Kalman Filter: an instance of Bayes Filter. Kalman Filter: an instance of Bayes Filter. Kalman Filter. Linear dynamics with Gaussian noise

Size: px
Start display at page:

Download "Kalman Filter: an instance of Bayes Filter. Kalman Filter: an instance of Bayes Filter. Kalman Filter. Linear dynamics with Gaussian noise"

Transcription

1 COM47 Inoducion o Roboics and Inelligen ysems he alman File alman File: an insance of Bayes File alman File: an insance of Bayes File Linea dynamics wih Gaussian noise alman File Linea dynamics wih Gaussian noise Linea obsevaions wih Gaussian noise Linea obsevaions wih Gaussian noise Iniial belief is Gaussian Iniial belief is Gaussian

2 alman File: assumpions wo assumpions inheied fom Bayes File Linea dynamics and obsevaion models Iniial belief is Gaussian Noise vaiables and iniial sae ae joinly Gaussian and independen Noise vaiables ae independen and idenically disibued Noise vaiables ae independen and idenically disibued alman File: why hose assumpions? wo assumpions inheied fom Bayes File Linea dynamics and obsevaion models Iniial belief is Gaussian Noise vaiables and iniial sae Wihou lineaiy hee is no closed-fom soluion fo he poseio belief in he Bayes File. Recall ha if X is Gaussian hen YAXb is also Gaussian. his is no ue in geneal if Yh(X). Also, we will see lae ha applying Bayes ule o a Gaussian pio and a Gaussian measuemen likelihood esuls in a Gaussian poseio. ae joinly Gaussian and independen Noise vaiables ae independen and idenically disibued Noise vaiables ae independen and idenically disibued alman File: why hose assumpions? wo assumpions inheied fom Bayes File Linea dynamics and obsevaion models Iniial belief is Gaussian Noise vaiables and iniial sae his esuls in he belief emaining Gaussian afe each popagaion and updae sep. his means ha we only have o woy abou how he mean and he covaiance of he belief evolve ecusively wih each pedicion sep and updae sep! COOL! ae joinly Gaussian and independen Noise vaiables ae independen and idenically disibued Noise vaiables ae independen and idenically disibued alman File: why so many assumpions? wo assumpions inheied fom Bayes File Linea dynamics and obsevaion models Iniial belief is Gaussian Noise vaiables and iniial sae ae joinly Gaussian and independen Noise vaiables ae independen and idenically disibued Noise vaiables ae independen and idenically disibued his makes he ecusive updaes of he mean and covaiance much simple and allows fo a ROOF OF OIMALIY.

3 Assumpions guaanee ha if he pio belief befoe he pedicion sep is Gaussian alman File: an insance of Bayes File alman File: an insance of Bayes File Belief afe pedicion sep (o simplify noaion) hen he pio belief afe he pedicion sep will be Gaussian o, unde he alman File assumpions we ge and he poseio belief (afe he updae sep) will be Gaussian. Noaion: esimae a ime given hisoy of obsevaions and conols up o ime - alman File: an insance of Bayes File alman File wih D sae Le s sa wih he updae sep ecusion. ee s an eample: uppose you measuemen model is wih uppose you belief afe he pedicion sep is o, unde he alman File assumpions we ge wo main quesions:. ow o ge pedicion mean and covaiance fom pio mean and covaiance? uppose you fis noisy measuemen is 2. ow o ge poseio mean and covaiance fom pedicion mean and covaiance? hese quesions wee answeed in he 960s. he esuling algoihm was used in he Apollo missions o he moon, and in almos evey sysem in which hee is a noisy senso involved! COOL! Whee I hink I wen... Wha is saw suggess... Q: Wha is he mean and covaiance of?

4 alman File wih D sae: he updae sep Fom Bayes File we ge so fo his eample alman File wih D sae: he updae sep Fom Bayes File we ge so edicion esidualeo beween acual obsevaion and epeced obsevaion. You epeced he measued mean o be 0, accoding o you pedicion pio, bu you acually obseved 5. he smalle his pedicion eo is he bee you esimae will be, o he bee i will agee wih he measuemens. alman File wih D sae: he updae sep & alman Gain alman File wih D sae: he updae sep Fom Bayes File we ge so Fom Bayes File we ge so alman Gain: specifies how much effec will he measuemen have in he poseio, compaed o he pedicion pio. Which one do you us moe, you pio o you measuemen? he measuemen is moe confiden (lowe vaiance) han he pio, so he poseio mean is going o be close o 5 han o 0.

5 alman File wih D sae: he updae sep alman File wih D sae: he updae sep Fom Bayes File we ge so Fom Bayes File we ge so Noe we can wie his as he weighed aveage of A and B No mae wha happens, he vaiance of he poseio is going o be educed. I.e. new measuemen inceases confidence no mae how noisy i is. In fac you can wie his as so and I.e. he poseio is moe confiden han boh he pio and he measuemen. alman File wih D sae: he updae sep alman File wih D sae: he updae sep Fom Bayes File we ge so Anohe eample: In his eample:

