecewise smooth curves (where a smooth result eists), not just curves with 2 continuous derivatives. (, ) = + ε η = () (, ) Variational Methods & Optimal Control: lecture 2 p.9/32 Variational Methods & Optimal Control: lecture 2 p./32 Broken etremal If we have an etremal like this, can we use E-L equations? Proof sketch The theorem assumes that there eists a smooth etremal (in this case a minimum for the purpose of illustration), then for an other smooth curve ŷ B ε () we know F{ŷ}>F{}. (, ) (, ) Assume for the moment that for a piecewise smooth function ỹ B ε () that F{ỹ}<F{}. We can approimate ỹ b a smooth curve ŷ δ B ε () b rounding off the edges of the discontinuit. Given that we can approimate the curve ỹ arbitraril closel b a smooth curve ŷ δ, for which we alread know F{ŷ δ }>F{}, we get a contradiction with F{ỹ}<F{}, and so no such alternative etremal can eist. * Variational Methods & Optimal Control: lecture 2 p./32 Variational Methods & Optimal Control: lecture 2 p.2/32

4 Proof sketch So what do we do? Break the functional into two parts: F{}=F {}+F 2 {}= f(,, )d+ f(, 2, 2)d where we require to have two continuous derivatives everwhere ecept at, and ( )= 2 ( ) (, ) * (, ) Variational Methods & Optimal Control: lecture 2 p.3/32 Variational Methods & Optimal Control: lecture 2 p.5/32 Proof sketch Possible perturbations = + ε η = () (, ) (, ) * * The location of the corner can also be perturbed. Variational Methods & Optimal Control: lecture 2 p.4/32 Variational Methods & Optimal Control: lecture 2 p.6/32

5 The First Variation: part We get first component of the first variation b considering a problem with onl one fied end-point, and allowing to var, so that [ ˆ ] δf (η,) = lim f(,ŷ,ŷ ε ε )d f(,, )d And as with transversals, we get an integral term which results in the E-L equation, plus the additional term p δ H δ where δ( ) = X and δ( ) = Y H = f f and p = f Conditions We rearrange to give δf(η,)= (p p 2 )δ (H H 2 )δ Note that the point of discontinuit ma var freel, so we ma independentl var δ and δ or set one or both to zero. Hence, we can separate the condition to get two conditions p p 2 H H 2 = = The First Variation: part 2 Variational Methods & Optimal Control: lecture 2 p.7/32 Weierstrass-Erdman Variational Methods & Optimal Control: lecture 2 p.9/32 Note that, for the second component of the First Variation we get a similar etra term, e.g. δf 2 (η,) introduces the term p 2 δ+h 2 δ We can write the conditions as p = p 2 the sign is reversed because it corresponds to the term in the transversal problem (as opposed to the term for δf. The combined second variation (minus the terms that result from the E-L equation which must be zero) is δf(η,)=δf (η,)+δf 2 (η,)= p δ H δ p 2 δ+h 2 δ H = H 2 Called the Weierstrass-Erdman Corner Conditions Rather than separating into and 2 we ma write the corner conditions in terms of limits from the left and right, e.g. p = p + H = H + Variational Methods & Optimal Control: lecture 2 p.8/32 Variational Methods & Optimal Control: lecture 2 p.2/32

6 Solution So the broken etremal solution must satisf Eample The actual etremal (in red) the E-L Equations the Weierstrass-Erdman Corner Conditions p = p + H = H + (,) * (,) must hold at an corner 2 Obviousl, this is onl valid if we allow non-smooth solutions. Variational Methods & Optimal Control: lecture 2 p.2/32 Variational Methods & Optimal Control: lecture 2 p.23/32 Eample In the eample considered, p = f = 2 2 ( ) H = f f = 2 ( 2 ) Remember that = and =+A are valid solutions to the E-L equations, and that for both of these solutions p=h =, so we can put a corner where needed. The solution must also satisf the end-point conditions, so ( )= and ()=, and therefore, as valid solution has = and = for [, ] 2 = for [,] More insight sometimes we have a constraint on where the corner can appear: sometimes the discontinuit arise from the problem itself, e.g., a discontinuous boundar such as in refraction (see Fermat s principle, and Snell s law in earlier lectures) in these cases, we need to go back to the condition δf(η,)= (p p 2 )δ (H H 2 )δ = and look at whether δ or δ are forced to be zero, or if there is a relationship between them, and use that to form a constraint such as we had for transversals. Variational Methods & Optimal Control: lecture 2 p.22/32 Variational Methods & Optimal Control: lecture 2 p.24/32

