ES.182A Problem Section 11, Fall 2018 Solutions

Size: px
Start display at page:

Download "ES.182A Problem Section 11, Fall 2018 Solutions"

Transcription

1 Problem (a) z = (b) z = 2 2 ES.182A Problem Section 11, Fall 2018 Solutions Sketch the following quadratic surfaces. answer: The figure for part (a) (on the left) shows the z trace with = 0 and the z trace with = 0. It also shows two contours at z = 1 and z = 2. The figure for part (b) (on the right) shows the z trace with = 0 and a number of z traces with different values of. It also shows the z traces with = ±1. z z Problem (a) z = e (2 + 2 ) Draw level curves for each of the following. answer: The level curves are z = e (2 + 2) = constant. This is the same as = constant. More carefull: z = e (2 + 2) = c = ln(c). Since , we onl get a level curve if ln(c) 0, i.e. 0 < c 1. So the level curve z = e 1 is = 1, i.e. the circle of radius 1. The level curve z = e 4 is = 4, i.e. the circle of radius 2. The level curve z = 1 is = 0, i.e. the point at the origin. 1

2 ES.182A Problem Section 11, Fall 2018 Solutions 2 z = e 9 z = e 4 z = e (b) z = e 2 2. (For this one, ou need to remember about hperbolas.) answer: Similar to part (a), the level curves are 2 2 = constant, i.e. z = e 2 2 = e c 2 2 = c. These are hperbolas oriented with the coordinate aes. In this case, the level curves 2 2 = 0 (i.e., z = 1) are two intersecting lines = and =. z = e 9 z = e 4 z = 1 z = e 1 z = e 4 z = e z = 1 Problem (a) Find the equation of the tangent plane to z = 2 at the point (1,1,1). answer: f = 2, f = 2 f (1, 1) = 1, f (1, 1) = 2 tangent plane is z 1 = ( 1) + 2( 1). (b) Use our answer in part (a) to estimate the value of z at (, ) = (1.1, 0.8). answer: Part (a) gives the tangent plane approimation formula z In our case, we have = 0.1, = 0.2. So, z = Thus, z = 1 + z 0.7.

3 ES.182A Problem Section 11, Fall 2018 Solutions 3 Problem (a) F(, ) =, = i j. Sketch the following vector fields. answer: This is called a tangential vector field because all of the vectors are tangential to circles centered at the origin. The arrows point in a clockwise direction. As the circles get bigger the vectors get longer. (b) F(, ) = /r, /r = ( /r) i+( /r) j. Here r is the radial distance, r = answer: This is called a radial vector field because all of the vectors point along the line from the point to the origin. In this case. the point inwards towards the origin. Each vector is a unit vector

4 ES.182A Problem Section 11, Fall 2018 Solutions 4 Problem (a) f(, ) = Compute the gradients of the following functions. answer: f(, ) = , (a) f(, ) = e answer: f(, ) = e, e Problem Use the following level curves to estimate the asked for directional derivatives as z. The horizontal and vertical scales are the same. s z = 2 B E2 D1 F1 z = 9 E1 z = 7 z = 8 A z = 3 z = 4 z = 5 z = 6 F2 C F3 D2 z = 5 z = 4 z = 3 z = (a) Let û be the vector shown starting at the point A. Estimate dz ds answer: We use the scale shown to measure from A to the level curve z = 7 going along û. It is about s = 0.6 In going between the level curves we have z = 1. Thus, dz ds z A,û s (b) Draw in the gradient at the point B. answer: The gradient is perpendicular to the level curves and points in the direction of increase. The vector shown starting at B is in that direction. The length of the gradient is the directional derivative in the same direction. We estimated that b computing z s 1 = 2. (The Deltas are between B and the level curve z = It is not a good idea to estimate (c) Estimate answer: derivative in the and at A. and A,û in order to estimate the gradient. is the directional derivative in the î direction. Likewise, is the direction ĵ direction. We estimated these b measuring Deltas between A and the

5 ES.182A Problem Section 11, Fall 2018 Solutions 5 level curve z = 7. 1 A 0.8 = 1.2, 1 A Note: We d get ver different answers if we measure Deltas between A and the level curve z = 9. In fact, in the ĵ we wouldn t ever reach the curve z = 9. The level curves are not fine enough to get reall good estimates. (d) Mark all the points on the z = 9 curve where = 0. answer: The partial with respect to is 0 when the level curve has a horizontal tangent, i.e. there is no change in the î direction. Equivalentl, the partial with respect to is 0 when the gradient is in the ĵ direction. This happens at the points D1 and D2 marked on the graph. (e) Mark all the points on the z = 7 curve where = 0. answer: This is similar to part (d). The partial with respect to is 0 when the level curve has a vertical tangent. These points are labeled E1 and E2 on the graph. (f) Mark all the critical points on the figure. Sa whether the are maima, minima or neither. answer: The critical points (gradient = 0) are at peaks, valles and mountain passes (saddles). Peaks and valles are seen at the center of level curves that are closed loops. Saddles are seen where the level curve crosses itself. We have maima at F 1 and F 3. The point F 2 is a saddle point. These are all the critical points. (g) At the point C, which direction gives the greatest rate of increase. answer: This is a trick question. The rate of increase is 0 in all directions! (h) Sketch the surface in three dimensions that has these level curves answer: NEEDED f Problem is the directional derivative in what direction? answer: The i direction. Etra problems if ou have time Problem Sketch the quadratic surface z 2 = If ou like this ou can tr the ellipsoid 2 /a /b 2 + z 2 /c 2 = 1 and the hperboloids of one ( z 2 = 1) and two ( z 2 = 1) sheets. answer: NEEDED Problem = 2.8. (a) A rectangle has sides and. Approimate the area for = 2.1 and