6 alman File wih D sae: he popagaionpedicion sep alman File wih D sae: he updae sep Oc 26 end ake home message: unceainy inceases afe he pedicion sep, because we ae speculaing abou he fuue. ake-home message: new obsevaions, no mae how noisy, always educe unceainy in he poseio. he mean of he poseio, on he ohe hand, only changes when hee is a noneo pedicion esidual. imple vesion: ea daa is always useful, no mae how uneliable he souce. Recap: Bayesian File Deivaion of he Bayesian File Robo and envionmenal sae esimaion is a fundamenal poblem (no jus in oboics)! Nealy all algoihms ha eis fo spaial easoning make use of his appoach If you e woking in oboics, you ll see i ove and ove! "Fileing" is a name fo combining daa. Efficien sae esimaos Recusively compue he obo s cuen sae based on he pevious sae of he obo Wha is he obo s sae? Esimaion of he obo s sae given he daa: Bel ( ) p( Z ) he obo s daa, Z, is epanded ino wo ypes: obsevaions (i o o i )and acions (denoed ui o a i) Bel( ) p( o, a, o, a2,..., o0) Invoking he Bayesian heoem Bel( ) p( o, a,..., o0) p( a p( o a,..., o ) 0,..., o ) 0

7 Deivaion of he Bayesian File Denominao is consan elaive o η p o a,..., ) ( a0 Bel( ) ηp( o, a,..., o0) p( a,..., o0 ) Fis-ode Makov assumpion shoens fis em: Bel( ) ηp( o ) p( a,..., o0) Bayesian File : Requiemens fo Implemenaion Updae equaions Moion model enso model Repesenaion fo he belief funcion Iniial belief sae Bel Epanding he las em (heoem of oal pobabiliy): ( ) ηp( o ) p(, a,..., o0 ) p( a,..., o0) d Repesenaion of he Belief Funcion Reminde alman File assumpions ample-based epesenaions e.g. aicle files aameic epesenaions wo assumpions inheied fom Bayes File Linea dynamics and obsevaion models Iniial belief is Gaussian Noise vaiables and iniial sae ae joinly Gaussian and independen Noise vaiables ae independen and idenically disibued Noise vaiables ae independen and idenically disibued ( n, y ),(, y ),(, y ),...( n, y ) y m b

8 alman File is a aameeied Bayesian File alman files (F) epesen poseio belief by a paameic fo: Gaussian (nomal) disibuion alman File : a Bayesian File Iniial belief Bel( 0 ) is a Gaussian disibuion Wha do we do fo an unknown saing posiion? ae a ime is a linea funcion of sae a ime : F Bu ε ( acion) A -d Gaussian disibuion is given by: 2 ( µ ) 2 2σ ( ) e σ 2π An n-d Gaussian disibuion is given by: ( ) e n (2π ) Σ ( µ ) Σ ( µ ) 2 Obsevaions ae linea in he sae: Eo ems ae eo-mean andom vaiables which ae nomally disibued hese assumpions guaanee ha he poseio belief is Gaussian he alman File is an efficien algoihm o compue he poseio Nomally, an updae of his naue would equie a mai invesion (simila o a leas squaes esimao) he alman File avoids his compuaionally comple opeaion ε (obsevaion) Linea sysem in sae-space fom: () A Bu C now inpu veco u and oupu veco, as well as he maices A, B, and C pefecly. Conolles can be designed wih full sae knowledge: A Bu C u - Obseves can be designed o esimae he full sae fom he oupu: A Bu ( C ) he conolle and obseve can be designed independenly! Innovaion em. Why no jus use C - o ge an esimae of? Because i migh no be inveible.

9 he alman File Moion model is Gaussian enso model is Gaussian Each belief funcion is uniquely chaaceied by is mean µ and covaiance mai Σ Compuing he poseio means compuing a new mean µ and covaiance Σ fom old daa using acions and senso eadings Wha ae he key limiaions? Wha we know Wha we don know We know wha he conol inpus of ou pocess ae We know wha we ve old he sysem o do and have a model fo wha he epeced oupu should be if eveyhing woks igh We don know wha he noise in he sysem uly is We can only esimae wha he noise migh be and y o pu some so of uppe bound on i When esimaing he sae of a sysem, we y o find a se of values ha comes as close o he uh as possible hee will always be some mismach beween ou esimae of he sysem and he ue sae of he sysem iself. We jus y o figue ou how much mismach hee is and y o ge he bes esimae possible ) Unimodal disibuion 2) Linea assumpions Minimum Mean quae Eo Reminde: he epeced value, o mean value, of a Coninuous andom vaiable is defined as: E [ ] p( ) d Minimum Mean quae Eo Wha is he mean of his disibuion? ( Z) his is difficul o obain eacly. Wih ou appoimaions, we can ge he esimae 2 such ha E[( ) ] is minimied. Accoding o he Fundamenal heoem of Esimaion heoy his esimae is: MME E[ Z] p( Z) d Z Fundamenal heoem of Esimaion heoy -> alman file opimaliy he minimum mean squae eo esimao equals he epeced (mean) value of condiioned on he obsevaions Z he minimum mean squae eo em is quadaic: E[( ) Is minimum can be found by aking he deivaive of he funcion w.. and seing ha value o 0. 2 ( E[( ) Z]) 0 When hey use he Gaussian assumpion, Maimum A oseioi esimaos and MME esimaos find he same value fo he paamees. his I can be eplained (ouside he scope of he couse) because mean and he mode of a Gaussian disibuion ae he same. 2 Z ]