7 General strateg solve E-L equations look for solutions for each end condition match up the solutions at a corner so that ( )= 2 ( ) the Weierstrass-Erdman Corner Conditions are satisfied in theor can allow more than one corner, but this would get ver painful! Newton s aerodnamical problem Newton s aerodnamical problem Find etremal of air resistance F{}= Variational Methods & Optimal Control: lecture 2 p.25/32 R d, + 2 subject to ()=L and (R)= with solutions. =const for [, ] 2. u [u,u 2 ] (u)= c ( ) u (+u2 ) 2 = c u + 2u+u3. (u)=l c ( lnu A+u ) u4 Newton s aerodnamical problem Variational Methods & Optimal Control: lecture 2 p.27/32 we could find u b tring to minimize F as a function of u, but this is hard because we onl have a numerical solution to get u 2. alternative is to use corner conditions. at the corner (a) = (u ) is free (b) =L is fied 2. corner condition of interest is H = H + Trick bit is working out u which sets the location of the corner, and fies A, c and u 2. Variational Methods & Optimal Control: lecture 2 p.26/32 Variational Methods & Optimal Control: lecture 2 p.28/32

8 Newton s aerodnamical problem Newton s aerodnamical problem Calculating H H = f f = 2 2 (+ 2 ) 2 = = (+ 2 ) [ 2 2 (+ 2 ) 2 +(+ 2 ) ] [ 3 2 (+ 2 ) 2 + ] H = = H + (+u 2 ) 2 = 3u 2 + u 4 u 2 = u 2 (u 2 ) = [ 3u 2 (+u 2 ) 2 + ] u = or ± but = u> so u= is the onl valid solution, hence u = and the rest of the solution follows from there. Variational Methods & Optimal Control: lecture 2 p.29/32 Variational Methods & Optimal Control: lecture 2 p.3/32 Newton s aerodnamical problem Corner condition H = [ 2 2 (+ 2 ) 2 + ] Now on the LHS of = we have =, so H = On the RHS, remember = u (from Lecture 6) H = [ + 3u 2 (+u 2 ) 2 + ] Newton s aerodnamical problem real rockets don t look like this. resistance functional is onl approimate (a) ignores friction (b) ignores shock waves 2. rockets must pass through multiple laers of atmosphere, at varing speeds additional constraints:. nose cone is tangent to rocket at joint 2. nose is eas to build reall, we need to do CFD++ (R)= Variational Methods & Optimal Control: lecture 2 p.3/32 Variational Methods & Optimal Control: lecture 2 p.32/32

Fixed-end point problems

Fixed-end point problems The Catenar Variational Methods & Optimal Control lecture 4 Matthew Roughan The potential energ of the cable is L W p {}= mg(s)ds Where L is the length of the cable =()

More information

Functions of Several Variables

Functions of Several Variables Chapter 1 Functions of Several Variables 1.1 Introduction A real valued function of n variables is a function f : R, where the domain is a subset of R n. So: for each ( 1,,..., n ) in, the value of f is

More information

DIFFERENTIATION. 3.1 Approximate Value and Error (page 151)

DIFFERENTIATION. 3.1 Approximate Value and Error (page 151) CHAPTER APPLICATIONS OF DIFFERENTIATION.1 Approimate Value and Error (page 151) f '( lim 0 f ( f ( f ( f ( f '( or f ( f ( f '( f ( f ( f '( (.) f ( f '( (.) where f ( f ( f ( Eample.1 (page 15): Find

More information

FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an nth-order initial-value problem. For example, Solve: Solve:

FIRST- AND SECOND-ORDER IVPS The problem given in (1) is also called an nth-order initial-value problem. For example, Solve: Solve: .2 INITIAL-VALUE PROBLEMS 3.2 INITIAL-VALUE PROBLEMS REVIEW MATERIAL Normal form of a DE Solution of a DE Famil of solutions INTRODUCTION We are often interested in problems in which we seek a solution

More information

General Variation of a Functional

General Variation of a Functional Lecture 15 General Variation of a Functional Transversality conditions Broken etremals Corner conditions ME 256 at the Indian Institute of Science, Bengaluru G. K. Ananthasuresh Professor, Mechanical Engineering,

More information

Chapter 3: Three faces of the derivative. Overview

Chapter 3: Three faces of the derivative. Overview Overview We alread saw an algebraic wa of thinking about a derivative. Geometric: zooming into a line Analtic: continuit and rational functions Computational: approimations with computers 3. The geometric

More information

Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 3. Separable ODE s

Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 3. Separable ODE s Roberto s Notes on Integral Calculus Chapter 3: Basics of differential equations Section 3 Separable ODE s What ou need to know alread: What an ODE is and how to solve an eponential ODE. What ou can learn

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) 94 C) ) A) 1 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) 94 C) ) A) 1 2 Chapter Calculus MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the average rate of change of the function over the given interval. ) = 73-5

More information

ES.182A Topic 41 Notes Jeremy Orloff. 41 Extensions and applications of Green s theorem

