Sequential Change-Point Approach for Online Community Detection

Size: px
Start display at page:

Download "Sequential Change-Point Approach for Online Community Detection"

Transcription

1 Sequential Change-Point Approach for Online Community Detection Yao Xie Joint work with David Marangoni-Simonsen H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology Presented at DMA Workshop, INFORMS 2014

2 Community Collaboration network Facebook Protein interaction network Word association

3 Enron data set Some networks might be structurally suspicious, even if none of the content passing on it looks that way... diagnose bad acting within a large organization. The Atlantic, 2011

4 500,000 s involving 151 unknown employees and more than 75,000 distinct addresses; each with time stamp, sender and receiver between the years 1998 and 2002, record for 1,177 days legal project : many people are connected to many others on a project, and information is widely distributed illicit : information concentrated in a few hands

5 Emergence of a community Starting from a certain time, anomalous discussion topics arise between a small group of people. Sequential anomaly detection in the presence of noise and limited feedback, Raginsky et al., 2013.

6 Online detection of community emergence a network with N nodes observe a sequence of independent adjacency matrices X 1, X 2,... X i R N N : interaction of nodes at time i there may exits an unknown time s.t. after that an unknown subset of nodes interact with higher frequency offline version [Arias-Castro-Verzelen2014]

7 Sequential change-point detection approach H 0 : X i : Erdős-Renyi random graph [X t ] ij = { 1 w. p. p0 0 otherwise (i, j). H 1 : there exists an unknown time κ such that afterwards unknown subset of nodes S interact more frequenctly [X t ] ij = { 1 w. p. p1 0 otherwise i, j S, t > κ, [X t ] ij = { 1 w. p. p0 0 otherwise i / S or j / S, t > κ. p 0 < p 1

8 Goal: detect emergence of an unknown community as quickly as possible define a stopping rule T for sequential data such that rarely raise false alarm when there is no change raise alarm quickly after the change (small detection delay)

9 Classic change-point detection In statistics and quality-control Min-max formulation: Page (54), Lorden (71) Bayesian: Shiryayev (63), Roberts (66) a sequence i.i.d. observations y 1, y 2, R unknown change-point κ > 0. unknown change-point κ > 0 y t 5 0 H 0 :y t f 0, t = 1, 2,... H 1 :y t f 0, t = 1,..., κ, y t f 1, t = κ + 1, f 0 f 1 apple change-point

10 Likelihood ratio based procedure for a hypothesized κ = k: l(t, k) = log k i=1 f 0(y i ) t i=k+1 f 1(y i ) t i=1 f = 0(y i ) likelihood ratio based change-point detection: T = inf{t 1 : maxl(t, k) b} k<t t i=k+1 log f 1(y i ) f 0 (y i ) CUSUM 40 max k<t

11 Normal distributions f 0 = N (0, 1), f 1 = N (µ, 1), µ > 0 CUSUM procedure T = inf{t : max k<t t i=k+1 (µy i µ2 2 ) b} when µ is unknown: ˆµ(k) = ( t i=k+1 y i)/(t k) GLR procedure T = inf{t : max k<t ( t i=k+1 y i) 2 t k b}

12 Likelihood ratio based statistic for edge (i, j), assumed change-point location κ = k, observation up to time t, likelihood ratio statistic given by l(κ = k p 1, S) = t (i,j) S m=k+1 ( p1 [X m ] ij log ) ( ) 1 p1 + (1 [X m ] ij ) log p 0 1 p 0 } {{ } U (i,j) k,t,p 1 typically, we can assume p 0 known since it can estimated from historic data p 1 is usually unknown since it represents anomaly

13 Exhaustive Search (ES) method Approach 1: assume unknown p 1 = δ δ: nominal value that would be important to detect T ES,1 = inf{t : max max U (i,j) k,t,δ b}, t m 1 k t m 0 S [N]: S =s (i,j) S exist a recursive implementation (similar to CUSUM) for each possible S, calculate W S,t+1 = max{w S,t + T ES,1 = inf{t : (i,j) S U (i,j) t,t+1,δ, 0}, max W S,k b}. S [N]: S =s

14 Exhaustive Search (ES) method (cont.) Approach 2: estimate p 1 for each hypothesize parameter values k and S p 1 (S) = T ES,2 = inf{t : 2 S ( S 1)(t k) max no recursive implementation max t (i,j) S m=k+1 t m 1 k t m 0 S [N]: S =s (i,j) S [X m ] ij, U (i,j) k,t, p 1 (S) b}. limitation of ES: S unknown, have to search all possible subsets of {1,, N}. Number of possible subsets Ω = 2 N, exponential in N.

15 Mixture method exploit structure: typically community is a small subset assume two nodes (i, j) both in community with probability α α can be a guess for S /N introduce indicator variable Q ij = { 1 w. p. α 0 otherwise i, j S. l(κ = k p 1, S) = Q ij t m=k+1 1 i<j N log { E Qij [(1 Q ij )+ } p [Xm] ij 1 (1 p 1 ) 1 [Xm] ij p [Xm] ] = ij 0 (1 p 0 ) 1 [Xm] ij 1 i<j N h(u (i,j) k,t,p 1 ).

16 Mixture method (cont.) h(x) log{1 α + α exp(x)} f(x) = log(1 p0 + p0e x ) log(1 p 0 + p 0 e x ) p 0 =1 p 0 = 0.01 p 0 = 0.1 p 0 = 1 p 0 = x T Mix = inf{t : max t m 1 k t m 0 1 i<j N h(u (i,j) k,t,δ ) b}, No search over subset max S.