10 alman File Componens (also known as: Way oo Many Vaiables ) Linea discee ime dynamic sysem (moion model) w G B u F Measuemen equaion (senso model) n ae ansiion funcion Conol inpu funcion Noise inpu funcion wih covaiance Q ae Conol inpu ocess noise ae enso eading enso noise wih covaiance R enso funcion Noe:Wie hese down & emembe hem!!! Compuing he MME Esimae of he ae and Covaiance Given a se of measuemens: }, { i Z i Accoding o he Fundamenal heoem of Esimaion, he sae and covaiance will be: ] ) [( ] [ 2 MME MME Z E Z E We will now use he following noaion: ] [ ] [ ] [ Z E Z E Z E Compuing he MME Esimae of he ae and Covaiance Wha is he minimum mean squae eo esimae of he sysem sae and covaiance? u B F Esimae of he sae vaiables Esimae of he senso eading G G Q F F Covaiance mai fo he sae R Covaiance mai fo he sensos A las! he alman File opagaion (moion model): G Q G F F B u F Updae (senso model): R

11 bu wha does ha mean in English?!? opagaion (moion model): Updae (senso model): - ae esimae is updaed fom sysem dynamics - Unceainy esimae GROW - Compue epeced value of senso eading - Compue he diffeence beween epeced and ue - Compue covaiance of senso eading - Compue he alman Gain (how much o coec es.) - Muliply esidual imes gain o coec sae esimae - Unceainy esimae RIN G Q G F F B u F R alman File Block Diagam Eample : imple D Linea ysem Given: FG, u0 Iniial sae esimae 0 Linea sysem: n w opagaion: Updae: Q Unknown noise paamees R ae Esimae

12 ae Esimaion Eo vs 3σ Region of Confidence enso Residual vs 3σ Region of Confidence alman Gain and ae Covaiance Eample 2: imple D Linea ysem wih Eoneous a Given: FG, ucos(5) Iniial sae esimae 20 Linea sysem: ) 5 cos( n w opagaion: Updae: (no change) Q ) 5 cos( Unknown noise paamees R

13 ae Esimae ae Esimaion Eo vs 3σ Region of Confidence enso Residual vs 3σ Region of Confidence alman Gain and ae Covaiance

14 ome obsevaions he lage he eo, he smalle he effec on he final sae esimae If pocess unceainy is lage, senso updaes will dominae sae esimae If senso unceainy is lage, pocess popagaion will dominae sae esimae Impope esimaes of he sae ando senso covaiance may esul in a apidly diveging esimao As a ule of humb, he esiduals mus always be bounded wihin a ±3σ egion of unceainy his measues he healh of he file Many popagaion cycles can happen beween updaes Using he alman File fo Mobile Robos enso modeling he odomey esimae is no a eflecion of he obo s conol sysem is ahe eaed as a senso Insead of diecly measuing he eo in he sae veco (such as when doing acking), he eo in he sae mus be esimaed his is efeed o as he Indiec alman File ae veco fo obo moving in 2D he sae veco is 3: [,y,θ] he covaiance mai is 33 oblem: Mobile obo dynamics ae NO linea oblems wih he Linea Model Assumpion Many sysems of inees ae highly non-linea, such as mobile obos In ode o model such sysems, a linea pocess model mus be geneaed ou of he non-linea sysem dynamics he Eended alman file is a mehod by which he sae popagaion equaions and he senso models can be lineaied abou he cuen sae esimae Lineaiaion will incease he sae eo esidual because i is no he bes esimae Dynamics alman File in N dimensions Received measuemen Ini edicion ep Updae ep bu epeced o eceive edicion esidual is a Gaussian andom vaiable whee he covaiance of he esidual is alman Gain (opimal coecion faco): Measuemens

15 Dynamics alman File in N dimensions Measuemens Dynamics alman File in N dimensions Measuemens Ini Ini edicion ep edicion ep Updae ep Updae ep Received measuemen bu epeced o eceive Received measuemen bu epeced o eceive edicion esidual is a Gaussian andom vaiable whee he covaiance of he esidual is alman Gain (opimal coecion faco): oenially epensive and eo-pone opeaion: mai invesion O( ^2.4) edicion esidual is a Gaussian andom vaiable whee he covaiance of he esidual is alman Gain (opimal coecion faco): Numeical eos may make he covaiance non symmeic a some poin. In pacice, we eihe foce symmey, o we decompose he covaianc duing he updae. ee Facoiaion mehods fo discee sequenial esimaion by Geald Bieman fo moe info. Appendi Claim: whee oof: Define whee

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example C 188: Aificial Inelligence Fall 2007 epesening Knowledge ecue 17: ayes Nes III 10/25/2007 an Klein UC ekeley Popeies of Ns Independence? ayes nes: pecify complex join disibuions using simple local condiional

More information

Low-complexity Algorithms for MIMO Multiplexing Systems

Low-complexity Algorithms for MIMO Multiplexing Systems Low-complexiy Algoihms fo MIMO Muliplexing Sysems Ouline Inoducion QRD-M M algoihm Algoihm I: : o educe he numbe of suviving pahs. Algoihm II: : o educe he numbe of candidaes fo each ansmied signal. :

More information

Data Fusion using Kalman Filter. Ioannis Rekleitis

Data Fusion using Kalman Filter. Ioannis Rekleitis Daa Fusion using Kalman Filer Ioannis Rekleiis Eample of a arameerized Baesian Filer: Kalman Filer Kalman filers (KF represen poserior belief b a Gaussian (normal disribuion A -d Gaussian disribuion is

More information

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017 Two Popular Bayesian Esimaors: Paricle and Kalman Filers McGill COMP 765 Sep 14 h, 2017 1 1 1, dx x Bel x u x P x z P Recall: Bayes Filers,,,,,,, 1 1 1 1 u z u x P u z u x z P Bayes z = observaion u =

