Circular Motion Problems

Size: px
Start display at page:

Download "Circular Motion Problems"

Transcription

1 CHAPER 0 Circular otion CHAPER Circular otion Problems Numerical Problems.. Calculate the angular speed of the second hand, minute hand and hour hand of a clock. Gien: S = 60 s, = 60 min, H = hr o find: S =?, =?, H =? For second hand = S = 60 s 3.4 S S For minute hand = = 60 min = s For hour hand = H = hr = s 3.4 H H 4 Angular speed of second hand = Angular speed of minute hand =.746 x 0-3, Angular speed of hour hand =.455 x What is the angular elocity of the minute hand of a clock? What is the angular displacement of the minute hand in 0 minutes? If the minute hand is 5 cm long, what is the linear elocity of its tip? Gien: = 60 min, t = 0 min = 0 60 s, r = 5 cm = m o find: =?, =?, =? For minute hand = = 60 min = s Now, t 3 t rad rad 3 - JUS EPOWERING YOU

2 CHAPER 0 Circular otion Problems Solutions Now, Angular speed of minute hand =.746 x 0-3, Angular displacement of minute hand =.095 rad Linear speed of tip of minute hand = 8.73 x 0-5 m/s. 3. What is angular displacement of the minute hand of a clock in 5 minutes? Gien: = 60 min = 60 x 60 s, t = 5 min. 3 5 r m/s o find: =? t 5 t rad rad 6 Now, 3 5 r Angular displacement of minute hand =.68 rad 4. What is the angular elocity of a second hand of a clock? If the second hand is 0 cm long find linear elocity of its tip. Gien: S = 60 s, r = 0 cm = m o find: =?, =?. S For second hand = S = 60 s 3.4 S Now, S Angular speed of second hand = 0.05, r m/s Linear speed of tip of second hand =.05 x 0 - m/s =.05 cm/s - JUS EPOWERING YOU

3 CHAPER 0 Circular otion 3 5. he second hand of a watch is.5 cm long. Find the linear speed of a point on the second hand at a distance of 0.5 cm from the tip. Gien: S = 60 s, r =.5 cm cm = cm = 0 - m o find: =?. For second hand = S = 60 s 3.4 S S Linear speed of the point on second hand =.05 x 0-3 m/s = 0.05 cm/s 6. he extremity of the hour hand of a clock moes /0th as fast as the minute hand. What is the length of the hour hand if the minute hand is 0 cm long? 3 r m/s Gien: H, r 0 = 0 cm, = 60 min, H = hr o find: r H =?. H 0 rh H r 0 rh r 0 H H rh r = 6 cm Length of hour hand = 6 cm 7. Calculate angular elocity of the earth due to its spin motion. Gien: For earth = 4 hr = s, o find: =? Angular speed of theearth due to its spin motion is JUS EPOWERING YOU

4 4 CHAPER 0 Circular otion Problems Solutions 8. A turntable rotates at 00 re/min. Calculate its angular speed in and degrees/s. Gien: N = 00 r.p.m. o find: and degrees/s. N degrees/s 3 Angular speed = 0.47, Angular speed = 600 degrees/s 9. Propeller blades of an aero plane are m long. When the propeller is rotating at 800 re/min, compute the tangential elocity of the tip of the blade. Also find the tangential elocity at a point on blade midway between tips and axis. Gien: n = r = m, N = 800 r.p.m., o find: =?, =? when r = / = m.. Part - I N r m/s Part - II r m/s Angular speed of tip of blade = 377, Angular speed of point midway = he length of an hour hand of a wrist watch is.5 cm. Find the magnitudes of following w.r.t. tip of the hour hand a) angular elocity b) linear elocity c) angular acceleration d) radial acceleration e) tangential acceleration f) linear acceleration Gien: r =.5 cm =.5 0- cm o find: =?, =?, =?, a CP =?, a =?, a =? w.r.t tip of hour hand For hour hand = H = hr = s Angular elocity H 4 - JUS EPOWERING YOU

5 Linear elocity 4 6 r m/s CHAPER 0 Circular otion 5 Angular acceleartion As tip of hour hand performs uniform ircular motion. = 0. Radial acceleration a r m/s. angential acceleration: As tip of hour hand performs uniform ircular motion. Linear acceleration a a a r CP m/s. Angular speed = Linear speed = Angular acceleration = 0 a = 0. Radial acceleration = m/s. angential acceleration = 0 Linear acceleartion = m/s.. A turntable has a constant angular speed of 45 r.p.m. Express this in rad per second and degrees per second. If the radius of the turn table is 0.5 m, what is the linear speed of a point on the rim? Gien: N = 45 r.p.m., r = 0.5 m o find: and degrees/s. N degrees/s r m/s Angular speed = 4.73 = 70 degrees/s Linear speed on point on rim =.357 m/s. - JUS EPOWERING YOU