17 Drawback of Mixture method statistics of Mixture method can be gathered from false community can increase false alarm rate Hierarchical Mixture method (H-Mix) solves this problem by introducing dendrogram decomposition of the graph

18 Hierarchical Mixture method (H-Mix)

19

20 Complexity Table : Complexities of algorithms under various conditions regarding k and N. S N/2 S N/2 S N/2 Exhaustive O(N N S ) O(N S ) O(2 S 2 ) Search Mixture Model O(N 2 ) O(N 2 ) O(N 2 ) Hierarchical Mixture O(N 3 ) O(N 4 ) O(N 4 )

21 Choice of b Choice of threshold b involves a tradeoff between ARL and EDD: ARL (average run length) (captures false-alarm-rate) usually choose b to make ARL large 5000, for large N simulating ARL via Monte Carlo is hard accurate theoretical approximation for ARL is highly valuable EDD (expected detection delay) a relatively small number 10 theoretical approximation provides useful insight

22 Performance metrics detection delay 20 run length threshold b apple average run length (ARL): expected detection delay (EDD): E {T } sup ess sup E k {T k T > k} k

23 Theoretical results We obtain analytical expression for ARL of Mixture method Theorem When b, an upper approximation to the ARL E [T mix ] of the Mixture method with known p 1 is given by: [ 2N/m0 yν 2 (y 1 γ(θ y )) ARL UA = dy], (1) 2N/m1 H(N, θ y ) and a lower approximation to the ARL is given by: [ m1 ] 1 ARL LA = 2Nν2 (2N γ(θτ )/τ 2 ) τ 2, (2) H(N, θ τ=m τ ) 0

24 expressions can be evaluated explicitly no Monte Carlo simulation needed 10 x integrand τ only a few τ values play role in the summation

25 accurate approximation can be used to determine threshold b for given ARL

26 Table : Theoretical vs. simulated thresholds for p 0 = 0.3, p 1 = 0.8, and N = 6. The threshold b calculated using theory is very close to the corresponding threshold obtained using simulation. ARL Theory b Simulated b

27 g probability Proof techniques ols: change-of-measure or exponential tilting lculate EDD max Z k,t has positive drift, calculate expected k<t of first hitting detection statistic forms a random walk max k<t Z k,t ols: 20 composition k,t = drift + variance + bounded w.h.p.terms ncentration of measure ald s lemma n-linear renewal theory max k<t Z k,t to calculate ARL = calculate boundary hitting probability of a noise-like random walk the moment of detection of a stopping time, asymptotically exponentially distributed when b, approximately P {max k<t Z k,t b} mλ t

28 Numerical performance analysis Detect emergence of a community interact with p 0 interact with p 1 size of community is S = s

29 Table : Comparison of detection delays for various cases when N = 6. The numbers inside the brackets are the threshold b such that ARL = s = 3, p 0 = 0.2, p 1 = 0.9 s = 3, p 0 = 0.3, p 1 = 0.7 s = 4, p 0 = 0.3, p 1 = 0.7 T ES,1 δ = p (9.96) 9.5 (10.17) 5.0 (8.48) T Mix T H Mix T Mix δ = p 1 δ = p (6.71) 12.8 (6.77) 6.7 (6.88) 3.8 (9.95) 10.8 (10.18) 6.4 (10.17) 6.0 (6.71) 23.3 (6.77) 11.0 (6.88)

30 Robustness against false communities Table : ARL and DD for each algorithm under the conditions p 0 = 0.2, p 1 = 0.9, k = 3, and N = 6 where the ARL = Threshold Detection Delay T ES, T Mix T H Mix Mixture method incorrectly reacts to false community very quickly.

31 Table : Comparison of detection delays for a larger network N = 50. The numbers inside the brackets are the threshold b such that ARL = T Mix, δ = p 1 p 0 = 0.3, p 1 = 0.7, s = (-7.44) p 0 = 0.3, p 1 = 0.7, s = (-7.41)

32 Summary detect emergence of a community in sequential data present a new change-point detection approach three methods: exhaustive search (ES), mixture (Mix), and hierarchical mixture (H-Mix) methods, all able to detect the community quickly in different settings complexity: Mix < H-Mix ES robustness: Mix < H-Mix ES accurate theoretically characterize performance of Mix method future: apply on real data and larger networks: Enron data set

arxiv: v2 [eess.sp] 20 Nov 2017

arxiv: v2 [eess.sp] 20 Nov 2017 Distributed Change Detection Based on Average Consensus Qinghua Liu and Yao Xie November, 2017 arxiv:1710.10378v2 [eess.sp] 20 Nov 2017 Abstract Distributed change-point detection has been a fundamental

More information

Sequential Low-Rank Change Detection

Sequential Low-Rank Change Detection Sequential Low-Rank Change Detection Yao Xie H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology, GA Email: yao.xie@isye.gatech.edu Lee Seversky Air Force Research

More information

Sequential Detection. Changes: an overview. George V. Moustakides

Sequential Detection. Changes: an overview. George V. Moustakides Sequential Detection of Changes: an overview George V. Moustakides Outline Sequential hypothesis testing and Sequential detection of changes The Sequential Probability Ratio Test (SPRT) for optimum hypothesis

More information

Online Seismic Event Picking via Sequential Change-Point Detection

Online Seismic Event Picking via Sequential Change-Point Detection Online Seismic Event Picking via Sequential Change-Point Detection Shuang Li, Yang Cao, Christina Leamon, Yao Xie H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology

More information

Uncertainty. Jayakrishnan Unnikrishnan. CSL June PhD Defense ECE Department

Uncertainty. Jayakrishnan Unnikrishnan. CSL June PhD Defense ECE Department Decision-Making under Statistical Uncertainty Jayakrishnan Unnikrishnan PhD Defense ECE Department University of Illinois at Urbana-Champaign CSL 141 12 June 2010 Statistical Decision-Making Relevant in