More information

[ ] 0. = (2) = a q dimensional vector of observable instrumental variables that are in the information set m constituents of u

[ ] 0. = (2) = a q dimensional vector of observable instrumental variables that are in the information set m constituents of u Genealized Mehods of Momens he genealized mehod momens (GMM) appoach of Hansen (98) can be hough of a geneal pocedue fo esing economics and financial models. he GMM is especially appopiae fo models ha

More information

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security 1 Geneal Non-Abiage Model I. Paial Diffeenial Equaion fo Picing A. aded Undelying Secuiy 1. Dynamics of he Asse Given by: a. ds = µ (S, )d + σ (S, )dz b. he asse can be eihe a sock, o a cuency, an index,

More information

CS 188: Artificial Intelligence Fall Probabilistic Models

CS 188: Artificial Intelligence Fall Probabilistic Models CS 188: Aificial Inelligence Fall 2007 Lecue 15: Bayes Nes 10/18/2007 Dan Klein UC Bekeley Pobabilisic Models A pobabilisic model is a join disibuion ove a se of vaiables Given a join disibuion, we can

More information

Risk tolerance and optimal portfolio choice

Risk tolerance and optimal portfolio choice Risk oleance and opimal pofolio choice Maek Musiela BNP Paibas London Copoae and Invesmen Join wok wih T. Zaiphopoulou (UT usin) Invesmens and fowad uiliies Pepin 6 Backwad and fowad dynamic uiliies and

More information

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay) Secions 3.1 and 3.4 Eponenial Funcions (Gowh and Decay) Chape 3. Secions 1 and 4 Page 1 of 5 Wha Would You Rahe Have... $1million, o double you money evey day fo 31 days saing wih 1cen? Day Cens Day Cens

More information

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain Lecue-V Sochasic Pocesses and he Basic Tem-Sucue Equaion 1 Sochasic Pocesses Any vaiable whose value changes ove ime in an unceain way is called a Sochasic Pocess. Sochasic Pocesses can be classied as

More information

Reinforcement learning

Reinforcement learning Lecue 3 Reinfocemen leaning Milos Hauskech milos@cs.pi.edu 539 Senno Squae Reinfocemen leaning We wan o lean he conol policy: : X A We see examples of x (bu oupus a ae no given) Insead of a we ge a feedback

More information

Probabilistic Models. CS 188: Artificial Intelligence Fall Independence. Example: Independence. Example: Independence? Conditional Independence

Probabilistic Models. CS 188: Artificial Intelligence Fall Independence. Example: Independence. Example: Independence? Conditional Independence C 188: Aificial Inelligence Fall 2007 obabilisic Models A pobabilisic model is a join disibuion ove a se of vaiables Lecue 15: Bayes Nes 10/18/2007 Given a join disibuion, we can eason abou unobseved vaiables

More information

Computer Propagation Analysis Tools

Computer Propagation Analysis Tools Compue Popagaion Analysis Tools. Compue Popagaion Analysis Tools Inoducion By now you ae pobably geing he idea ha pedicing eceived signal sengh is a eally impoan as in he design of a wieless communicaion

More information

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions Inenaional Mahemaical Foum, Vol 8, 03, no 0, 463-47 HIKARI Ld, wwwm-hikaicom Combinaoial Appoach o M/M/ Queues Using Hypegeomeic Funcions Jagdish Saan and Kamal Nain Depamen of Saisics, Univesiy of Delhi,

More information

Variance and Covariance Processes

Variance and Covariance Processes Vaiance and Covaiance Pocesses Pakash Balachandan Depamen of Mahemaics Duke Univesiy May 26, 2008 These noes ae based on Due s Sochasic Calculus, Revuz and Yo s Coninuous Maingales and Bownian Moion, Kaazas

More information

7 Wave Equation in Higher Dimensions

7 Wave Equation in Higher Dimensions 7 Wave Equaion in Highe Dimensions We now conside he iniial-value poblem fo he wave equaion in n dimensions, u c u x R n u(x, φ(x u (x, ψ(x whee u n i u x i x i. (7. 7. Mehod of Spheical Means Ref: Evans,

More information

An Automatic Door Sensor Using Image Processing

An Automatic Door Sensor Using Image Processing An Auomaic Doo Senso Using Image Pocessing Depamen o Elecical and Eleconic Engineeing Faculy o Engineeing Tooi Univesiy MENDEL 2004 -Insiue o Auomaion and Compue Science- in BRNO CZECH REPUBLIC 1. Inoducion

More information

STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE WEIBULL DISTRIBUTION

STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE WEIBULL DISTRIBUTION Inenaional Jounal of Science, Technology & Managemen Volume No 04, Special Issue No. 0, Mach 205 ISSN (online): 2394-537 STUDY OF THE STRESS-STRENGTH RELIABILITY AMONG THE PARAMETERS OF GENERALIZED INVERSE

More information

Using the Kalman filter Extended Kalman filter

Using the Kalman filter Extended Kalman filter Using he Kalman filer Eended Kalman filer Doz. G. Bleser Prof. Sricker Compuer Vision: Objec and People Tracking SA- Ouline Recap: Kalman filer algorihm Using Kalman filers Eended Kalman filer algorihm

More information

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t Lecue 6: Fiis Tansmission Equaion and Rada Range Equaion (Fiis equaion. Maximum ange of a wieless link. Rada coss secion. Rada equaion. Maximum ange of a ada. 1. Fiis ansmission equaion Fiis ansmission