6 ES.182A Problem Section 11, Fall 2018 Solutions 6 answer: We have A =. Let ( 0, 0 ) = (2, 3), =.1, =.2. Since A A = and = the tangent plane approimation formula is A A + A 0 = 3(.1) + 2(.2) =.1. 0 Therefore A 6.1 = 5.9. (b) For, near ( 0, 0 ) = (2, 3) which has a greater affect on the area: a change in or an equal change in? answer: A change in because A = 3 is greater than A = 2. Problem Make up a function (with polnomials) and compute the directional derivative in a few directions. answer: You ll need to suppl the answers. All of them will use the formula df ds = f P û. P,û Problem Give the linearization of e cos at (0, 0). (Linearization is the same thing as finding the tangent plane approimation.) answer: f(, ) = e cos f = e cos, f = e sin. f(0, 0) = 1, f (0, 0) = 1, f (0, 0) = 0 f(, ) 1 +.

f x, y x 2 y 2 2x 6y 14. Then

f x, y x 2 y 2 2x 6y 14. Then SECTION 11.7 MAXIMUM AND MINIMUM VALUES 645 absolute minimum FIGURE 1 local maimum local minimum absolute maimum Look at the hills and valles in the graph of f shown in Figure 1. There are two points a,

More information

(6, 4, 0) = (3, 2, 0). Find the equation of the sphere that has the line segment from P to Q as a diameter.

(6, 4, 0) = (3, 2, 0). Find the equation of the sphere that has the line segment from P to Q as a diameter. Solutions Review for Eam #1 Math 1260 1. Consider the points P = (2, 5, 1) and Q = (4, 1, 1). (a) Find the distance from P to Q. Solution. dist(p, Q) = (4 2) 2 + (1 + 5) 2 + (1 + 1) 2 = 4 + 36 + 4 = 44

More information

MATHEMATICS 200 December 2011 Final Exam Solutions

MATHEMATICS 200 December 2011 Final Exam Solutions MATHEMATICS December 11 Final Eam Solutions 1. Consider the function f(, ) e +4. (a) Draw a contour map of f, showing all tpes of level curves that occur. (b) Find the equation of the tangent plane to

More information

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed.

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed. Section A ln. Let g() =, for > 0. ln Use the quotient rule to show that g ( ). 3 (b) The graph of g has a maimum point at A. Find the -coordinate of A. (Total 7 marks) 6. Let h() =. Find h (0). cos 3.

More information

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes

Mathematics 309 Conic sections and their applicationsn. Chapter 2. Quadric figures. ai,j x i x j + b i x i + c =0. 1. Coordinate changes Mathematics 309 Conic sections and their applicationsn Chapter 2. Quadric figures In this chapter want to outline quickl how to decide what figure associated in 2D and 3D to quadratic equations look like.

More information

B. Incorrect! Presence of all three variables in the equation makes it not cylindrical.

B. Incorrect! Presence of all three variables in the equation makes it not cylindrical. Calculus III - Problem Drill 08: Clindrical and Quadric Surfaces Question No. of 0 Instructions: () Read the problem and answer choices carefull () Work the problems on paper as needed () Pick the. Which

More information

Math 323 Exam 2 - Practice Problem Solutions. 2. Given the vectors a = 1,2,0, b = 1,0,2, and c = 0,1,1, compute the following:

Math 323 Exam 2 - Practice Problem Solutions. 2. Given the vectors a = 1,2,0, b = 1,0,2, and c = 0,1,1, compute the following: Math 323 Eam 2 - Practice Problem Solutions 1. Given the vectors a = 2,, 1, b = 3, 2,4, and c = 1, 4,, compute the following: (a) A unit vector in the direction of c. u = c c = 1, 4, 1 4 =,, 1+16+ 17 17

More information

CHAPTER 2: Partial Derivatives. 2.2 Increments and Differential

CHAPTER 2: Partial Derivatives. 2.2 Increments and Differential CHAPTER : Partial Derivatives.1 Definition of a Partial Derivative. Increments and Differential.3 Chain Rules.4 Local Etrema.5 Absolute Etrema 1 Chapter : Partial Derivatives.1 Definition of a Partial

More information

MATH 115: Final Exam Review. Can you find the distance between two points and the midpoint of a line segment? (1.1)