6 6 CHAPER 0 Circular otion Problems Solutions. he linear elocity of a point on the rotating disc is 3 times greater than at a point on the at a distance of 8 cm from it. What is the diameter of the disc. Gien: = 3 P, r = r, r P = (r - 8) cm o find: Diameter of the disc =? Let r be the radius of the disc. Angular elocity for both the points is the same. 3 r r P 3r P P 3r P r 3( r 8) r 3r 4 r 4 = diameter Diameter of disc = 4 cm. 3. A disc has a diameter of one metre and rotates about an axis passing through its centre and at right angles to its plane at the rate of 0 re/min. What are the angular and linear speed of a point on the rim and at a point halfway to the centre. Gien: d = m, r = 0.5 m, N = 0 r.p.m., o find: =?, V =? for r = r/ = 0.5 m P P N For point on rim Angular speed =.57 Linear speed r m/s For point on point halfway Angular speed =.57 Linear speed r m/s Angular speed of point on rim =.57, Linear peed of point on rim = 6.84 m/s, Angular speed of point on halfway =.57m/s Linear speed of point on halfway3.4 m/s. - JUS EPOWERING YOU

7 CHAPER 0 Circular otion 7 4. A body rotates in a circular path of radius 0.5 m at 40 r.p.m. Find its angular and linear speeds. If the angular speed changes to 330 r.p.m. in 0 s. Find the angular and linear accelerations. Gien: r = 0.5 m, N = 40 r.p.m.,n = 330 r.p.m., t = 0 s. o find: =?, a =? Initial condition Angular elocity N Linear elocity r m/s Final condition Angular elocity N Linear elocity r m/s Angular acceleration t 0 Linear acceleration a r m/s. Initial angular elocity = 5.4 Initial linear elocity = 6.84 m/s Final angular elocity = Final linear elocity = 8.64 m/s Angular acceleration = 0.94 Linear acceleration = m/s. 5. A disc is rotating in a horizontal plane about a ertical axis passing through its centre at 50 r.p.m. When accelerated its speed increases to 050 r.p.m. in 3 s. What is the angular acceleration caused assuming it to be uniform? What will be the angular elocity of the disc in r.p.m. after more seconds? How many rotations does it makes during this time and what is the angular displacement? Gien: N =50 r.p.m.,n =050 r.p.m., t = 3 s. o find: =?, N =? after sec, =?. No. of reolutions =? N 50 5 N JUS EPOWERING YOU

8 8 CHAPER 0 Circular otion Problems Solutions Part - I: t 3 3 Part - II N = 50 r.p.m., N =?, t = 3 + = 5 s N N 60t t N N N 50 N r.p.m. Part - III t t 35 () (0 )() rad 90 Number of rotations = 45 Angular acceleration =3.4, Angualr elocity after sec = 650 r.p.m. No. of rotations in these sec = he angular acceleration of a body rotating about a gien axis is. hrough what angle does it rotates during the time in which its angular elocity increases from 5 to 5. Gien: =, = 5, = 5,. o find: =?. (5) (5) () rad Angle traced = 00 rad. - JUS EPOWERING YOU

9 CHAPER 0 Circular otion 9 7. A disc rotating about an axis passing through its centre and right angles to its plane has its angular speed reduced 50 r.p.s. to 5 r.p.s. in 5 s. How many reolutions does it make during this time? How much time does it take and how many more reolutions does it make before coming to rest. Gien: n = 50 r.p.s., n = 5 r.p.s., t = 5 s. o find: =?. n n 5 50 Part -I t 5 5 t t 00 (5) ( 0 )(5) rad 375 Number of rotations = 87.5 Part -II t t 0 t t 5 s 0 50 (5) ( 0 )(5) rad Number of rotations = No. of reolutions made in 5 sec =87.5, ime taken by disc before coming to rest = 5 s, No. of rolution made before coming to rest = he angular elocity of a disc rotating in a horizontal plane about a ertical axis passing through its centre increases from 600 r.p.m. to 3000 r.p.m. in 5 s. Find the angular acceleration of the disc assuming it to be constant. What are the initial and final angular elocities of the disc? What is the angular displacement and number of reolutions made by the disc during this time? Find the linear elocity of a point on the rim of the disc if its radius is 0.5 m. Gien: N = 600 r.p.m.,n = 3000 r.p.m., t = 5s, r = 0.5 m o find: =?, No. of reolutions =?, elocity of point on rim =? N JUS EPOWERING YOU