More information

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Lecture 17: Kinetics of Phase Growth in a Two-component System: Lecue 17: Kineics of Phase Gowh in a Two-componen Sysem: descipion of diffusion flux acoss he α/ ineface Today s opics Majo asks of oday s Lecue: how o deive he diffusion flux of aoms. Once an incipien

More information

Probabilistic Robotics

Probabilistic Robotics Probabilisic Roboics Bayes Filer Implemenaions Gaussian filers Bayes Filer Reminder Predicion bel p u bel d Correcion bel η p z bel Gaussians : ~ π e p N p - Univariae / / : ~ μ μ μ e p Ν p d π Mulivariae

More information

Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch. Rui Li, J. Bisognano, R. Legg, and R. Bosch

Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch. Rui Li, J. Bisognano, R. Legg, and R. Bosch Two-dimensional Effecs on he CS Ineacion Foces fo an Enegy-Chiped Bunch ui Li, J. Bisognano,. Legg, and. Bosch Ouline 1. Inoducion 2. Pevious 1D and 2D esuls fo Effecive CS Foce 3. Bunch Disibuion Vaiaion

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

On The Estimation of Two Missing Values in Randomized Complete Block Designs

On The Estimation of Two Missing Values in Randomized Complete Block Designs Mahemaical Theoy and Modeling ISSN 45804 (Pape ISSN 505 (Online Vol.6, No.7, 06 www.iise.og On The Esimaion of Two Missing Values in Randomized Complee Bloc Designs EFFANGA, EFFANGA OKON AND BASSE, E.

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES In igid body kinemaics, we use he elaionships govening he displacemen, velociy and acceleaion, bu mus also accoun fo he oaional moion of he body. Descipion of he moion of igid

More information

Lecture 22 Electromagnetic Waves

Lecture 22 Electromagnetic Waves Lecue Elecomagneic Waves Pogam: 1. Enegy caied by he wave (Poyning veco).. Maxwell s equaions and Bounday condiions a inefaces. 3. Maeials boundaies: eflecion and efacion. Snell s Law. Quesions you should

More information

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING MEEN 67 Handou # MODAL ANALYSIS OF MDOF Sysems wih VISCOS DAMPING ^ Symmeic Moion of a n-dof linea sysem is descibed by he second ode diffeenial equaions M+C+K=F whee () and F () ae n ows vecos of displacemens

More information

An Open cycle and Closed cycle Gas Turbine Engines. Methods to improve the performance of simple gas turbine plants

An Open cycle and Closed cycle Gas Turbine Engines. Methods to improve the performance of simple gas turbine plants An Open cycle and losed cycle Gas ubine Engines Mehods o impove he pefomance of simple gas ubine plans I egeneaive Gas ubine ycle: he empeaue of he exhaus gases in a simple gas ubine is highe han he empeaue

More information

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light Lecue 5 Chape 3 lecomagneic Theo, Phoons, and Ligh Gauss s Gauss s Faada s Ampèe- Mawell s + Loen foce: S C ds ds S C F dl dl q Mawell equaions d d qv A q A J ds ds In mae fields ae defined hough ineacion

More information

arxiv: v2 [stat.me] 13 Jul 2015

arxiv: v2 [stat.me] 13 Jul 2015 One- and wo-sample nonpaameic ess fo he al-o-noise aio based on ecod saisics axiv:1502.05367v2 [sa.me] 13 Jul 2015 Damien Challe 1,2 1 Laboaoie de mahémaiques appliquées aux sysèmes, CenaleSupélec, 92295

More information

Dynamic Estimation of OD Matrices for Freeways and Arterials

Dynamic Estimation of OD Matrices for Freeways and Arterials Novembe 2007 Final Repo: ITS Dynamic Esimaion of OD Maices fo Feeways and Aeials Auhos: Juan Calos Heea, Sauabh Amin, Alexande Bayen, Same Madana, Michael Zhang, Yu Nie, Zhen Qian, Yingyan Lou, Yafeng

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes] ENGI 44 Avance alculus fo Engineeing Faculy of Engineeing an Applie cience Poblem e 9 oluions [Theoems of Gauss an okes]. A fla aea A is boune by he iangle whose veices ae he poins P(,, ), Q(,, ) an R(,,

More information

Solutions from Chapter 9.1 and 9.2

Solutions from Chapter 9.1 and 9.2 Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is

More information

Bayes Nets. CS 188: Artificial Intelligence Spring Example: Alarm Network. Building the (Entire) Joint

Bayes Nets. CS 188: Artificial Intelligence Spring Example: Alarm Network. Building the (Entire) Joint C 188: Aificial Inelligence ping 2008 Bayes Nes 2/5/08, 2/7/08 Dan Klein UC Bekeley Bayes Nes A Bayes ne is an efficien encoding of a pobabilisic model of a domain Quesions we can ask: Infeence: given

More information

The Global Trade and Environment Model: GTEM

The Global Trade and Environment Model: GTEM The Global Tade and Envionmen Model: A pojecion of non-seady sae daa using Ineempoal GTEM Hom Pan, Vivek Tulpulé and Bian S. Fishe Ausalian Bueau of Agiculual and Resouce Economics OBJECTIVES Deive an

More information

The k-filtering Applied to Wave Electric and Magnetic Field Measurements from Cluster

The k-filtering Applied to Wave Electric and Magnetic Field Measurements from Cluster The -fileing pplied o Wave lecic and Magneic Field Measuemens fom Cluse Jean-Louis PINÇON and ndes TJULIN LPC-CNRS 3 av. de la Recheche Scienifique 4507 Oléans Fance jlpincon@cns-oleans.f OUTLINS The -fileing