ES.182A Topic 41 Notes Jeremy Orloff. 41 Extensions and applications of Green s theorem ES.182A Topic 41 Notes Jerem Orloff 41 Etensions and applications of Green s theorem 41.1 eview of Green s theorem: Tangential (work) form: F T ds = curlf d d M d + N d = N M d d. Normal (flu) form: F

More information

Physics Gravitational force. 2. Strong or color force. 3. Electroweak force

Physics Gravitational force. 2. Strong or color force. 3. Electroweak force Phsics 360 Notes on Griffths - pluses and minuses No tetbook is perfect, and Griffithsisnoeception. Themajorplusisthat it is prett readable. For minuses, see below. Much of what G sas about the del operator

More information

ES.182A Problem Section 11, Fall 2018 Solutions

ES.182A Problem Section 11, Fall 2018 Solutions Problem 25.1. (a) z = 2 2 + 2 (b) z = 2 2 ES.182A Problem Section 11, Fall 2018 Solutions Sketch the following quadratic surfaces. answer: The figure for part (a) (on the left) shows the z trace with =

More information

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011

Introduction to Differential Equations. National Chiao Tung University Chun-Jen Tsai 9/14/2011 Introduction to Differential Equations National Chiao Tung Universit Chun-Jen Tsai 9/14/011 Differential Equations Definition: An equation containing the derivatives of one or more dependent variables,

More information

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS )

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) CHAPTER : Limits and continuit of functions in R n. -. Sketch the following subsets of R. Sketch their boundar and the interior. Stud

More information

Functions and Graphs TERMINOLOGY

Functions and Graphs TERMINOLOGY 5 Functions and Graphs TERMINOLOGY Arc of a curve: Part or a section of a curve between two points Asmptote: A line towards which a curve approaches but never touches Cartesian coordinates: Named after

More information

Green s Theorem Jeremy Orloff

Green s Theorem Jeremy Orloff Green s Theorem Jerem Orloff Line integrals and Green s theorem. Vector Fields Vector notation. In 8.4 we will mostl use the notation (v) = (a, b) for vectors. The other common notation (v) = ai + bj runs

More information

Tangent Lines. Limits 1

Tangent Lines. Limits 1 Limits Tangent Lines The concept of the tangent line to a circle dates back at least to the earl das of Greek geometr, that is, at least 5 ears. The tangent line to a circle with centre O at a point A

More information

Homework Assignments Math /02 Spring 2015

Homework Assignments Math /02 Spring 2015 Homework Assignments Math 1-01/0 Spring 015 Assignment 1 Due date : Frida, Januar Section 5.1, Page 159: #1-, 10, 11, 1; Section 5., Page 16: Find the slope and -intercept, and then plot the line in problems:

More information

Continuity, End Behavior, and Limits. Unit 1 Lesson 3

Continuity, End Behavior, and Limits. Unit 1 Lesson 3 Unit Lesson 3 Students will be able to: Interpret ke features of graphs and tables in terms of the quantities, and sketch graphs showing ke features given a verbal description of the relationship. Ke Vocabular:

More information

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x 5A galler of graphs Objectives To recognise the rules of a number of common algebraic relations: = = = (rectangular hperbola) + = (circle). To be able to sketch the graphs of these relations. To be able

More information

f x, y x 2 y 2 2x 6y 14. Then

f x, y x 2 y 2 2x 6y 14. Then SECTION 11.7 MAXIMUM AND MINIMUM VALUES 645 absolute minimum FIGURE 1 local maimum local minimum absolute maimum Look at the hills and valles in the graph of f shown in Figure 1. There are two points a,

More information

Pure Core 1. Revision Notes

Pure Core 1. Revision Notes Pure Core Revision Notes Ma 06 Pure Core Algebra... Indices... Rules of indices... Surds... 4 Simplifing surds... 4 Rationalising the denominator... 4 Quadratic functions... 5 Completing the square....

More information

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes Mathematics 309 Conic sections and their applicationsn Chapter 2. Quadric figures In this chapter want to outline quickl how to decide what figure associated in 2D and 3D to quadratic equations look like.

More information

Mat 267 Engineering Calculus III Updated on 9/19/2010

Mat 267 Engineering Calculus III Updated on 9/19/2010 Chapter 11 Partial Derivatives Section 11.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair o real numbers (, ) in a set D a unique real number

More information

2.5 CONTINUITY. a x. Notice that Definition l implicitly requires three things if f is continuous at a:

2.5 CONTINUITY. a x. Notice that Definition l implicitly requires three things if f is continuous at a: SECTION.5 CONTINUITY 9.5 CONTINUITY We noticed in Section.3 that the it of a function as approaches a can often be found simpl b calculating the value of the function at a. Functions with this propert

More information

Coordinate geometry. + bx + c. Vertical asymptote. Sketch graphs of hyperbolas (including asymptotic behaviour) from the general