MATH 115: Final Exam Review. Can you find the distance between two points and the midpoint of a line segment? (1.1) MATH : Final Eam Review Can ou find the distance between two points and the midpoint of a line segment? (.) () Consider the points A (,) and ( 6, ) B. (a) Find the distance between A and B. (b) Find the

More information

Functions of Several Variables

Functions of Several Variables Chapter 1 Functions of Several Variables 1.1 Introduction A real valued function of n variables is a function f : R, where the domain is a subset of R n. So: for each ( 1,,..., n ) in, the value of f is

More information

Pure Further Mathematics 2. Revision Notes

Pure Further Mathematics 2. Revision Notes Pure Further Mathematics Revision Notes October 016 FP OCT 016 SDB Further Pure 1 Inequalities... 3 Algebraic solutions... 3 Graphical solutions... 4 Series Method of Differences... 5 3 Comple Numbers...

More information

Green s Theorem Jeremy Orloff

Green s Theorem Jeremy Orloff Green s Theorem Jerem Orloff Line integrals and Green s theorem. Vector Fields Vector notation. In 8.4 we will mostl use the notation (v) = (a, b) for vectors. The other common notation (v) = ai + bj runs

More information

Topic 5.2: Introduction to Vector Fields

Topic 5.2: Introduction to Vector Fields Math 75 Notes Topic 5.: Introduction to Vector Fields Tetbook Section: 16.1 From the Toolbo (what you need from previous classes): Know what a vector is. Be able to sketch a vector using its component

More information

ELGI ACADEMY. Assessing Units 1 & 2 + The Wave Function & Exponential/Logarithms

ELGI ACADEMY. Assessing Units 1 & 2 + The Wave Function & Exponential/Logarithms ELGI EMY Mathematics Higher Prelim Eamination 007/008 Paper NTIONL QULIFITIONS ssessing Units & + The Wave Function & Eponential/Logarithms Time allowed - hour 0 minutes Read carefull alculators ma OT

More information

Worksheet #1. A little review.

Worksheet #1. A little review. Worksheet #1. A little review. I. Set up BUT DO NOT EVALUATE definite integrals for each of the following. 1. The area between the curves = 1 and = 3. Solution. The first thing we should ask ourselves

More information

Local Maximums and Local Minimums of Functions. f(x, y) has a local minimum at the point (x 0, y 0 ) if f(x 0, y 0 ) f(x, y) for

Local Maximums and Local Minimums of Functions. f(x, y) has a local minimum at the point (x 0, y 0 ) if f(x 0, y 0 ) f(x, y) for Local Extrema Previousl we have taken the partial derivative of a function f(x, ). But those partial derivatives were themselves functions and so we can take their partial derivatives. Local Maximums and

More information

FINAL EXAM STUDY GUIDE

FINAL EXAM STUDY GUIDE FINAL EXAM STUDY GUIDE The Final Exam takes place on Wednesday, June 13, 2018, from 10:30 AM to 12:30 PM in 1100 Donald Bren Hall (not the usual lecture room!!!) NO books/notes/calculators/cheat sheets

More information

Triple Integrals. y x

Triple Integrals. y x Triple Integrals. (a) If is an solid (in space), what does the triple integral dv represent? Wh? (b) Suppose the shape of a solid object is described b the solid, and f(,, ) gives the densit of the object

More information

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables.

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Partial derivatives and directional derivatives. Directional derivative of functions of

More information

Vector Fields. Field (II) Field (V)

Vector Fields. Field (II) Field (V) Math 1a Vector Fields 1. Match the following vector fields to the pictures, below. Eplain our reasoning. (Notice that in some of the pictures all of the vectors have been uniforml scaled so that the picture

More information

D u f f x h f y k. Applying this theorem a second time, we have. f xx h f yx k h f xy h f yy k k. f xx h 2 2 f xy hk f yy k 2

D u f f x h f y k. Applying this theorem a second time, we have. f xx h f yx k h f xy h f yy k k. f xx h 2 2 f xy hk f yy k 2 93 CHAPTER 4 PARTIAL DERIVATIVES We close this section b giving a proof of the first part of the Second Derivatives Test. Part (b) has a similar proof. PROOF OF THEOREM 3, PART (A) We compute the second-order

More information

Math Review Packet #5 Algebra II (Part 2) Notes

Math Review Packet #5 Algebra II (Part 2) Notes SCIE 0, Spring 0 Miller Math Review Packet #5 Algebra II (Part ) Notes Quadratic Functions (cont.) So far, we have onl looked at quadratic functions in which the term is squared. A more general form of

More information

Add Math (4047) Paper 2

Add Math (4047) Paper 2 1. Solve the simultaneous equations 5 and 1. [5]. (i) Sketch the graph of, showing the coordinates of the points where our graph meets the coordinate aes. [] Solve the equation 10, giving our answer correct