More information

Statistical Models and Algorithms for Real-Time Anomaly Detection Using Multi-Modal Data

Statistical Models and Algorithms for Real-Time Anomaly Detection Using Multi-Modal Data Statistical Models and Algorithms for Real-Time Anomaly Detection Using Multi-Modal Data Taposh Banerjee University of Texas at San Antonio Joint work with Gene Whipps (US Army Research Laboratory) Prudhvi

More information

Large-Scale Multi-Stream Quickest Change Detection via Shrinkage Post-Change Estimation

Large-Scale Multi-Stream Quickest Change Detection via Shrinkage Post-Change Estimation Large-Scale Multi-Stream Quickest Change Detection via Shrinkage Post-Change Estimation Yuan Wang and Yajun Mei arxiv:1308.5738v3 [math.st] 16 Mar 2016 July 10, 2015 Abstract The quickest change detection

More information

Quickest Detection With Post-Change Distribution Uncertainty

Quickest Detection With Post-Change Distribution Uncertainty Quickest Detection With Post-Change Distribution Uncertainty Heng Yang City University of New York, Graduate Center Olympia Hadjiliadis City University of New York, Brooklyn College and Graduate Center

More information

Data-Efficient Quickest Change Detection

Data-Efficient Quickest Change Detection Data-Efficient Quickest Change Detection Venu Veeravalli ECE Department & Coordinated Science Lab University of Illinois at Urbana-Champaign http://www.ifp.illinois.edu/~vvv (joint work with Taposh Banerjee)

More information

Early Detection of a Change in Poisson Rate After Accounting For Population Size Effects

Early Detection of a Change in Poisson Rate After Accounting For Population Size Effects Early Detection of a Change in Poisson Rate After Accounting For Population Size Effects School of Industrial and Systems Engineering, Georgia Institute of Technology, 765 Ferst Drive NW, Atlanta, GA 30332-0205,

More information

CHANGE DETECTION WITH UNKNOWN POST-CHANGE PARAMETER USING KIEFER-WOLFOWITZ METHOD

CHANGE DETECTION WITH UNKNOWN POST-CHANGE PARAMETER USING KIEFER-WOLFOWITZ METHOD CHANGE DETECTION WITH UNKNOWN POST-CHANGE PARAMETER USING KIEFER-WOLFOWITZ METHOD Vijay Singamasetty, Navneeth Nair, Srikrishna Bhashyam and Arun Pachai Kannu Department of Electrical Engineering Indian

More information

Monitoring actuarial assumptions in life insurance

Monitoring actuarial assumptions in life insurance Monitoring actuarial assumptions in life insurance Stéphane Loisel ISFA, Univ. Lyon 1 Joint work with N. El Karoui & Y. Salhi IAALS Colloquium, Barcelona, 17 LoLitA Typical paths with change of regime

More information

Lecture Notes in Statistics 180 Edited by P. Bickel, P. Diggle, S. Fienberg, U. Gather, I. Olkin, S. Zeger

Lecture Notes in Statistics 180 Edited by P. Bickel, P. Diggle, S. Fienberg, U. Gather, I. Olkin, S. Zeger Lecture Notes in Statistics 180 Edited by P. Bickel, P. Diggle, S. Fienberg, U. Gather, I. Olkin, S. Zeger Yanhong Wu Inference for Change-Point and Post-Change Means After a CUSUM Test Yanhong Wu Department

More information

COMPARISON OF STATISTICAL ALGORITHMS FOR POWER SYSTEM LINE OUTAGE DETECTION

COMPARISON OF STATISTICAL ALGORITHMS FOR POWER SYSTEM LINE OUTAGE DETECTION COMPARISON OF STATISTICAL ALGORITHMS FOR POWER SYSTEM LINE OUTAGE DETECTION Georgios Rovatsos*, Xichen Jiang*, Alejandro D. Domínguez-García, and Venugopal V. Veeravalli Department of Electrical and Computer

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

A CUSUM approach for online change-point detection on curve sequences

A CUSUM approach for online change-point detection on curve sequences ESANN 22 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges Belgium, 25-27 April 22, i6doc.com publ., ISBN 978-2-8749-49-. Available

More information

Distributed detection of topological changes in communication networks. Riccardo Lucchese, Damiano Varagnolo, Karl H. Johansson

Distributed detection of topological changes in communication networks. Riccardo Lucchese, Damiano Varagnolo, Karl H. Johansson 1 Distributed detection of topological changes in communication networks Riccardo Lucchese, Damiano Varagnolo, Karl H. Johansson Thanks to... 2 The need: detecting changes in topological networks 3 The

More information

Asynchronous Multi-Sensor Change-Point Detection for Seismic Tremors

Asynchronous Multi-Sensor Change-Point Detection for Seismic Tremors Asynchronous Multi-Sensor Change-Point Detection for Seismic Tremors Liyan Xie, Yao Xie, George V. Moustakides School of Industrial & Systems Engineering, Georgia Institute of Technology, {lxie49, yao.xie}@isye.gatech.edu

More information

arxiv:math/ v2 [math.st] 15 May 2006

arxiv:math/ v2 [math.st] 15 May 2006 The Annals of Statistics 2006, Vol. 34, No. 1, 92 122 DOI: 10.1214/009053605000000859 c Institute of Mathematical Statistics, 2006 arxiv:math/0605322v2 [math.st] 15 May 2006 SEQUENTIAL CHANGE-POINT DETECTION