More information

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba THE INTEACTION OF ADIATION AND MATTE: SEMICLASSICAL THEOY PAGE 26 III. EVIEW OF BASIC QUANTUM MECHANICS : TWO -LEVEL QUANTUM SYSTEMS : The lieaue of quanum opics and lase specoscop abounds wih discussions

More information

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation Lecue 8: Kineics of Phase Gowh in a Two-componen Sysem: geneal kineics analysis based on he dilue-soluion appoximaion Today s opics: In he las Lecues, we leaned hee diffeen ways o descibe he diffusion

More information

Measures the linear dependence or the correlation between r t and r t-p. (summarizes serial dependence)

Measures the linear dependence or the correlation between r t and r t-p. (summarizes serial dependence) . Definiions Saionay Time Seies- A ime seies is saionay if he popeies of he pocess such as he mean and vaiance ae consan houghou ime. i. If he auocoelaion dies ou quickly he seies should be consideed saionay

More information

System of Linear Differential Equations

System of Linear Differential Equations Sysem of Linear Differenial Equaions In "Ordinary Differenial Equaions" we've learned how o solve a differenial equaion for a variable, such as: y'k5$e K2$x =0 solve DE yx = K 5 2 ek2 x C_C1 2$y''C7$y

More information

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8 Molecula Evoluion and hylogeny Baed on: Dubin e al Chape 8. hylogeneic Tee umpion banch inenal node leaf Topology T : bifucaing Leave - N Inenal node N+ N- Lengh { i } fo each banch hylogeneic ee Topology

More information

On Control Problem Described by Infinite System of First-Order Differential Equations

On Control Problem Described by Infinite System of First-Order Differential Equations Ausalian Jounal of Basic and Applied Sciences 5(): 736-74 ISS 99-878 On Conol Poblem Descibed by Infinie Sysem of Fis-Ode Diffeenial Equaions Gafujan Ibagimov and Abbas Badaaya J'afau Insiue fo Mahemaical

More information

PARAMETER IDENTIFICATION IN DYNAMIC ECONOMIC MODELS*

PARAMETER IDENTIFICATION IN DYNAMIC ECONOMIC MODELS* Aicles Auumn PARAMETER IDENTIFICATION IN DYNAMIC ECONOMIC MODELS Nikolay Iskev. INTRODUCTION Paamee idenifi caion is a concep which evey suden of economics leans in hei inoducoy economeics class. The usual

More information

AN EVOLUTIONARY APPROACH FOR SOLVING DIFFERENTIAL EQUATIONS

AN EVOLUTIONARY APPROACH FOR SOLVING DIFFERENTIAL EQUATIONS AN EVOLUTIONARY APPROACH FOR SOLVING DIFFERENTIAL EQUATIONS M. KAMESWAR RAO AND K.P. RAVINDRAN Depamen of Mechanical Engineeing, Calicu Regional Engineeing College, Keala-67 6, INDIA. Absac:- We eploe

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Inroducion o Mobile Roboics Bayes Filer Kalman Filer Wolfram Burgard Cyrill Sachniss Giorgio Grisei Maren Bennewiz Chrisian Plagemann Bayes Filer Reminder Predicion bel p u bel d Correcion bel η p z bel

More information

Chapter Finite Difference Method for Ordinary Differential Equations

Chapter Finite Difference Method for Ordinary Differential Equations Chape 8.7 Finie Diffeence Mehod fo Odinay Diffeenial Eqaions Afe eading his chape, yo shold be able o. Undesand wha he finie diffeence mehod is and how o se i o solve poblems. Wha is he finie diffeence

More information

Sequential Importance Resampling (SIR) Particle Filter

Sequential Importance Resampling (SIR) Particle Filter Paricle Filers++ Pieer Abbeel UC Berkeley EECS Many slides adaped from Thrun, Burgard and Fox, Probabilisic Roboics 1. Algorihm paricle_filer( S -1, u, z ): 2. Sequenial Imporance Resampling (SIR) Paricle

More information

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s MÜHENDİSLİK MEKANİĞİ. HAFTA İMPULS- MMENTUM-ÇARPIŞMA Linea oenu of a paicle: The sybol L denoes he linea oenu and is defined as he ass ies he elociy of a paicle. L ÖRNEK : THE LINEAR IMPULSE-MMENTUM RELATIN

More information

r P + '% 2 r v(r) End pressures P 1 (high) and P 2 (low) P 1 , which must be independent of z, so # dz dz = P 2 " P 1 = " #P L L,

r P + '% 2 r v(r) End pressures P 1 (high) and P 2 (low) P 1 , which must be independent of z, so # dz dz = P 2  P 1 =  #P L L, Lecue 36 Pipe Flow and Low-eynolds numbe hydodynamics 36.1 eading fo Lecues 34-35: PKT Chape 12. Will y fo Monday?: new daa shee and daf fomula shee fo final exam. Ou saing poin fo hydodynamics ae wo equaions:

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

The Production of Polarization

The Production of Polarization Physics 36: Waves Lecue 13 3/31/211 The Poducion of Polaizaion Today we will alk abou he poducion of polaized ligh. We aleady inoduced he concep of he polaizaion of ligh, a ansvese EM wave. To biefly eview

More information

Support Vector Machines

Support Vector Machines Suppo Veco Machine CSL 3 ARIFICIAL INELLIGENCE SPRING 4 Suppo Veco Machine O, Kenel Machine Diciminan-baed mehod olean cla boundaie Suppo veco coni of eample cloe o bounday Kenel compue imilaiy beeen eample