More information

Worksheet 4.2: Introduction to Vector Fields and Line Integrals

Worksheet 4.2: Introduction to Vector Fields and Line Integrals Boise State Math 275 (Ultman) Worksheet 4.2: Introduction to Vector Fields and Line Integrals From the Toolbox (what you need from previous classes) Know what a vector is. Be able to sketch vectors. Be

More information

NATIONAL QUALIFICATIONS

NATIONAL QUALIFICATIONS H Mathematics Higher Paper Practice Paper E Time allowed hour minutes NATIONAL QUALIFICATIONS Read carefull Calculators ma NOT be used in this paper. Section A Questions ( marks) Instructions for completion

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

Mat 267 Engineering Calculus III Updated on 9/19/2010

Mat 267 Engineering Calculus III Updated on 9/19/2010 Chapter 11 Partial Derivatives Section 11.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair o real numbers (, ) in a set D a unique real number

More information

ES.182A Topic 41 Notes Jeremy Orloff. 41 Extensions and applications of Green s theorem

ES.182A Topic 41 Notes Jeremy Orloff. 41 Extensions and applications of Green s theorem ES.182A Topic 41 Notes Jerem Orloff 41 Etensions and applications of Green s theorem 41.1 eview of Green s theorem: Tangential (work) form: F T ds = curlf d d M d + N d = N M d d. Normal (flu) form: F

More information

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane 3.5 Plane Stress This section is concerned with a special two-dimensional state of stress called plane stress. It is important for two reasons: () it arises in real components (particularl in thin components

More information

Mathematics Extension 2

Mathematics Extension 2 0 HIGHER SCHL CERTIFICATE EXAMINATIN Mathematics Etension General Instructions Reading time 5 minutes Working time hours Write using black or blue pen Black pen is preferred Board-approved calculators

More information

Chapter Nine Chapter Nine

Chapter Nine Chapter Nine Chapter Nine Chapter Nine 6 CHAPTER NINE ConcepTests for Section 9.. Table 9. shows values of f(, ). Does f appear to be an increasing or decreasing function of? Of? Table 9. 0 0 0 7 7 68 60 0 80 77 73

More information

5.5 Worksheet - Linearization

5.5 Worksheet - Linearization AP Calculus 4.5 Worksheet 5.5 Worksheet - Linearization All work must be shown in this course for full credit. Unsupported answers ma receive NO credit. 1. Consider the function = sin. a) Find the equation

More information

Math 53 Homework 4 Solutions

Math 53 Homework 4 Solutions Math 5 Homework 4 Solutions Problem 1. (a) z = is a paraboloid with its highest point at (0,0,) and intersecting the -plane at the circle + = of radius. (or: rotate the parabola z = in the z-plane about

More information

Section 4.1 Increasing and Decreasing Functions

Section 4.1 Increasing and Decreasing Functions Section.1 Increasing and Decreasing Functions The graph of the quadratic function f 1 is a parabola. If we imagine a particle moving along this parabola from left to right, we can see that, while the -coordinates

More information

MATH 223 FINAL EXAM STUDY GUIDE ( )

MATH 223 FINAL EXAM STUDY GUIDE ( ) MATH 3 FINAL EXAM STUDY GUIDE (017-018) The following questions can be used as a review for Math 3 These questions are not actual samples of questions that will appear on the final eam, but the will provide

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

Math 21a: Multivariable calculus. List of Worksheets. Harvard University, Spring 2009

Math 21a: Multivariable calculus. List of Worksheets. Harvard University, Spring 2009 Math 2a: Multivariable calculus Harvard Universit, Spring 2009 List of Worksheets Vectors and the Dot Product Cross Product and Triple Product Lines and Planes Functions and Graphs Quadric Surfaces Vector-Valued

More information

MAT 127: Calculus C, Spring 2017 Solutions to Problem Set 2

MAT 127: Calculus C, Spring 2017 Solutions to Problem Set 2 MAT 7: Calculus C, Spring 07 Solutions to Problem Set Section 7., Problems -6 (webassign, pts) Match the differential equation with its direction field (labeled I-IV on p06 in the book). Give reasons for

More information

MATHEMATICS 200 April 2010 Final Exam Solutions

MATHEMATICS 200 April 2010 Final Exam Solutions MATHEMATICS April Final Eam Solutions. (a) A surface z(, y) is defined by zy y + ln(yz). (i) Compute z, z y (ii) Evaluate z and z y in terms of, y, z. at (, y, z) (,, /). (b) A surface z f(, y) has derivatives

More information

WEDNESDAY, 18 MAY 9.00 AM AM. 1 Full credit will be given only where the solution contains appropriate working.