10 0 CHAPER 0 Circular otion Problems Solutions N t t t 0 (5) (6 )(5) rad 300 Number of rotations = 50 r m/s Initial angular elocity = 6.84 Final angular elocity = 34. Angular acceleration =50.7, Angualr displacementc = 300 rad No. of reolutions = 50 Linear elocity of point on rim = 57. m/s. 9. A satellite reoles around the earth in a circular orbit of radius 7000 km. If the period of reolution is hours, calculate its angular speed, linear speed and centripetal acceleration. Gien: r = 7000 km = m, = hr = s = 700 s o find: =?, =?, a cp =? r m/s acp = 6. km/s r (8.780 ) m/s. Angular speed = 8.78 x 0-4, Linear speed 6. km/s, Centripetal acceleration = 5.33 m/s. - JUS EPOWERING YOU

11 CHAPER 0 Circular otion 0. Find the speed at a point on the equator moe as the earth rotates about its axis. ake radius of the earth as 6400 km. Gien: r = 6400 km = m, = 4 hr = s = 700 s o find: =?, =?, a cp =? r r m/s Linear speed of point on equator = m/s. he tangential acceleration of a particle moing in a circular path of radius 5 cm is m/s. Angular elocity of the particle increases from 0 to 0 during this time. Find the duration of time and number of reolutions completed during this time. Gien: a = m/s, r = 5 cm = m, = 0, = 0 o find: t =?, No. of reolutions =?, a r a 40, r 50 t t 4 0 t 0 0 t 0.5 s 40 t t 0(0.5) (40)(0.5) rad Number of rotations = =0.6 ime interal = 0.5 s, No. of rotations = JUS EPOWERING YOU

Its SI unit is rad/s and is an axial vector having its direction given by right hand thumb rule.

Its SI unit is rad/s and is an axial vector having its direction given by right hand thumb rule. Circular motion An object is said to be having circular motion if it moves along a circular path. For example revolution of moon around earth, the revolution of an artificial satellite in circular orbit

More information

ONLINE: MATHEMATICS EXTENSION 2 Topic 6 MECHANICS 6.6 MOTION IN A CIRCLE

ONLINE: MATHEMATICS EXTENSION 2 Topic 6 MECHANICS 6.6 MOTION IN A CIRCLE ONLINE: MAHEMAICS EXENSION opic 6 MECHANICS 6.6 MOION IN A CICLE When a particle moes along a circular path (or cured path) its elocity must change een if its speed is constant, hence the particle must

More information

JURONG JUNIOR COLLEGE Physics Department Tutorial: Motion in a Circle

JURONG JUNIOR COLLEGE Physics Department Tutorial: Motion in a Circle JURONG JUNIOR COLLEGE Physics Department Tutorial: Motion in a Circle Angular elocity 1 (a) Define the radian. [1] (b) Explain what is meant by the term angular elocity. [1] (c) Gie the angular elocity

More information

Physics Department Tutorial: Motion in a Circle (solutions)

Physics Department Tutorial: Motion in a Circle (solutions) JJ 014 H Physics (9646) o Solution Mark 1 (a) The radian is the angle subtended by an arc length equal to the radius of the circle. Angular elocity ω of a body is the rate of change of its angular displacement.

More information

Uniform Circular Motion AP

Uniform Circular Motion AP Uniform Circular Motion AP Uniform circular motion is motion in a circle at the same speed Speed is constant, velocity direction changes the speed of an object moving in a circle is given by v circumference

More information

CIRCULAR MOTION. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe

CIRCULAR MOTION. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe IRULAR MOTION hallenging MQ questions by The Physics afe ompiled and selected by The Physics afe 1 A car is making a turn at speed. The radius of the turn is r and the centripetal force on the car is F.