More information

Chapter 7: Solving Trig Equations

Chapter 7: Solving Trig Equations Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions

More information

Announcements: Warm-up Exercise:

Announcements: Warm-up Exercise: Fri Apr 13 7.1 Sysems of differenial equaions - o model muli-componen sysems via comparmenal analysis hp//en.wikipedia.org/wiki/muli-comparmen_model Announcemens Warm-up Exercise Here's a relaively simple

More information

The sudden release of a large amount of energy E into a background fluid of density

The sudden release of a large amount of energy E into a background fluid of density 10 Poin explosion The sudden elease of a lage amoun of enegy E ino a backgound fluid of densiy ceaes a song explosion, chaaceized by a song shock wave (a blas wave ) emanaing fom he poin whee he enegy

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Kalman filtering for maximum likelihood estimation given corrupted observations.

Kalman filtering for maximum likelihood estimation given corrupted observations. alman filering maimum likelihood esimaion given corruped observaions... Holmes Naional Marine isheries Service Inroducion he alman filer is used o eend likelihood esimaion o cases wih hidden saes such

More information

Pseudosteady-State Flow Relations for a Radial System from Department of Petroleum Engineering Course Notes (1997)

Pseudosteady-State Flow Relations for a Radial System from Department of Petroleum Engineering Course Notes (1997) Pseudoseady-Sae Flow Relaions fo a Radial Sysem fom Deamen of Peoleum Engineeing Couse Noes (1997) (Deivaion of he Pseudoseady-Sae Flow Relaions fo a Radial Sysem) (Deivaion of he Pseudoseady-Sae Flow

More information

Unit Root Time Series. Univariate random walk

Unit Root Time Series. Univariate random walk Uni Roo ime Series Univariae random walk Consider he regression y y where ~ iid N 0, he leas squares esimae of is: ˆ yy y y yy Now wha if = If y y hen le y 0 =0 so ha y j j If ~ iid N 0, hen y ~ N 0, he

More information

Servomechanism Design

Servomechanism Design Sevomechanism Design Sevomechanism (sevo-sysem) is a conol sysem in which he efeence () (age, Se poin) changes as ime passes. Design mehods PID Conol u () Ke P () + K I ed () + KDe () Sae Feedback u()

More information

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering Inroducion o Arificial Inelligence V22.0472-001 Fall 2009 Lecure 18: aricle & Kalman Filering Announcemens Final exam will be a 7pm on Wednesday December 14 h Dae of las class 1.5 hrs long I won ask anyhing

More information

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

Monochromatic Wave over One and Two Bars

Monochromatic Wave over One and Two Bars Applied Mahemaical Sciences, Vol. 8, 204, no. 6, 307-3025 HIKARI Ld, www.m-hikai.com hp://dx.doi.og/0.2988/ams.204.44245 Monochomaic Wave ove One and Two Bas L.H. Wiyano Faculy of Mahemaics and Naual Sciences,

More information

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN The MIT Press, 2014 Lecure Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/i2ml3e CHAPTER 2: SUPERVISED LEARNING Learning a Class

More information

Radiation Therapy Treatment Decision Making for Prostate Cancer Patients Based on PSA Dynamics

Radiation Therapy Treatment Decision Making for Prostate Cancer Patients Based on PSA Dynamics adiaion Theapy Teamen Decision Making fo Posae Cance Paiens Based on PSA Dynamics Maiel S. Laiei Main L. Pueman Sco Tyldesley Seen Sheche Ouline Backgound Infomaion Model Descipion Nex Seps Moiaion Tadeoffs

More information

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation Hea (iffusion) Equaion erivaion of iffusion Equaion The fundamenal mass balance equaion is I P O L A ( 1 ) where: I inpus P producion O oupus L losses A accumulaion Assume ha no chemical is produced or

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Anno accademico 2006/2007. Davide Migliore

Anno accademico 2006/2007. Davide Migliore Roboica Anno accademico 2006/2007 Davide Migliore migliore@ele.polimi.i Today Eercise session: An Off-side roblem Robo Vision Task Measuring NBA layers erformance robabilisic Roboics Inroducion The Bayesian

More information

Feedback Couplings in Chemical Reactions

Feedback Couplings in Chemical Reactions Feedback Coulings in Chemical Reacions Knud Zabocki, Seffen Time DPG Fühjahsagung Regensbug Conen Inoducion Moivaion Geneal model Reacion limied models Diffusion wih memoy Oen Quesion and Summay DPG Fühjahsagung

More information

Department of Chemical Engineering University of Tennessee Prof. David Keffer. Course Lecture Notes SIXTEEN

Department of Chemical Engineering University of Tennessee Prof. David Keffer. Course Lecture Notes SIXTEEN D. Keffe - ChE 40: Hea Tansfe and Fluid Flow Deamen of Chemical Enee Uniesi of Tennessee Pof. Daid Keffe Couse Lecue Noes SIXTEEN SECTION.6 DIFFERENTIL EQUTIONS OF CONTINUITY SECTION.7 DIFFERENTIL EQUTIONS

More information

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t M ah 5 2 7 Fall 2 0 0 9 L ecure 1 0 O c. 7, 2 0 0 9 Hamilon- J acobi Equaion: Explici Formulas In his lecure we ry o apply he mehod of characerisics o he Hamilon-Jacobi equaion: u + H D u, x = 0 in R n