More information

The Shiryaev-Roberts Changepoint Detection Procedure in Retrospect - Theory and Practice

The Shiryaev-Roberts Changepoint Detection Procedure in Retrospect - Theory and Practice The Shiryaev-Roberts Changepoint Detection Procedure in Retrospect - Theory and Practice Department of Statistics The Hebrew University of Jerusalem Mount Scopus 91905 Jerusalem, Israel msmp@mscc.huji.ac.il

More information

Optimum CUSUM Tests for Detecting Changes in Continuous Time Processes

Optimum CUSUM Tests for Detecting Changes in Continuous Time Processes Optimum CUSUM Tests for Detecting Changes in Continuous Time Processes George V. Moustakides INRIA, Rennes, France Outline The change detection problem Overview of existing results Lorden s criterion and

More information

Introduction to Bayesian Statistics

Introduction to Bayesian Statistics Bayesian Parameter Estimation Introduction to Bayesian Statistics Harvey Thornburg Center for Computer Research in Music and Acoustics (CCRMA) Department of Music, Stanford University Stanford, California

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Surveillance of BiometricsAssumptions

Surveillance of BiometricsAssumptions Surveillance of BiometricsAssumptions in Insured Populations Journée des Chaires, ILB 2017 N. El Karoui, S. Loisel, Y. Sahli UPMC-Paris 6/LPMA/ISFA-Lyon 1 with the financial support of ANR LoLitA, and

More information

Uniformly Uniformly-ergodic Markov chains and BSDEs

Uniformly Uniformly-ergodic Markov chains and BSDEs Uniformly Uniformly-ergodic Markov chains and BSDEs Samuel N. Cohen Mathematical Institute, University of Oxford (Based on joint work with Ying Hu, Robert Elliott, Lukas Szpruch) Centre Henri Lebesgue,

More information

arxiv: v2 [math.pr] 4 Feb 2009

arxiv: v2 [math.pr] 4 Feb 2009 Optimal detection of homogeneous segment of observations in stochastic sequence arxiv:0812.3632v2 [math.pr] 4 Feb 2009 Abstract Wojciech Sarnowski a, Krzysztof Szajowski b,a a Wroc law University of Technology,

More information

Asymptotically Optimal Quickest Change Detection in Distributed Sensor Systems

Asymptotically Optimal Quickest Change Detection in Distributed Sensor Systems This article was downloaded by: [University of Illinois at Urbana-Champaign] On: 23 May 2012, At: 16:03 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954

More information

Delay and Accessibility in Random Temporal Networks

Delay and Accessibility in Random Temporal Networks Delay and Accessibility in Random Temporal Networks 2nd Symposium on Spatial Networks Shahriar Etemadi Tajbakhsh September 13, 2017 Outline Z Accessibility in Deterministic Static and Temporal Networks

More information

EECS564 Estimation, Filtering, and Detection Exam 2 Week of April 20, 2015

EECS564 Estimation, Filtering, and Detection Exam 2 Week of April 20, 2015 EECS564 Estimation, Filtering, and Detection Exam Week of April 0, 015 This is an open book takehome exam. You have 48 hours to complete the exam. All work on the exam should be your own. problems have

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

6 Markov Chain Monte Carlo (MCMC)

6 Markov Chain Monte Carlo (MCMC) 6 Markov Chain Monte Carlo (MCMC) The underlying idea in MCMC is to replace the iid samples of basic MC methods, with dependent samples from an ergodic Markov chain, whose limiting (stationary) distribution

More information

Graph Detection and Estimation Theory

Graph Detection and Estimation Theory Introduction Detection Estimation Graph Detection and Estimation Theory (and algorithms, and applications) Patrick J. Wolfe Statistics and Information Sciences Laboratory (SISL) School of Engineering and

More information

Real-Time Detection of Hybrid and Stealthy Cyber-Attacks in Smart Grid

Real-Time Detection of Hybrid and Stealthy Cyber-Attacks in Smart Grid 1 Real-Time Detection of Hybrid and Stealthy Cyber-Attacks in Smart Grid Mehmet Necip Kurt, Yasin Yılmaz, Member, IEEE, and Xiaodong Wang, Fellow, IEEE Abstract For a safe and reliable operation of the

More information

1 Probabilities. 1.1 Basics 1 PROBABILITIES

1 Probabilities. 1.1 Basics 1 PROBABILITIES 1 PROBABILITIES 1 Probabilities Probability is a tricky word usually meaning the likelyhood of something occuring or how frequent something is. Obviously, if something happens frequently, then its probability

More information

Efficient scalable schemes for monitoring a large number of data streams

Efficient scalable schemes for monitoring a large number of data streams Biometrika (2010, 97, 2,pp. 419 433 C 2010 Biometrika Trust Printed in Great Britain doi: 10.1093/biomet/asq010 Advance Access publication 16 April 2010 Efficient scalable schemes for monitoring a large

More information

Gradient-based Adaptive Stochastic Search

Gradient-based Adaptive Stochastic Search 1 / 41 Gradient-based Adaptive Stochastic Search Enlu Zhou H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology November 5, 2014 Outline 2 / 41 1 Introduction

More information

Spectral Methods for Subgraph Detection

Spectral Methods for Subgraph Detection Spectral Methods for Subgraph Detection Nadya T. Bliss & Benjamin A. Miller Embedded and High Performance Computing Patrick J. Wolfe Statistics and Information Laboratory Harvard University 12 July 2010