Coordinate geometry. + bx + c. Vertical asymptote. Sketch graphs of hyperbolas (including asymptotic behaviour) from the general A Sketch graphs of = a m b n c where m = or and n = or B Reciprocal graphs C Graphs of circles and ellipses D Graphs of hperbolas E Partial fractions F Sketch graphs using partial fractions Coordinate

More information

First Order Equations

First Order Equations 10 1 Linear and Semilinear Equations Chapter First Order Equations Contents 1 Linear and Semilinear Equations 9 Quasilinear Equations 19 3 Wave Equation 6 4 Sstems of Equations 31 1 Linear and Semilinear

More information

6.4 graphs OF logarithmic FUnCTIOnS

6.4 graphs OF logarithmic FUnCTIOnS SECTION 6. graphs of logarithmic functions 9 9 learning ObjeCTIveS In this section, ou will: Identif the domain of a logarithmic function. Graph logarithmic functions. 6. graphs OF logarithmic FUnCTIOnS

More information

PHYS-2010: General Physics I Course Lecture Notes Section IV

PHYS-2010: General Physics I Course Lecture Notes Section IV PHYS-010: General Phsics I Course Lecture Notes Section IV Dr. Donald G. Luttermoser East Tennessee State Universit Edition.3 Abstract These class notes are designed for use of the instructor and students

More information

SAMPLE. A Gallery of Graphs. To recognise the rules of a number of common algebraic relationships: y = x 1,

SAMPLE. A Gallery of Graphs. To recognise the rules of a number of common algebraic relationships: y = x 1, Objectives C H A P T E R 5 A Galler of Graphs To recognise the rules of a number of common algebraic relationships: =, =, = / and + =. To be able to sketch the graphs and simple transformations of these

More information

Math 53 Homework 4 Solutions

Math 53 Homework 4 Solutions Math 5 Homework 4 Solutions Problem 1. (a) z = is a paraboloid with its highest point at (0,0,) and intersecting the -plane at the circle + = of radius. (or: rotate the parabola z = in the z-plane about

More information

ECE 222b Applied Electromagnetics Notes Set 4b

ECE 222b Applied Electromagnetics Notes Set 4b ECE b Applied Electromagnetics Notes Set 4b Instructor: Prof. Vitali Lomain Department of Electrical and Computer Engineering Universit of California, San Diego 1 Uniform Waveguide (1) Wave propagation

More information

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane 3.5 Plane Stress This section is concerned with a special two-dimensional state of stress called plane stress. It is important for two reasons: () it arises in real components (particularl in thin components

More information

INTRODUCTION TO DIFFERENTIAL EQUATIONS

INTRODUCTION TO DIFFERENTIAL EQUATIONS INTRODUCTION TO DIFFERENTIAL EQUATIONS. Definitions and Terminolog. Initial-Value Problems.3 Differential Equations as Mathematical Models CHAPTER IN REVIEW The words differential and equations certainl

More information

AQA Level 2 Further mathematics Number & algebra. Section 3: Functions and their graphs

AQA Level 2 Further mathematics Number & algebra. Section 3: Functions and their graphs AQA Level Further mathematics Number & algebra Section : Functions and their graphs Notes and Eamples These notes contain subsections on: The language of functions Gradients The equation of a straight

More information

Engineering Mathematics I

Engineering Mathematics I Engineering Mathematics I_ 017 Engineering Mathematics I 1. Introduction to Differential Equations Dr. Rami Zakaria Terminolog Differential Equation Ordinar Differential Equations Partial Differential

More information

Time-Frequency Analysis: Fourier Transforms and Wavelets

Time-Frequency Analysis: Fourier Transforms and Wavelets Chapter 4 Time-Frequenc Analsis: Fourier Transforms and Wavelets 4. Basics of Fourier Series 4.. Introduction Joseph Fourier (768-83) who gave his name to Fourier series, was not the first to use Fourier

More information

MAE 323: Chapter 4. Plane Stress and Plane Strain. The Stress Equilibrium Equation

MAE 323: Chapter 4. Plane Stress and Plane Strain. The Stress Equilibrium Equation The Stress Equilibrium Equation As we mentioned in Chapter 2, using the Galerkin formulation and a choice of shape functions, we can derive a discretized form of most differential equations. In Structural

More information

Higher. Polynomials and Quadratics. Polynomials and Quadratics 1

Higher. Polynomials and Quadratics. Polynomials and Quadratics 1 Higher Mathematics Contents 1 1 Quadratics EF 1 The Discriminant EF 3 3 Completing the Square EF 4 4 Sketching Parabolas EF 7 5 Determining the Equation of a Parabola RC 9 6 Solving Quadratic Inequalities

More information

Limits 4: Continuity

Limits 4: Continuity Limits 4: Continuit 55 Limits 4: Continuit Model : Continuit I. II. III. IV. z V. VI. z a VII. VIII. IX. Construct Your Understanding Questions (to do in class). Which is the correct value of f (a) in