WEDNESDAY, 18 MAY 9.00 AM AM. 1 Full credit will be given only where the solution contains appropriate working. X00/0 NATINAL QUALIFICATINS 0 WEDNESDAY, 8 MAY 9.00 AM 0.0 AM MATHEMATICS HIGHER Paper (Non-calculator) Read carefull Calculators ma NT be used in this paper. Section A Questions 0 (40 marks) Instructions

More information

ES.182A Topic 36 Notes Jeremy Orloff

ES.182A Topic 36 Notes Jeremy Orloff ES.82A Topic 36 Notes Jerem Orloff 36 Vector fields and line integrals in the plane 36. Vector analsis We now will begin our stud of the part of 8.2 called vector analsis. This is the stud of vector fields

More information

Chapter 18 Quadratic Function 2

Chapter 18 Quadratic Function 2 Chapter 18 Quadratic Function Completed Square Form 1 Consider this special set of numbers - the square numbers or the set of perfect squares. 4 = = 9 = 3 = 16 = 4 = 5 = 5 = Numbers like 5, 11, 15 are

More information

Differentiation and applications

Differentiation and applications FS O PA G E PR O U N C O R R EC TE D Differentiation and applications. Kick off with CAS. Limits, continuit and differentiabilit. Derivatives of power functions.4 C oordinate geometr applications of differentiation.5

More information

Circle. Paper 1 Section A. Each correct answer in this section is worth two marks. 5. A circle has equation. 4. The point P( 2, 4) lies on the circle

Circle. Paper 1 Section A. Each correct answer in this section is worth two marks. 5. A circle has equation. 4. The point P( 2, 4) lies on the circle PSf Circle Paper 1 Section A Each correct answer in this section is worth two marks. 1. A circle has equation ( 3) 2 + ( + 4) 2 = 20. Find the gradient of the tangent to the circle at the point (1, 0).

More information

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x

UNCORRECTED. To recognise the rules of a number of common algebraic relations: y = x 1 y 2 = x 5A galler of graphs Objectives To recognise the rules of a number of common algebraic relations: = = = (rectangular hperbola) + = (circle). To be able to sketch the graphs of these relations. To be able

More information

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II LESSON #4 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART COMMON CORE ALGEBRA II You will recall from unit 1 that in order to find the inverse of a function, ou must switch and and solve for. Also,

More information

Mat 241 Homework Set 7key Due Professor David Schultz

Mat 241 Homework Set 7key Due Professor David Schultz Mat 1 Homework Set 7ke Due Proessor David Schultz Directions: Show all algebraic steps neatl and concisel using proper mathematical smbolism. When graphs and technolog are to be implemented, do so appropriatel.

More information

9 11 Solve the initial-value problem Evaluate the integral. 1. y sin 3 x cos 2 x dx. calculation. 1 + i i23

9 11 Solve the initial-value problem Evaluate the integral. 1. y sin 3 x cos 2 x dx. calculation. 1 + i i23 Mock Exam 1 5 8 Solve the differential equation. 7. d dt te t s1 Mock Exam 9 11 Solve the initial-value problem. 9. x ln x, 1 3 6 Match the differential equation with its direction field (labeled I IV).

More information

5 Find an equation of the circle in which AB is a diameter in each case. a A (1, 2) B (3, 2) b A ( 7, 2) B (1, 8) c A (1, 1) B (4, 0)

5 Find an equation of the circle in which AB is a diameter in each case. a A (1, 2) B (3, 2) b A ( 7, 2) B (1, 8) c A (1, 1) B (4, 0) C2 CRDINATE GEMETRY Worksheet A 1 Write down an equation of the circle with the given centre and radius in each case. a centre (0, 0) radius 5 b centre (1, 3) radius 2 c centre (4, 6) radius 1 1 d centre

More information

ARE YOU READY FOR CALCULUS?? Name: Date: Period:

ARE YOU READY FOR CALCULUS?? Name: Date: Period: ARE YOU READY FOR CALCULUS?? Name: Date: Period: Directions: Complete the following problems. **You MUST show all work to receive credit.**(use separate sheets of paper.) Problems with an asterisk (*)

More information

In order to take a closer look at what I m talking about, grab a sheet of graph paper and graph: y = x 2 We ll come back to that graph in a minute.

In order to take a closer look at what I m talking about, grab a sheet of graph paper and graph: y = x 2 We ll come back to that graph in a minute. Module 7: Conics Lesson Notes Part : Parabolas Parabola- The parabola is the net conic section we ll eamine. We talked about parabolas a little bit in our section on quadratics. Here, we eamine them more

More information

PLC Papers. Created For:

PLC Papers. Created For: PLC Papers Created For: Algebra and proof 2 Grade 8 Objective: Use algebra to construct proofs Question 1 a) If n is a positive integer explain why the expression 2n + 1 is always an odd number. b) Use

More information

Mathematics Extension 2

Mathematics Extension 2 Student Number ABBOTSLEIGH AUGUST 007 YEAR ASSESSMENT 4 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION Mathematics Etension General Instructions Reading time 5 minutes. Working time 3 hours. Write using blue

More information

5.6 RATIOnAl FUnCTIOnS. Using Arrow notation. learning ObjeCTIveS

5.6 RATIOnAl FUnCTIOnS. Using Arrow notation. learning ObjeCTIveS CHAPTER PolNomiAl ANd rational functions learning ObjeCTIveS In this section, ou will: Use arrow notation. Solve applied problems involving rational functions. Find the domains of rational functions. Identif