More information

SEQUENTIAL CHANGE-POINT DETECTION WHEN THE PRE- AND POST-CHANGE PARAMETERS ARE UNKNOWN. Tze Leung Lai Haipeng Xing

SEQUENTIAL CHANGE-POINT DETECTION WHEN THE PRE- AND POST-CHANGE PARAMETERS ARE UNKNOWN. Tze Leung Lai Haipeng Xing SEQUENTIAL CHANGE-POINT DETECTION WHEN THE PRE- AND POST-CHANGE PARAMETERS ARE UNKNOWN By Tze Leung Lai Haipeng Xing Technical Report No. 2009-5 April 2009 Department of Statistics STANFORD UNIVERSITY

More information

RENEWAL THEORY STEVEN P. LALLEY UNIVERSITY OF CHICAGO. X i

RENEWAL THEORY STEVEN P. LALLEY UNIVERSITY OF CHICAGO. X i RENEWAL THEORY STEVEN P. LALLEY UNIVERSITY OF CHICAGO 1. RENEWAL PROCESSES A renewal process is the increasing sequence of random nonnegative numbers S 0,S 1,S 2,... gotten by adding i.i.d. positive random

More information

A new multivariate CUSUM chart using principal components with a revision of Crosier's chart

A new multivariate CUSUM chart using principal components with a revision of Crosier's chart Title A new multivariate CUSUM chart using principal components with a revision of Crosier's chart Author(s) Chen, J; YANG, H; Yao, JJ Citation Communications in Statistics: Simulation and Computation,

More information

EARLY DETECTION OF A CHANGE IN POISSON RATE AFTER ACCOUNTING FOR POPULATION SIZE EFFECTS

EARLY DETECTION OF A CHANGE IN POISSON RATE AFTER ACCOUNTING FOR POPULATION SIZE EFFECTS Statistica Sinica 21 (2011), 597-624 EARLY DETECTION OF A CHANGE IN POISSON RATE AFTER ACCOUNTING FOR POPULATION SIZE EFFECTS Yajun Mei, Sung Won Han and Kwok-Leung Tsui Georgia Institute of Technology

More information

Least Favorable Distributions for Robust Quickest Change Detection

Least Favorable Distributions for Robust Quickest Change Detection Least Favorable Distributions for Robust Quickest hange Detection Jayakrishnan Unnikrishnan, Venugopal V. Veeravalli, Sean Meyn Department of Electrical and omputer Engineering, and oordinated Science

More information

Lecture 7 Introduction to Statistical Decision Theory

Lecture 7 Introduction to Statistical Decision Theory Lecture 7 Introduction to Statistical Decision Theory I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw December 20, 2016 1 / 55 I-Hsiang Wang IT Lecture 7

More information

A Step Towards the Cognitive Radar: Target Detection under Nonstationary Clutter

A Step Towards the Cognitive Radar: Target Detection under Nonstationary Clutter A Step Towards the Cognitive Radar: Target Detection under Nonstationary Clutter Murat Akcakaya Department of Electrical and Computer Engineering University of Pittsburgh Email: akcakaya@pitt.edu Satyabrata

More information

Statistical Inference

Statistical Inference Statistical Inference Classical and Bayesian Methods Class 6 AMS-UCSC Thu 26, 2012 Winter 2012. Session 1 (Class 6) AMS-132/206 Thu 26, 2012 1 / 15 Topics Topics We will talk about... 1 Hypothesis testing

More information

Scalable robust hypothesis tests using graphical models

Scalable robust hypothesis tests using graphical models Scalable robust hypothesis tests using graphical models Umamahesh Srinivas ipal Group Meeting October 22, 2010 Binary hypothesis testing problem Random vector x = (x 1,...,x n ) R n generated from either

More information

Sequential Procedure for Testing Hypothesis about Mean of Latent Gaussian Process

Sequential Procedure for Testing Hypothesis about Mean of Latent Gaussian Process Applied Mathematical Sciences, Vol. 4, 2010, no. 62, 3083-3093 Sequential Procedure for Testing Hypothesis about Mean of Latent Gaussian Process Julia Bondarenko Helmut-Schmidt University Hamburg University

More information

Rao-Blackwellized Particle Filter for Multiple Target Tracking

Rao-Blackwellized Particle Filter for Multiple Target Tracking Rao-Blackwellized Particle Filter for Multiple Target Tracking Simo Särkkä, Aki Vehtari, Jouko Lampinen Helsinki University of Technology, Finland Abstract In this article we propose a new Rao-Blackwellized

More information

Stochastic Proximal Gradient Algorithm

Stochastic Proximal Gradient Algorithm Stochastic Institut Mines-Télécom / Telecom ParisTech / Laboratoire Traitement et Communication de l Information Joint work with: Y. Atchade, Ann Arbor, USA, G. Fort LTCI/Télécom Paristech and the kind

More information

Duration-Based Volatility Estimation

Duration-Based Volatility Estimation A Dual Approach to RV Torben G. Andersen, Northwestern University Dobrislav Dobrev, Federal Reserve Board of Governors Ernst Schaumburg, Northwestern Univeristy CHICAGO-ARGONNE INSTITUTE ON COMPUTATIONAL

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 16 Advanced topics in computational statistics 18 May 2017 Computer Intensive Methods (1) Plan of

More information

Space-Time CUSUM for Distributed Quickest Detection Using Randomly Spaced Sensors Along a Path

Space-Time CUSUM for Distributed Quickest Detection Using Randomly Spaced Sensors Along a Path Space-Time CUSUM for Distributed Quickest Detection Using Randomly Spaced Sensors Along a Path Daniel Egea-Roca, Gonzalo Seco-Granados, José A López-Salcedo, Sunwoo Kim Dpt of Telecommunications and Systems