More information

18.303: Introduction to Green s functions and operator inverses

18.303: Introduction to Green s functions and operator inverses 8.33: Introduction to Green s functions and operator inverses S. G. Johnson October 9, 2 Abstract In analogy with the inverse A of a matri A, we try to construct an analogous inverse  of differential

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Eponential and Logarithmic Functions 6 Figure Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) CHAPTER OUTLINE 6. Eponential Functions 6. Logarithmic Properties 6. Graphs

More information

Table of Contents. Module 1

Table of Contents. Module 1 Table of Contents Module 1 11 Order of Operations 16 Signed Numbers 1 Factorization of Integers 17 Further Signed Numbers 13 Fractions 18 Power Laws 14 Fractions and Decimals 19 Introduction to Algebra

More information

APPM 1345, Fall 2013: Exam 1 September 25, 2013

APPM 1345, Fall 2013: Exam 1 September 25, 2013 APPM 1345, Fall 2013: Eam 1 September 25, 2013 Instructions: Please show all of our work and make our methods and reasoning clear. Answers out of the blue with no supporting work will receive no credit.

More information

v t t t t a t v t d dt t t t t t 23.61

v t t t t a t v t d dt t t t t t 23.61 SECTION 4. MAXIMUM AND MINIMUM VALUES 285 The values of f at the endpoints are f 0 0 and f 2 2 6.28 Comparing these four numbers and using the Closed Interval Method, we see that the absolute minimum value

More information

CHAPTER 2: Partial Derivatives. 2.2 Increments and Differential

CHAPTER 2: Partial Derivatives. 2.2 Increments and Differential CHAPTER : Partial Derivatives.1 Definition of a Partial Derivative. Increments and Differential.3 Chain Rules.4 Local Etrema.5 Absolute Etrema 1 Chapter : Partial Derivatives.1 Definition of a Partial

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures AB = BA = I,

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures AB = BA = I, FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 7 MATRICES II Inverse of a matri Sstems of linear equations Solution of sets of linear equations elimination methods 4

More information

One of the most common applications of Calculus involves determining maximum or minimum values.

One of the most common applications of Calculus involves determining maximum or minimum values. 8 LESSON 5- MAX/MIN APPLICATIONS (OPTIMIZATION) One of the most common applications of Calculus involves determining maimum or minimum values. Procedure:. Choose variables and/or draw a labeled figure..

More information

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables.

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Partial derivatives and directional derivatives. Directional derivative of functions of

More information

DIFFERENTIAL EQUATIONS First Order Differential Equations. Paul Dawkins

DIFFERENTIAL EQUATIONS First Order Differential Equations. Paul Dawkins DIFFERENTIAL EQUATIONS First Order Paul Dawkins Table of Contents Preface... First Order... 3 Introduction... 3 Linear... 4 Separable... 7 Eact... 8 Bernoulli... 39 Substitutions... 46 Intervals of Validit...

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval................... 0 Section. Rolle s Theorem and the Mean Value Theorem...... 0 Section. Increasing and Decreasing Functions and

More information

Introduction to Differential Equations

Introduction to Differential Equations Math0 Lecture # Introduction to Differential Equations Basic definitions Definition : (What is a DE?) A differential equation (DE) is an equation that involves some of the derivatives (or differentials)

More information

Differentiation and applications

Differentiation and applications FS O PA G E PR O U N C O R R EC TE D Differentiation and applications. Kick off with CAS. Limits, continuit and differentiabilit. Derivatives of power functions.4 C oordinate geometr applications of differentiation.5

More information

Topic 3 Notes Jeremy Orloff

Topic 3 Notes Jeremy Orloff Topic 3 Notes Jerem Orloff 3 Line integrals and auch s theorem 3.1 Introduction The basic theme here is that comple line integrals will mirror much of what we ve seen for multivariable calculus line integrals.

More information

Variational Methods & Optimal Control

Variational Methods & Optimal Control Variational Methods & Optimal Control lecture 02 Matthew Roughan Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide April 14, 2016

More information

Mathematics. Polynomials and Quadratics. hsn.uk.net. Higher. Contents. Polynomials and Quadratics 1. CfE Edition

Mathematics. Polynomials and Quadratics. hsn.uk.net. Higher. Contents. Polynomials and Quadratics 1. CfE Edition Higher Mathematics Contents 1 1 Quadratics EF 1 The Discriminant EF 3 3 Completing the Square EF 4 4 Sketching Parabolas EF 7 5 Determining the Equation of a Parabola RC 9 6 Solving Quadratic Inequalities

More information

1.1 The Equations of Motion

1.1 The Equations of Motion 1.1 The Equations of Motion In Book I, balance of forces and moments acting on an component was enforced in order to ensure that the component was in equilibrium. Here, allowance is made for stresses which