More information

Major Ideas in Calc 3 / Exam Review Topics

Major Ideas in Calc 3 / Exam Review Topics Major Ideas in Calc 3 / Exam Review Topics Here are some highlights of the things you should know to succeed in this class. I can not guarantee that this list is exhaustive!!!! Please be sure you are able

More information

Table of Contents. Module 1

Table of Contents. Module 1 Table of Contents Module 1 11 Order of Operations 16 Signed Numbers 1 Factorization of Integers 17 Further Signed Numbers 13 Fractions 18 Power Laws 14 Fractions and Decimals 19 Introduction to Algebra

More information

18.02 Review Jeremy Orloff. 1 Review of multivariable calculus (18.02) constructs

18.02 Review Jeremy Orloff. 1 Review of multivariable calculus (18.02) constructs 18.02 eview Jerem Orloff 1 eview of multivariable calculus (18.02) constructs 1.1 Introduction These notes are a terse summar of what we ll need from multivariable calculus. If, after reading these, some

More information

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on Mat 7 Calculus III Updated on 10/4/07 Dr. Firoz Chapter 14 Partial Derivatives Section 14.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair

More information

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4]

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4] It s Your Turn Problems I. Functions, Graphs, and Limits. Here s the graph of the function f on the interval [ 4,4] f ( ) =.. It has a vertical asymptote at =, a) What are the critical numbers of f? b)

More information

Review Sheet for the Final

Review Sheet for the Final Review Sheet for the Final Math 6-4 4 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence

More information

17.3. Parametric Curves. Introduction. Prerequisites. Learning Outcomes

17.3. Parametric Curves. Introduction. Prerequisites. Learning Outcomes Parametric Curves 7.3 Introduction In this Section we eamine et another wa of defining curves - the parametric description. We shall see that this is, in some was, far more useful than either the Cartesian

More information

EOC Review. Algebra I

EOC Review. Algebra I EOC Review Algebra I Order of Operations PEMDAS Parentheses, Eponents, Multiplication/Division, Add/Subtract from left to right. A. Simplif each epression using appropriate Order of Operations.. 5 6 +.

More information

4 The Cartesian Coordinate System- Pictures of Equations

4 The Cartesian Coordinate System- Pictures of Equations The Cartesian Coordinate Sstem- Pictures of Equations Concepts: The Cartesian Coordinate Sstem Graphs of Equations in Two Variables -intercepts and -intercepts Distance in Two Dimensions and the Pthagorean

More information

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics Module 10 - Lecture 24 Kinematics of a particle moving on a curve Today,

More information

Answers for Calculus Review (Extrema and Concavity)

Answers for Calculus Review (Extrema and Concavity) Answers for Calculus Review 4.1-4.4 (Extrema and Concavity) 1. A critical number is a value of the independent variable (a/k/a x) in the domain of the function at which the derivative is zero or undefined.

More information

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs

STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE. Functions & Graphs STUDY KNOWHOW PROGRAM STUDY AND LEARNING CENTRE Functions & Graphs Contents Functions and Relations... 1 Interval Notation... 3 Graphs: Linear Functions... 5 Lines and Gradients... 7 Graphs: Quadratic

More information

Algebra II Notes Unit Six: Polynomials Syllabus Objectives: 6.2 The student will simplify polynomial expressions.

Algebra II Notes Unit Six: Polynomials Syllabus Objectives: 6.2 The student will simplify polynomial expressions. Algebra II Notes Unit Si: Polnomials Sllabus Objectives: 6. The student will simplif polnomial epressions. Review: Properties of Eponents (Allow students to come up with these on their own.) Let a and

More information

Physics 207, Lecture 4, Sept. 15

Physics 207, Lecture 4, Sept. 15 Phsics 07, Lecture 4, Sept. 15 Goals for hapts.. 3 & 4 Perform vector algebra (addition & subtraction) graphicall or b, & z components Interconvert between artesian and Polar coordinates Distinguish position-time

More information

By the end of this set of exercises, you should be able to. recognise the graphs of sine, cosine and tangent functions

By the end of this set of exercises, you should be able to. recognise the graphs of sine, cosine and tangent functions FURTHER TRIGONOMETRY B the end of this set of eercises, ou should be able to (a) recognise the graphs of sine, cosine and tangent functions sketch and identif other trigonometric functions solve simple

More information

Section 3.1. ; X = (0, 1]. (i) f : R R R, f (x, y) = x y

Section 3.1. ; X = (0, 1]. (i) f : R R R, f (x, y) = x y Paul J. Bruillard MATH 0.970 Problem Set 6 An Introduction to Abstract Mathematics R. Bond and W. Keane Section 3.1: 3b,c,e,i, 4bd, 6, 9, 15, 16, 18c,e, 19a, 0, 1b Section 3.: 1f,i, e, 6, 1e,f,h, 13e,

More information

Sect The Slope-Intercept Form

Sect The Slope-Intercept Form 0 Concepts # and # Sect. - The Slope-Intercept Form Slope-Intercept Form of a line Recall the following definition from the beginning of the chapter: Let a, b, and c be real numbers where a and b are not

More information

1. (a) Sketch the graph of a function that has two local maxima, one local minimum, and no absolute minimum. Solution: Such a graph is shown below.