More information

Introduction to Algorithmic Trading Strategies Lecture 10

Introduction to Algorithmic Trading Strategies Lecture 10 Introduction to Algorithmic Trading Strategies Lecture 10 Risk Management Haksun Li haksun.li@numericalmethod.com www.numericalmethod.com Outline Value at Risk (VaR) Extreme Value Theory (EVT) References

More information

arxiv: v2 [math.st] 20 Jul 2016

arxiv: v2 [math.st] 20 Jul 2016 arxiv:1603.02791v2 [math.st] 20 Jul 2016 Asymptotically optimal, sequential, multiple testing procedures with prior information on the number of signals Y. Song and G. Fellouris Department of Statistics,

More information

Surveillance of Infectious Disease Data using Cumulative Sum Methods

Surveillance of Infectious Disease Data using Cumulative Sum Methods Surveillance of Infectious Disease Data using Cumulative Sum Methods 1 Michael Höhle 2 Leonhard Held 1 1 Institute of Social and Preventive Medicine University of Zurich 2 Department of Statistics University

More information

1 Probabilities. 1.1 Basics 1 PROBABILITIES

1 Probabilities. 1.1 Basics 1 PROBABILITIES 1 PROBABILITIES 1 Probabilities Probability is a tricky word usually meaning the likelyhood of something occuring or how frequent something is. Obviously, if something happens frequently, then its probability

More information

Expectation propagation for signal detection in flat-fading channels

Expectation propagation for signal detection in flat-fading channels Expectation propagation for signal detection in flat-fading channels Yuan Qi MIT Media Lab Cambridge, MA, 02139 USA yuanqi@media.mit.edu Thomas Minka CMU Statistics Department Pittsburgh, PA 15213 USA

More information

Spectrum Opportunity Detection with Weak and Correlated Signals

Spectrum Opportunity Detection with Weak and Correlated Signals Specum Opportunity Detection with Weak and Correlated Signals Yao Xie Department of Elecical and Computer Engineering Duke University orth Carolina 775 Email: yaoxie@dukeedu David Siegmund Department of

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information

Chapter 2. Binary and M-ary Hypothesis Testing 2.1 Introduction (Levy 2.1)

Chapter 2. Binary and M-ary Hypothesis Testing 2.1 Introduction (Levy 2.1) Chapter 2. Binary and M-ary Hypothesis Testing 2.1 Introduction (Levy 2.1) Detection problems can usually be casted as binary or M-ary hypothesis testing problems. Applications: This chapter: Simple hypothesis

More information

WHEELS COATING PROCESS MONITORING IN THE PRESENCE OF NUISANCE PARAMETERS USING SEQUENTIAL CHANGE-POINT DETECTION METHOD

WHEELS COATING PROCESS MONITORING IN THE PRESENCE OF NUISANCE PARAMETERS USING SEQUENTIAL CHANGE-POINT DETECTION METHOD WHEELS COATING PROCESS MONITORING IN THE PRESENCE OF NUISANCE PARAMETERS USING SEQUENTIAL CHANGE-POINT DETECTION METHOD Karim Tout, Florent Retraint and Rémi Cogranne LM2S - ICD - UMR 6281 STMR CNRS -

More information

Data Exploration and Unsupervised Learning with Clustering

Data Exploration and Unsupervised Learning with Clustering Data Exploration and Unsupervised Learning with Clustering Paul F Rodriguez,PhD San Diego Supercomputer Center Predictive Analytic Center of Excellence Clustering Idea Given a set of data can we find a

More information

GraphRNN: A Deep Generative Model for Graphs (24 Feb 2018)

GraphRNN: A Deep Generative Model for Graphs (24 Feb 2018) GraphRNN: A Deep Generative Model for Graphs (24 Feb 2018) Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, Jure Leskovec Presented by: Jesse Bettencourt and Harris Chan March 9, 2018 University

More information

SCALABLE ROBUST MONITORING OF LARGE-SCALE DATA STREAMS. By Ruizhi Zhang and Yajun Mei Georgia Institute of Technology

SCALABLE ROBUST MONITORING OF LARGE-SCALE DATA STREAMS. By Ruizhi Zhang and Yajun Mei Georgia Institute of Technology Submitted to the Annals of Statistics SCALABLE ROBUST MONITORING OF LARGE-SCALE DATA STREAMS By Ruizhi Zhang and Yajun Mei Georgia Institute of Technology Online monitoring large-scale data streams has

More information

Link Prediction. Eman Badr Mohammed Saquib Akmal Khan

Link Prediction. Eman Badr Mohammed Saquib Akmal Khan Link Prediction Eman Badr Mohammed Saquib Akmal Khan 11-06-2013 Link Prediction Which pair of nodes should be connected? Applications Facebook friend suggestion Recommendation systems Monitoring and controlling

More information

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition Preface Preface to the First Edition xi xiii 1 Basic Probability Theory 1 1.1 Introduction 1 1.2 Sample Spaces and Events 3 1.3 The Axioms of Probability 7 1.4 Finite Sample Spaces and Combinatorics 15

More information

Directionally Sensitive Multivariate Statistical Process Control Methods

Directionally Sensitive Multivariate Statistical Process Control Methods Directionally Sensitive Multivariate Statistical Process Control Methods Ronald D. Fricker, Jr. Naval Postgraduate School October 5, 2005 Abstract In this paper we develop two directionally sensitive statistical

More information

Online Algorithms for Sum-Product

Online Algorithms for Sum-Product Online Algorithms for Sum-Product Networks with Continuous Variables Priyank Jaini Ph.D. Seminar Consistent/Robust Tensor Decomposition And Spectral Learning Offline Bayesian Learning ADF, EP, SGD, oem