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples

Lecture 1 Overview. course mechanics. outline & topics. what is a linear dynamical system? why study linear systems? some examples EE263 Auumn 27-8 Sephen Boyd Lecure 1 Overview course mechanics ouline & opics wha is a linear dynamical sysem? why sudy linear sysems? some examples 1 1 Course mechanics all class info, lecures, homeworks,

More information

Online Completion of Ill-conditioned Low-Rank Matrices

Online Completion of Ill-conditioned Low-Rank Matrices Online Compleion of Ill-condiioned Low-Rank Maices Ryan Kennedy and Camillo J. Taylo Compue and Infomaion Science Univesiy of Pennsylvania Philadelphia, PA, USA keny, cjaylo}@cis.upenn.edu Laua Balzano

More information

Exponential Smoothing

Exponential Smoothing Exponenial moohing Inroducion A simple mehod for forecasing. Does no require long series. Enables o decompose he series ino a rend and seasonal effecs. Paricularly useful mehod when here is a need o forecas

More information

e 2t u(t) e 2t u(t) =?

e 2t u(t) e 2t u(t) =? EE : Signals, Sysems, and Transforms Fall 7. Skech he convoluion of he following wo signals. Tes No noes, closed book. f() Show your work. Simplify your answers. g(). Using he convoluion inegral, find

More information

Fig. 1S. The antenna construction: (a) main geometrical parameters, (b) the wire support pillar and (c) the console link between wire and coaxial

Fig. 1S. The antenna construction: (a) main geometrical parameters, (b) the wire support pillar and (c) the console link between wire and coaxial a b c Fig. S. The anenna consucion: (a) ain geoeical paaees, (b) he wie suppo pilla and (c) he console link beween wie and coaial pobe. Fig. S. The anenna coss-secion in he y-z plane. Accoding o [], he

More information

Reinforcement learning

Reinforcement learning CS 75 Mchine Lening Lecue b einfocemen lening Milos Huskech milos@cs.pi.edu 539 Senno Sque einfocemen lening We wn o len conol policy: : X A We see emples of bu oupus e no given Insed of we ge feedbck

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

Tracking. Many slides adapted from Kristen Grauman, Deva Ramanan

Tracking. Many slides adapted from Kristen Grauman, Deva Ramanan Tracking Man slides adaped from Krisen Grauman Deva Ramanan Coures G. Hager Coures G. Hager J. Kosecka cs3b Adapive Human-Moion Tracking Acquisiion Decimaion b facor 5 Moion deecor Grascale convers. Image

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Explaining Total Factor Productivity. Ulrich Kohli University of Geneva December 2015

Explaining Total Factor Productivity. Ulrich Kohli University of Geneva December 2015 Explaining Toal Facor Produciviy Ulrich Kohli Universiy of Geneva December 2015 Needed: A Theory of Toal Facor Produciviy Edward C. Presco (1998) 2 1. Inroducion Toal Facor Produciviy (TFP) has become

More information

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes Some common engineering funcions 2.7 Inroducion This secion provides a caalogue of some common funcions ofen used in Science and Engineering. These include polynomials, raional funcions, he modulus funcion

More information

Math Wednesday March 3, , 4.3: First order systems of Differential Equations Why you should expect existence and uniqueness for the IVP

Math Wednesday March 3, , 4.3: First order systems of Differential Equations Why you should expect existence and uniqueness for the IVP Mah 2280 Wednesda March 3, 200 4., 4.3: Firs order ssems of Differenial Equaions Wh ou should epec eisence and uniqueness for he IVP Eample: Consider he iniial value problem relaed o page 4 of his eserda

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Echocardiography Project and Finite Fourier Series

Echocardiography Project and Finite Fourier Series Echocardiography Projec and Finie Fourier Series 1 U M An echocardiagram is a plo of how a porion of he hear moves as he funcion of ime over he one or more hearbea cycles If he hearbea repeas iself every

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

A Negative Log Likelihood Function-Based Nonlinear Neural Network Approach

A Negative Log Likelihood Function-Based Nonlinear Neural Network Approach A Negaive Log Likelihood Funcion-Based Nonlinea Neual Newok Appoach Ponip Dechpichai,* and Pamela Davy School of Mahemaics and Applied Saisics Univesiy of Wollongong, Wollongong NSW 5, AUSTRALIA * Coesponding

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

Relative and Circular Motion

Relative and Circular Motion Relaie and Cicula Moion a) Relaie moion b) Cenipeal acceleaion Mechanics Lecue 3 Slide 1 Mechanics Lecue 3 Slide 2 Time on Video Pelecue Looks like mosly eeyone hee has iewed enie pelecue GOOD! Thank you

More information

Probabilistic Robotics SLAM

Probabilistic Robotics SLAM Probabilisic Roboics SLAM The SLAM Problem SLAM is he process by which a robo builds a map of he environmen and, a he same ime, uses his map o compue is locaion Localizaion: inferring locaion given a map

More information

Physics 2001/2051 Moments of Inertia Experiment 1

Physics 2001/2051 Moments of Inertia Experiment 1 Physics 001/051 Momens o Ineia Expeimen 1 Pelab 1 Read he ollowing backgound/seup and ensue you ae amilia wih he heoy equied o he expeimen. Please also ill in he missing equaions 5, 7 and 9. Backgound/Seup

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

= ( ) ) or a system of differential equations with continuous parametrization (T = R

= ( ) ) or a system of differential equations with continuous parametrization (T = R XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information