More information

Limits and Continuous Functions. 2.2 Introduction to Limits. We first interpret limits loosely. We write. lim f(x) = L

Limits and Continuous Functions. 2.2 Introduction to Limits. We first interpret limits loosely. We write. lim f(x) = L 2 Limits and Continuous Functions 2.2 Introduction to Limits We first interpret limits loosel. We write lim f() = L and sa the limit of f() as approaches c, equals L if we can make the values of f() arbitraril

More information

MAT389 Fall 2016, Problem Set 2

MAT389 Fall 2016, Problem Set 2 MAT389 Fall 2016, Problem Set 2 Circles in the Riemann sphere Recall that the Riemann sphere is defined as the set Let P be the plane defined b Σ = { (a, b, c) R 3 a 2 + b 2 + c 2 = 1 } P = { (a, b, c)

More information

8.7 Systems of Non-Linear Equations and Inequalities

8.7 Systems of Non-Linear Equations and Inequalities 8.7 Sstems of Non-Linear Equations and Inequalities 67 8.7 Sstems of Non-Linear Equations and Inequalities In this section, we stud sstems of non-linear equations and inequalities. Unlike the sstems of

More information

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on Mat 7 Calculus III Updated on 10/4/07 Dr. Firoz Chapter 14 Partial Derivatives Section 14.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair

More information

8. BOOLEAN ALGEBRAS x x

8. BOOLEAN ALGEBRAS x x 8. BOOLEAN ALGEBRAS 8.1. Definition of a Boolean Algebra There are man sstems of interest to computing scientists that have a common underling structure. It makes sense to describe such a mathematical

More information

8 Differential Calculus 1 Introduction

8 Differential Calculus 1 Introduction 8 Differential Calculus Introduction The ideas that are the basis for calculus have been with us for a ver long time. Between 5 BC and 5 BC, Greek mathematicians were working on problems that would find

More information

Mathematics. Mathematics 2. hsn.uk.net. Higher HSN22000

Mathematics. Mathematics 2. hsn.uk.net. Higher HSN22000 hsn.uk.net Higher Mathematics UNIT Mathematics HSN000 This document was produced speciall for the HSN.uk.net website, and we require that an copies or derivative works attribute the work to Higher Still

More information

Section 1.2: A Catalog of Functions

Section 1.2: A Catalog of Functions Section 1.: A Catalog of Functions As we discussed in the last section, in the sciences, we often tr to find an equation which models some given phenomenon in the real world - for eample, temperature as

More information

Partial Differential Equations with Applications

Partial Differential Equations with Applications Universit of Leeds MATH 33 Partial Differential Eqations with Applications Eamples to spplement Chapter on First Order PDEs Eample (Simple linear eqation, k + = 0, (, 0) = ϕ(), k a constant.) The characteristic

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Phsics 15c Lecture 13 Multi-Dimensional Waves (H&L Chapter 7) Term Paper Topics! Have ou found a topic for the paper?! 2/3 of the class have, or have scheduled a meeting with me! If ou haven

More information

The details of the derivation of the equations of conics are com-

The details of the derivation of the equations of conics are com- Part 6 Conic sections Introduction Consider the double cone shown in the diagram, joined at the verte. These cones are right circular cones in the sense that slicing the double cones with planes at right-angles

More information

Module 3, Section 4 Analytic Geometry II

Module 3, Section 4 Analytic Geometry II Principles of Mathematics 11 Section, Introduction 01 Introduction, Section Analtic Geometr II As the lesson titles show, this section etends what ou have learned about Analtic Geometr to several related

More information

From bell-shaped solitary wave to W/M-shaped solitary wave solutions in an integrable nonlinear wave equation

From bell-shaped solitary wave to W/M-shaped solitary wave solutions in an integrable nonlinear wave equation PRAMANA c Indian Academ of Sciences Vol. 74, No. journal of Januar 00 phsics pp. 9 6 From bell-shaped solitar wave to W/M-shaped solitar wave solutions in an integrable nonlinear wave equation AIYONG CHEN,,,

More information

P1 Calculus II Partial Differentiation & Multiple Integration

P1 Calculus II Partial Differentiation & Multiple Integration /1 P1 Calculus II Partial Differentiation & Multiple Integration 4 lectures, MT 217 David Murra Rev November 2, 217 david.murra@eng.o.ac.uk Course Page www.robots.o.ac.uk/ dwm/courses/1pd Introduction

More information

Variational Methods and Optimal Control

Variational Methods and Optimal Control Variational Methods and Optimal Control A/Prof. Matthew Roughan July 26, 2010 lecture01 Introduction What is the point of this course? Revision Example 1: The money pit. Example 2: Catenary: shape of a

More information

Hyperbolic Systems of Conservation Laws. I - Basic Concepts

Hyperbolic Systems of Conservation Laws. I - Basic Concepts Hyperbolic Systems of Conservation Laws I - Basic Concepts Alberto Bressan Mathematics Department, Penn State University Alberto Bressan (Penn State) Hyperbolic Systems of Conservation Laws 1 / 27 The

More information

Quick Review 4.1 (For help, go to Sections 1.2, 2.1, 3.5, and 3.6.)