More information

Change-Point Estimation

Change-Point Estimation Change-Point Estimation. Asymptotic Quasistationary Bias For notational convenience, we denote by {S n}, for n, an independent copy of {S n } and M = sup S k, k

More information

Online Learning with Feedback Graphs

Online Learning with Feedback Graphs Online Learning with Feedback Graphs Nicolò Cesa-Bianchi Università degli Studi di Milano Joint work with: Noga Alon (Tel-Aviv University) Ofer Dekel (Microsoft Research) Tomer Koren (Technion and Microsoft

More information

Quickest Changepoint Detection: Optimality Properties of the Shiryaev Roberts-Type Procedures

Quickest Changepoint Detection: Optimality Properties of the Shiryaev Roberts-Type Procedures Quickest Changepoint Detection: Optimality Properties of the Shiryaev Roberts-Type Procedures Alexander Tartakovsky Department of Statistics a.tartakov@uconn.edu Inference for Change-Point and Related

More information

Outline. 1 Introduction. 2 Problem and solution. 3 Bayesian tracking model of group debris. 4 Simulation results. 5 Conclusions

Outline. 1 Introduction. 2 Problem and solution. 3 Bayesian tracking model of group debris. 4 Simulation results. 5 Conclusions Outline 1 Introduction 2 Problem and solution 3 Bayesian tracking model of group debris 4 Simulation results 5 Conclusions Problem The limited capability of the radar can t always satisfy the detection

More information

X 1,n. X L, n S L S 1. Fusion Center. Final Decision. Information Bounds and Quickest Change Detection in Decentralized Decision Systems

X 1,n. X L, n S L S 1. Fusion Center. Final Decision. Information Bounds and Quickest Change Detection in Decentralized Decision Systems 1 Information Bounds and Quickest Change Detection in Decentralized Decision Systems X 1,n X L, n Yajun Mei Abstract The quickest change detection problem is studied in decentralized decision systems,

More information

Stein Couplings for Concentration of Measure

Stein Couplings for Concentration of Measure Stein Couplings for Concentration of Measure Jay Bartroff, Subhankar Ghosh, Larry Goldstein and Ümit Işlak University of Southern California [arxiv:0906.3886] [arxiv:1304.5001] [arxiv:1402.6769] Borchard

More information

Computing and Communicating Functions over Sensor Networks

Computing and Communicating Functions over Sensor Networks Computing and Communicating Functions over Sensor Networks Solmaz Torabi Dept. of Electrical and Computer Engineering Drexel University solmaz.t@drexel.edu Advisor: Dr. John M. Walsh 1/35 1 Refrences [1]

More information

Composite Hypotheses and Generalized Likelihood Ratio Tests

Composite Hypotheses and Generalized Likelihood Ratio Tests Composite Hypotheses and Generalized Likelihood Ratio Tests Rebecca Willett, 06 In many real world problems, it is difficult to precisely specify probability distributions. Our models for data may involve

More information

Risk Estimation and Uncertainty Quantification by Markov Chain Monte Carlo Methods

Risk Estimation and Uncertainty Quantification by Markov Chain Monte Carlo Methods Risk Estimation and Uncertainty Quantification by Markov Chain Monte Carlo Methods Konstantin Zuev Institute for Risk and Uncertainty University of Liverpool http://www.liv.ac.uk/risk-and-uncertainty/staff/k-zuev/

More information

MULTIPLE-CHANNEL DETECTION IN ACTIVE SENSING. Kaitlyn Beaudet and Douglas Cochran

MULTIPLE-CHANNEL DETECTION IN ACTIVE SENSING. Kaitlyn Beaudet and Douglas Cochran MULTIPLE-CHANNEL DETECTION IN ACTIVE SENSING Kaitlyn Beaudet and Douglas Cochran School of Electrical, Computer and Energy Engineering Arizona State University, Tempe AZ 85287-576 USA ABSTRACT The problem

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

Quickest Anomaly Detection: A Case of Active Hypothesis Testing

Quickest Anomaly Detection: A Case of Active Hypothesis Testing Quickest Anomaly Detection: A Case of Active Hypothesis Testing Kobi Cohen, Qing Zhao Department of Electrical Computer Engineering, University of California, Davis, CA 95616 {yscohen, qzhao}@ucdavis.edu

More information

Using the Empirical Probability Integral Transformation to Construct a Nonparametric CUSUM Algorithm

Using the Empirical Probability Integral Transformation to Construct a Nonparametric CUSUM Algorithm Using the Empirical Probability Integral Transformation to Construct a Nonparametric CUSUM Algorithm Daniel R. Jeske University of California, Riverside Department of Statistics Joint work with V. Montes

More information

A Binning Approach to Quickest Change Detection with Unknown Post-Change Distribution

A Binning Approach to Quickest Change Detection with Unknown Post-Change Distribution 1 A Binning Approach to Quickest Change Detection with Unknown Post-Change Distribution arxiv:1801.04756v3 [stat.ap] 16 Aug 2018 Tze Siong Lau, Wee Peng Tay, Senior Member, IEEE, and Venugopal V. Veeravalli,

More information

Regenerative Likelihood Ratio control schemes

Regenerative Likelihood Ratio control schemes Regenerative Likelihood Ratio control schemes Emmanuel Yashchin IBM Research, Yorktown Heights, NY XIth Intl. Workshop on Intelligent Statistical Quality Control 2013, Sydney, Australia Outline Motivation

More information

STONY BROOK UNIVERSITY. CEAS Technical Report 829

STONY BROOK UNIVERSITY. CEAS Technical Report 829 1 STONY BROOK UNIVERSITY CEAS Technical Report 829 Variable and Multiple Target Tracking by Particle Filtering and Maximum Likelihood Monte Carlo Method Jaechan Lim January 4, 2006 2 Abstract In most applications