1. (a) Sketch the graph of a function that has two local maxima, one local minimum, and no absolute minimum. Solution: Such a graph is shown below. MATH 9 Eam (Version ) Solutions November 7, S. F. Ellermeer Name Instructions. Your work on this eam will be graded according to two criteria: mathematical correctness and clarit of presentation. In other

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012 Unit # Understanding the Derivative Homework Packet f ( h) f ( Find lim for each of the functions below. Then, find the equation of the tangent line to h 0 h the graph of f( at the given value of. 1. f

More information

Newbattle Community High School Higher Mathematics. Key Facts Q&A

Newbattle Community High School Higher Mathematics. Key Facts Q&A Key Facts Q&A Ways of using this booklet: 1) Write the questions on cards with the answers on the back and test yourself. ) Work with a friend who is also doing to take turns reading a random question

More information

Multivariable Calculus

Multivariable Calculus Multivariable Calculus Multivariable calculus is a popular topic (chapter 2) in FP3. As is made clear in the introduction to that chapter, an important reason for stuing functions of more than one variable

More information

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED FOM 11 T7 GRAPHING LINEAR EQUATIONS REVIEW - 1 1 MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED 1) TWO VARIABLE EQUATIONS = an equation containing two different variables. ) COEFFICIENT = the number in front

More information

Coordinate goemetry in the (x, y) plane

Coordinate goemetry in the (x, y) plane Coordinate goemetr in the (x, ) plane In this chapter ou will learn how to solve problems involving parametric equations.. You can define the coordinates of a point on a curve using parametric equations.

More information

8 Differential Calculus 1 Introduction

8 Differential Calculus 1 Introduction 8 Differential Calculus Introduction The ideas that are the basis for calculus have been with us for a ver long time. Between 5 BC and 5 BC, Greek mathematicians were working on problems that would find

More information

MATH 280 Multivariate Calculus Fall Integrating a vector field over a curve

MATH 280 Multivariate Calculus Fall Integrating a vector field over a curve MATH 280 Multivariate alculus Fall 2012 Definition Integrating a vector field over a curve We are given a vector field F and an oriented curve in the domain of F as shown in the figure on the left below.

More information

(c) Find the gradient of the graph of f(x) at the point where x = 1. (2) The graph of f(x) has a local maximum point, M, and a local minimum point, N.

(c) Find the gradient of the graph of f(x) at the point where x = 1. (2) The graph of f(x) has a local maximum point, M, and a local minimum point, N. Calculus Review Packet 1. Consider the function f() = 3 3 2 24 + 30. Write down f(0). Find f (). Find the gradient of the graph of f() at the point where = 1. The graph of f() has a local maimum point,

More information

MATH 1020 WORKSHEET 12.1 & 12.2 Vectors in the Plane

MATH 1020 WORKSHEET 12.1 & 12.2 Vectors in the Plane MATH 100 WORKSHEET 1.1 & 1. Vectors in the Plane Find the vector v where u =, 1 and w = 1, given the equation v = u w. Solution. v = u w =, 1 1, =, 1 +, 4 =, 1 4 = 0, 5 Find the magnitude of v = 4, 3 Solution.

More information

Math 53 Homework 5 Solutions

Math 53 Homework 5 Solutions 14. #: dw dt = w = 14. #7: s = t = Math Homework Solutions dx dt + w (t t 1+t t (1 t) ) (1+t) e (1 t)/(1+t). dy dt + w dz dt = tey/z x z ey/z xy z ey/z s + s = (x y)4 (st) (x y) 4 t = (x y) 4 (st t ).

More information

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED FOM 11 T GRAPHING LINEAR INEQUALITIES & SET NOTATION - 1 1 MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED 1) INEQUALITY = a mathematical statement that contains one of these four inequalit signs: ,.

More information

17.3. Parametric Curves. Introduction. Prerequisites. Learning Outcomes

17.3. Parametric Curves. Introduction. Prerequisites. Learning Outcomes Parametric Curves 17.3 Introduction In this section we eamine et another wa of defining curves - the parametric description. We shall see that this is, in some was, far more useful than either the Cartesian

More information

Constrained Maxima and Minima EXAMPLE 1 Finding a Minimum with Constraint

Constrained Maxima and Minima EXAMPLE 1 Finding a Minimum with Constraint 1038 Chapter 14: Partial Derivatives 14.8 Lagrange Multipliers HISTORICAL BIOGRAPHY Joseph Louis Lagrange (1736 1813) Sometimes we need to find the etreme values of a function whose domain is constrained