Quick Review 4.1 (For help, go to Sections 1.2, 2.1, 3.5, and 3.6.) Section 4. Etreme Values of Functions 93 EXPLORATION Finding Etreme Values Let f,.. Determine graphicall the etreme values of f and where the occur. Find f at these values of.. Graph f and f or NDER f,,

More information

Time-Frequency Analysis: Fourier Transforms and Wavelets

Time-Frequency Analysis: Fourier Transforms and Wavelets Chapter 4 Time-Frequenc Analsis: Fourier Transforms and Wavelets 4. Basics of Fourier Series 4.. Introduction Joseph Fourier (768-83) who gave his name to Fourier series, was not the first to use Fourier

More information

D u f f x h f y k. Applying this theorem a second time, we have. f xx h f yx k h f xy h f yy k k. f xx h 2 2 f xy hk f yy k 2

D u f f x h f y k. Applying this theorem a second time, we have. f xx h f yx k h f xy h f yy k k. f xx h 2 2 f xy hk f yy k 2 93 CHAPTER 4 PARTIAL DERIVATIVES We close this section b giving a proof of the first part of the Second Derivatives Test. Part (b) has a similar proof. PROOF OF THEOREM 3, PART (A) We compute the second-order

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Phsics 15c Lecture 13 Multi-Dimensional Waves (H&L Chapter 7) Term Paper Topics! Have ou found a topic for the paper?! 2/3 of the class have, or have scheduled a meeting with me! If ou haven

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, you will be epected to have attempted every problem. These skills are all different tools that you will pull out of your toolbo this

More information

6. Graph each of the following functions. What do you notice? What happens when x = 2 on the graph of b?

6. Graph each of the following functions. What do you notice? What happens when x = 2 on the graph of b? Pre Calculus Worksheet 1. Da 1 1. The relation described b the set of points {(-,5,0,5,,8,,9 ) ( ) ( ) ( )} is NOT a function. Eplain wh. For questions - 4, use the graph at the right.. Eplain wh the graph

More information

BOUNDARY EFFECTS IN STEEL MOMENT CONNECTIONS

BOUNDARY EFFECTS IN STEEL MOMENT CONNECTIONS BOUNDARY EFFECTS IN STEEL MOMENT CONNECTIONS Koung-Heog LEE 1, Subhash C GOEL 2 And Bozidar STOJADINOVIC 3 SUMMARY Full restrained beam-to-column connections in steel moment resisting frames have been

More information

Math 20 Spring 2005 Final Exam Practice Problems (Set 2)

Math 20 Spring 2005 Final Exam Practice Problems (Set 2) Math 2 Spring 2 Final Eam Practice Problems (Set 2) 1. Find the etreme values of f(, ) = 2 2 + 3 2 4 on the region {(, ) 2 + 2 16}. 2. Allocation of Funds: A new editor has been allotted $6, to spend on

More information

Introduction to Vector Functions

Introduction to Vector Functions Introduction to Vector Functions Limits and Continuity Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Introduction to Vector Functions Spring 2012 1 / 14 Introduction In this section, we study

More information

Piecewise Smooth Solutions to the Burgers-Hilbert Equation

Piecewise Smooth Solutions to the Burgers-Hilbert Equation Piecewise Smooth Solutions to the Burgers-Hilbert Equation Alberto Bressan and Tianyou Zhang Department of Mathematics, Penn State University, University Park, Pa 68, USA e-mails: bressan@mathpsuedu, zhang

More information

Methods for Advanced Mathematics (C3) Coursework Numerical Methods

Methods for Advanced Mathematics (C3) Coursework Numerical Methods Woodhouse College 0 Page Introduction... 3 Terminolog... 3 Activit... 4 Wh use numerical methods?... Change of sign... Activit... 6 Interval Bisection... 7 Decimal Search... 8 Coursework Requirements on

More information

2.1 Rates of Change and Limits AP Calculus

2.1 Rates of Change and Limits AP Calculus . Rates of Change and Limits AP Calculus. RATES OF CHANGE AND LIMITS Limits Limits are what separate Calculus from pre calculus. Using a it is also the foundational principle behind the two most important

More information

Higher. Differentiation 28

Higher. Differentiation 28 Higher Mathematics UNIT OUTCOME Differentiation Contents Differentiation 8 Introduction to Differentiation 8 Finding the Derivative 9 Differentiating with Respect to Other Variables 4 Rates of Change 4