More information

Extending the Robust Means Modeling Framework. Alyssa Counsell, Phil Chalmers, Matt Sigal, Rob Cribbie

Extending the Robust Means Modeling Framework. Alyssa Counsell, Phil Chalmers, Matt Sigal, Rob Cribbie Extending the Robust Means Modeling Framework Alyssa Counsell, Phil Chalmers, Matt Sigal, Rob Cribbie One-way Independent Subjects Design Model: Y ij = µ + τ j + ε ij, j = 1,, J Y ij = score of the ith

More information

Simultaneous and sequential detection of multiple interacting change points

Simultaneous and sequential detection of multiple interacting change points Simultaneous and sequential detection of multiple interacting change points Long Nguyen Department of Statistics University of Michigan Joint work with Ram Rajagopal (Stanford University) 1 Introduction

More information

M-Statistic for Kernel Change-Point Detection

M-Statistic for Kernel Change-Point Detection M-Statistic for Kernel Change-Point Detection Shuang Li, Yao Xie H. Milton Stewart School of Industrial and Systems Engineering Georgian Institute of Technology sli37@gatech.edu yao.xie@isye.gatech.edu

More information

Change Detection with prescribed false alarm and detection probabilities. Mogens Blanke

Change Detection with prescribed false alarm and detection probabilities. Mogens Blanke CeSOS Workshop NTNU May 27-29 2013 Change Detection with prescribed false alarm and detection probabilities Mogens Blanke Adjunct Professor at Centre for Ships and Ocean Structures, NTNU, Norway Professor

More information

Change Detection Algorithms

Change Detection Algorithms 5 Change Detection Algorithms In this chapter, we describe the simplest change detection algorithms. We consider a sequence of independent random variables (y k ) k with a probability density p (y) depending

More information

Success Probability of the Hellman Trade-off

Success Probability of the Hellman Trade-off This is the accepted version of Information Processing Letters 109(7 pp.347-351 (2009. https://doi.org/10.1016/j.ipl.2008.12.002 Abstract Success Probability of the Hellman Trade-off Daegun Ma 1 and Jin

More information

Statistical Process Control for Multivariate Categorical Processes

Statistical Process Control for Multivariate Categorical Processes Statistical Process Control for Multivariate Categorical Processes Fugee Tsung The Hong Kong University of Science and Technology Fugee Tsung 1/27 Introduction Typical Control Charts Univariate continuous

More information

EFFICIENT CHANGE DETECTION METHODS FOR BIO AND HEALTHCARE SURVEILLANCE

EFFICIENT CHANGE DETECTION METHODS FOR BIO AND HEALTHCARE SURVEILLANCE EFFICIENT CHANGE DETECTION METHODS FOR BIO AND HEALTHCARE SURVEILLANCE A Thesis Presented to The Academic Faculty by Sung Won Han In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

Anomaly Detection and Attribution in Networks with Temporally Correlated Traffic

Anomaly Detection and Attribution in Networks with Temporally Correlated Traffic Anomaly Detection and Attribution in Networks with Temporally Correlated Traffic Ido Nevat, Dinil Mon Divakaran 2, Sai Ganesh Nagarajan 2, Pengfei Zhang 3, Le Su 2, Li Ling Ko 4, Vrizlynn L. L. Thing 2

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

The Modified Keifer-Weiss Problem, Revisited

The Modified Keifer-Weiss Problem, Revisited The Modified Keifer-Weiss Problem, Revisited Bob Keener Department of Statistics University of Michigan IWSM, 2013 Bob Keener (University of Michigan) Keifer-Weiss Problem IWSM 2013 1 / 15 Outline 1 Symmetric

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

Dynamic System Identification using HDMR-Bayesian Technique

Dynamic System Identification using HDMR-Bayesian Technique Dynamic System Identification using HDMR-Bayesian Technique *Shereena O A 1) and Dr. B N Rao 2) 1), 2) Department of Civil Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India 1) ce14d020@smail.iitm.ac.in

More information

On-line Flagging of Anomalies and Adaptive Sequential Hypothesis Testing for Fine-feature Characterization of Geosynchronous Satellites

On-line Flagging of Anomalies and Adaptive Sequential Hypothesis Testing for Fine-feature Characterization of Geosynchronous Satellites On-line Flagging of Anomalies and Adaptive Sequential Hypothesis Testing for Fine-feature Characterization of Geosynchronous Satellites By Anil Chaudhary 1, Tamara Payne 1, Kimberly Kinateder 2, Phan Dao

More information

IMPORTANCE SAMPLING FOR GENERALIZED LIKELIHOOD RATIO PROCEDURES IN SEQUENTIAL ANALYSIS. Hock Peng Chan

IMPORTANCE SAMPLING FOR GENERALIZED LIKELIHOOD RATIO PROCEDURES IN SEQUENTIAL ANALYSIS. Hock Peng Chan IMPORTANCE SAMPLING FOR GENERALIZED LIKELIHOOD RATIO PROCEDURES IN SEQUENTIAL ANALYSIS Hock Peng Chan Department of Statistics and Applied Probability National University of Singapore, Singapore 119260

More information

LEARNING DYNAMIC SYSTEMS: MARKOV MODELS

LEARNING DYNAMIC SYSTEMS: MARKOV MODELS LEARNING DYNAMIC SYSTEMS: MARKOV MODELS Markov Process and Markov Chains Hidden Markov Models Kalman Filters Types of dynamic systems Problem of future state prediction Predictability Observability Easily

More information