More information

2.5. Infinite Limits and Vertical Asymptotes. Infinite Limits

2.5. Infinite Limits and Vertical Asymptotes. Infinite Limits . Infinite Limits and Vertical Asmptotes. Infinite Limits and Vertical Asmptotes In this section we etend the concept of it to infinite its, which are not its as before, but rather an entirel new use of

More information

Math 140 Final Sample A Solutions. Tyrone Crisp

Math 140 Final Sample A Solutions. Tyrone Crisp Math 4 Final Sample A Solutions Tyrone Crisp (B) Direct substitution gives, so the limit is infinite. When is close to, but greater than,, the numerator is negative while the denominator is positive. So

More information

Chapter 1 Graph of Functions

Chapter 1 Graph of Functions Graph of Functions Chapter Graph of Functions. Rectangular Coordinate Sstem and Plotting points The Coordinate Plane Quadrant II Quadrant I (0,0) Quadrant III Quadrant IV Figure. The aes divide the plane

More information

MATH Line integrals III Fall The fundamental theorem of line integrals. In general C

MATH Line integrals III Fall The fundamental theorem of line integrals. In general C MATH 255 Line integrals III Fall 216 In general 1. The fundamental theorem of line integrals v T ds depends on the curve between the starting point and the ending point. onsider two was to get from (1,

More information

Vector Functions & Space Curves MATH 2110Q

Vector Functions & Space Curves MATH 2110Q Vector Functions & Space Curves Vector Functions & Space Curves Vector Functions Definition A vector function or vector-valued function is a function that takes real numbers as inputs and gives vectors

More information

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph:

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph: Section 10.3: Polar Coordinates The polar coordinate system is another way to coordinatize the Cartesian plane. It is particularly useful when examining regions which are circular. 1. Cartesian Coordinates

More information

206 Calculus and Structures

206 Calculus and Structures 06 Calculus and Structures CHAPTER 4 CURVE SKETCHING AND MAX-MIN II Calculus and Structures 07 Copright Chapter 4 CURVE SKETCHING AND MAX-MIN II 4. INTRODUCTION In Chapter, we developed a procedure for

More information

Solutions to the Math 1051 Sample Final Exam (from Spring 2003) Page 1

Solutions to the Math 1051 Sample Final Exam (from Spring 2003) Page 1 Solutions to the Math 0 Sample Final Eam (from Spring 00) Page Part : Multiple Choice Questions. Here ou work out the problems and then select the answer that matches our answer. No partial credit is given

More information

Section A Plotting Straight Line Graphs Grade D / C

Section A Plotting Straight Line Graphs Grade D / C Name: Teacher Assessment Section A Plotting Straight Line Graphs Grade D / C 1. (a) Complete the table of values for = 3x + x 0 1 3 5 10 16 19 (b) On the grid draw the graph of = 3x + for values of x from

More information

SOLUTIONS 1 (27) 2 (18) 3 (18) 4 (15) 5 (22) TOTAL (100) PROBLEM NUMBER SCORE MIDTERM 2. Form A. Recitation Instructor : Recitation Time :

SOLUTIONS 1 (27) 2 (18) 3 (18) 4 (15) 5 (22) TOTAL (100) PROBLEM NUMBER SCORE MIDTERM 2. Form A. Recitation Instructor : Recitation Time : Math 5 March 8, 206 Form A Page of 8 Name : OSU Name.# : Lecturer:: Recitation Instructor : SOLUTIONS Recitation Time : SHOW ALL WORK in problems, 2, and 3. Incorrect answers with work shown may receive

More information

Pitch Circle. Problem 8.17

Pitch Circle. Problem 8.17 Follower Travel, mm Displacement, cm 1.5 1.0 0.5 0 1 3 4 5 6 7 8 9 10 Cam Rotation Angle 90 Pitch Circle 0 1 3 4 5 10 9 8 7 6 Problem 8.17 Construct the profile of a disk cam that follows the displacement

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time) N E W S O U T H W A L E S HIGHER SCHOOL CERTIFICATE EXAMINATION 996 MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time) DIRECTIONS TO CANDIDATES Attempt ALL questions.

More information

Mathematics. Mathematics 2. hsn.uk.net. Higher HSN22000

Mathematics. Mathematics 2. hsn.uk.net. Higher HSN22000 hsn.uk.net Higher Mathematics UNIT Mathematics HSN000 This document was produced speciall for the HSN.uk.net website, and we require that an copies or derivative works attribute the work to Higher Still

More information

4.7. Newton s Method. Procedure for Newton s Method HISTORICAL BIOGRAPHY

4.7. Newton s Method. Procedure for Newton s Method HISTORICAL BIOGRAPHY 4. Newton s Method 99 4. Newton s Method HISTORICAL BIOGRAPHY Niels Henrik Abel (18 189) One of the basic problems of mathematics is solving equations. Using the quadratic root formula, we know how to

More information

Calculus Summer TUTORIAL

Calculus Summer TUTORIAL Calculus Summer TUTORIAL The purpose of this tutorial is to have you practice the mathematical skills necessary to be successful in Calculus. All of the skills covered in this tutorial are from Pre-Calculus,

More information