More information

AB.Q103.NOTES: Chapter 2.4, 3.1, 3.2 LESSON 1. Discovering the derivative at x = a: Slopes of secants and tangents to a curve

AB.Q103.NOTES: Chapter 2.4, 3.1, 3.2 LESSON 1. Discovering the derivative at x = a: Slopes of secants and tangents to a curve AB.Q103.NOTES: Chapter 2.4, 3.1, 3.2 LESSON 1 Discovering the derivative at x = a: Slopes of secants and tangents to a curve 1 1. Instantaneous rate of change versus average rate of change Equation of

More information

Unit 9: Rational Functions

Unit 9: Rational Functions Date Period Unit 9: Rational Functions DAY TOPIC Direct, Inverse and Combined Variation Graphs of Inverse Variation Page 484 In Class 3 Rational Epressions Multipling and Dividing 4 Adding and Subtracting

More information

February 11, JEL Classification: C72, D43, D44 Keywords: Discontinuous games, Bertrand game, Toehold, First- and Second- Price Auctions

February 11, JEL Classification: C72, D43, D44 Keywords: Discontinuous games, Bertrand game, Toehold, First- and Second- Price Auctions Eistence of Mied Strateg Equilibria in a Class of Discontinuous Games with Unbounded Strateg Sets. Gian Luigi Albano and Aleander Matros Department of Economics and ELSE Universit College London Februar

More information

5.6 RATIOnAl FUnCTIOnS. Using Arrow notation. learning ObjeCTIveS

5.6 RATIOnAl FUnCTIOnS. Using Arrow notation. learning ObjeCTIveS CHAPTER PolNomiAl ANd rational functions learning ObjeCTIveS In this section, ou will: Use arrow notation. Solve applied problems involving rational functions. Find the domains of rational functions. Identif

More information

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t Math 111 - Eam 1a 1) Evaluate the following limits: 7 3 1 4 36 a) lim b) lim 5 1 3 6 + 4 c) lim tan( 3 ) + d) lim ( ) 100 1+ h 1 h 0 h ) Calculate the derivatives of the following. DON'T SIMPLIFY! a) y

More information

Conic Sections CHAPTER OUTLINE. The Circle Ellipses and Hyperbolas Second-Degree Inequalities and Nonlinear Systems FIGURE 1

Conic Sections CHAPTER OUTLINE. The Circle Ellipses and Hyperbolas Second-Degree Inequalities and Nonlinear Systems FIGURE 1 088_0_p676-7 /7/0 :5 PM Page 676 (FPG International / Telegraph Colour Librar) Conic Sections CHAPTER OUTLINE. The Circle. Ellipses and Hperbolas.3 Second-Degree Inequalities and Nonlinear Sstems O ne

More information

x c x c This suggests the following definition.

x c x c This suggests the following definition. 110 Chapter 1 / Limits and Continuit 1.5 CONTINUITY A thrown baseball cannot vanish at some point and reappear someplace else to continue its motion. Thus, we perceive the path of the ball as an unbroken

More information

Introduction to Vector Functions

Introduction to Vector Functions Introduction to Vector Functions Differentiation and Integration Philippe B. Laval KSU Today Philippe B. Laval (KSU) Vector Functions Today 1 / 14 Introduction In this section, we study the differentiation

More information

Ocean Dynamics. Equation of motion a=σf/ρ 29/08/11. What forces might cause a parcel of water to accelerate?

Ocean Dynamics. Equation of motion a=σf/ρ 29/08/11. What forces might cause a parcel of water to accelerate? Phsical oceanograph, MSCI 300 Oceanographic Processes, MSCI 5004 Dr. Ale Sen Gupta a.sengupta@unsw.e.au Ocean Dnamics Newton s Laws of Motion An object will continue to move in a straight line and at a

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. 78 Section. Rolle s Theorem and the Mean Value Theorem. 8 Section. Increasing and Decreasing Functions and the First

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force] ENGI 44 Advanced Calculus for Engineering Facult of Engineering and Applied Science Problem Set Solutions [Multiple Integration; Lines of Force]. Evaluate D da over the triangular region D that is bounded

More information

Equations for Some Hyperbolas

Equations for Some Hyperbolas Lesson 1-6 Lesson 1-6 BIG IDEA From the geometric defi nition of a hperbola, an equation for an hperbola smmetric to the - and -aes can be found. The edges of the silhouettes of each of the towers pictured

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. 0 Section. Rolle s Theorem and the Mean Value Theorem. 07 Section. Increasing and Decreasing Functions and the First

More information

Finding Limits Graphically and Numerically. An Introduction to Limits

Finding Limits Graphically and Numerically. An Introduction to Limits 8 CHAPTER Limits and Their Properties Section Finding Limits Graphicall and Numericall Estimate a it using a numerical or graphical approach Learn different was that a it can fail to eist Stud and use

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information