More information

AP Physics Multiple Choice Practice Gravitation

AP Physics Multiple Choice Practice Gravitation AP Physics Multiple Choice Practice Graitation. Each of fie satellites makes a circular orbit about an object that is much more massie than any of the satellites. The mass and orbital radius of each satellite

More information

1 Problems 1-3 A disc rotates about an axis through its center according to the relation θ (t) = t 4 /4 2t

1 Problems 1-3 A disc rotates about an axis through its center according to the relation θ (t) = t 4 /4 2t Slide 1 / 30 1 Problems 1-3 disc rotates about an axis through its center according to the relation θ (t) = t 4 /4 2t etermine the angular velocity of the disc at t= 2 s 2 rad/s 4 rad/s 6 rad/s 8 rad/s

More information

Slide 1 / 30. Slide 2 / 30. Slide 3 / m/s -1 m/s

Slide 1 / 30. Slide 2 / 30. Slide 3 / m/s -1 m/s 1 Problems 1-3 disc rotates about an axis through its center according to the relation θ (t) = t 4 /4 2t Slide 1 / 30 etermine the angular velocity of the disc at t= 2 s 2 rad/s 4 rad/s 6 rad/s 8 rad/s

More information

PHYSICS - CLUTCH CH 10: ROTATIONAL KINEMATICS.

PHYSICS - CLUTCH CH 10: ROTATIONAL KINEMATICS. !! www.clutchprep.com ROTATIONAL POSITION & DISPLACEMENT Rotational Motion is motion around a point, that is, in a path. - The rotational equivalent of linear POSITION ( ) is Rotational/Angular position

More information

Rotational Motion Examples:

Rotational Motion Examples: Rotational Motion Examples: 1. A 60. cm diameter wheel rotates through 50. rad. a. What distance will it move? b. How many times will the wheel rotate in this time? 2. A saw blade is spinning at 2000.

More information

Ch 7 Homework. (a) Label physical quantities in this problem using letters you choose.

Ch 7 Homework. (a) Label physical quantities in this problem using letters you choose. Ch 7 Homework Name: Homework problems are from the Serway & Vuille 10 th edition. Follow the instructions and show your work clearly. 1. (Problem 7) A machine part rotates at an angular speed of 0.06 rad/s;

More information

Webreview Torque and Rotation Practice Test

Webreview Torque and Rotation Practice Test Please do not write on test. ID A Webreview - 8.2 Torque and Rotation Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 0.30-m-radius automobile

More information

Tute M4 : ROTATIONAL MOTION 1

Tute M4 : ROTATIONAL MOTION 1 Tute M4 : ROTATIONAL MOTION 1 The equations dealing with rotational motion are identical to those of linear motion in their mathematical form. To convert equations for linear motion to those for rotational

More information

PY1008 / PY1009 Physics Rotational motion

PY1008 / PY1009 Physics Rotational motion PY1008 / PY1009 Physics Rotational motion M.P. Vaughan Learning Objecties Circular motion Rotational displacement Velocity Angular frequency, frequency, time period Acceleration Rotational dynamics Centripetal

More information

Rotational Kinematics Notes 3rd.notebook. March 20, 2017

Rotational Kinematics Notes 3rd.notebook. March 20, 2017 1 2 3 4 Rotational Kinematics Objectives: Students will understand how the Big 4 apply to rotational motion Students will know the variables used to describe rotational motion Students will be able to

More information

3. ROTATIONAL MOTION

3. ROTATIONAL MOTION 3. ROTATONAL OTON. A circular disc of mass 0 kg and radius 0. m is set into rotation about an axis passing through its centre and perpendicular to its plane by applying torque 0 Nm. Calculate the angular

More information

Page 2. Q1.A satellite X is in a circular orbit of radius r about the centre of a spherical planet of mass

Page 2. Q1.A satellite X is in a circular orbit of radius r about the centre of a spherical planet of mass Q1. satellite X is in a circular orbit of radius r about the centre of a spherical planet of mass M. Which line, to, in the table gives correct expressions for the centripetal acceleration a and the speed

More information

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque 7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

More information

TutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?

TutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning? 1. rpm is about rad/s. 7. ROTATIONAL MOTION 2. A wheel rotates with constant angular acceleration of π rad/s 2. During the time interval from t 1 to t 2, its angular displacement is π rad. At time t 2

More information

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION. ω = 29.6 rad/s. ω = = 36 3.

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION. ω = 29.6 rad/s. ω = = 36 3. PROLEM 15.1 The brake drum is attached to a larger flywheel that is not shown. The motion of the brake drum is defined by the relation θ = 36t 1.6 t, where θ is expressed in radians and t in seconds. Determine

More information

Rotational Motion and Angular Displacement

Rotational Motion and Angular Displacement Physics 20 AP - Assignment #5 Angular Velocity and Acceleration There are many examples of rotational motion in everyday life (i.e. spinning propeller blades, CD players, tires on a moving car ). In this

More information

Lesson 6: Apparent weight, Radial acceleration (sections 4:9-5.2)

Lesson 6: Apparent weight, Radial acceleration (sections 4:9-5.2) Beore we start the new material we will do another Newton s second law problem. A bloc is being pulled by a rope as shown in the picture. The coeicient o static riction is 0.7 and the coeicient o inetic

More information

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.

Chapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc. Chapter 10 Rotational Kinematics and Energy 10-1 Angular Position, Velocity, and Acceleration 10-1 Angular Position, Velocity, and Acceleration Degrees and revolutions: 10-1 Angular Position, Velocity,

More information

Last Time: Start Rotational Motion (now thru mid Nov) Basics: Angular Speed, Angular Acceleration

Last Time: Start Rotational Motion (now thru mid Nov) Basics: Angular Speed, Angular Acceleration Last Time: Start Rotational Motion (now thru mid No) Basics: Angular Speed, Angular Acceleration Today: Reiew, Centripetal Acceleration, Newtonian Graitation i HW #6 due Tuesday, Oct 19, 11:59 p.m. Exam

More information

Advanced Higher Physics. Rotational motion

Advanced Higher Physics. Rotational motion Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration

More information

1. A force acts on a particle and displaces it through. The value of x for zero work is 1) 0.5 2) 2 4) 6

1. A force acts on a particle and displaces it through. The value of x for zero work is 1) 0.5 2) 2 4) 6 1. A force acts on a particle and displaces it through. The value of x for zero work is 1) 0.5 2) 2 3) +2 4) 6 2. Two bodies with K.E. in the ratio 4 : 1 are moving with same linear momenta. The ratio

More information

KINEMATICS OF PARTICLES PROBLEMS ON RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES

KINEMATICS OF PARTICLES PROBLEMS ON RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES KINEMATICS OF PARTICLES PROBLEMS ON RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES 1. The car A has a forward speed of 18 km/h and is accelerating at 3 m/s2. Determine the elocity and acceleration of

More information

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 3 CENTRIPETAL FORCE

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 3 CENTRIPETAL FORCE ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D5 TUTORIAL CENTRIPETAL FORCE This tutorial examines the relationship between inertia and acceleration. On completion of this tutorial you should be able

More information

Centripetal acceleration ac = to2r Kinetic energy of rotation KE, = \lto2. Moment of inertia. / = mr2 Newton's second law for rotational motion t = la

Centripetal acceleration ac = to2r Kinetic energy of rotation KE, = \lto2. Moment of inertia. / = mr2 Newton's second law for rotational motion t = la The Language of Physics Angular displacement The angle that a body rotates through while in rotational motion (p. 241). Angular velocity The change in the angular displacement of a rotating body about

More information

1 The displacement, s in metres, of an object after a time, t in seconds, is given by s = 90t 4 t 2

1 The displacement, s in metres, of an object after a time, t in seconds, is given by s = 90t 4 t 2 CFE Advanced Higher Physics Unit 1 Rotational Motion and Astrophysics Kinematic relationships 1 The displacement, s in metres, of an object after a time, t in seconds, is given by s = 90t 4 t 2 a) Find

More information

Problem Solving Circular Motion Kinematics Challenge Problem Solutions

Problem Solving Circular Motion Kinematics Challenge Problem Solutions Problem Solving Circular Motion Kinematics Challenge Problem Solutions Problem 1 A bead is given a small push at the top of a hoop (position A) and is constrained to slide around a frictionless circular

More information

MOTION IN 2-DIMENSION (Projectile & Circular motion And Vectors)

MOTION IN 2-DIMENSION (Projectile & Circular motion And Vectors) MOTION IN -DIMENSION (Projectile & Circular motion nd Vectors) INTRODUCTION The motion of an object is called two dimensional, if two of the three co-ordinates required to specif the position of the object

More information

2/27/2018. Relative Motion. Reference Frames. Reference Frames

2/27/2018. Relative Motion. Reference Frames. Reference Frames Relative Motion The figure below shows Amy and Bill watching Carlos on his bicycle. According to Amy, Carlos s velocity is (v x ) CA 5 m/s. The CA subscript means C relative to A. According to Bill, Carlos

More information

The maximum kinetic energy is directly proportional to the frequency. The time for one oscillation is directly proportional to the frequency.

The maximum kinetic energy is directly proportional to the frequency. The time for one oscillation is directly proportional to the frequency. Q1.For a body performing simple harmonic motion, which one of the following statements is correct? The maximum kinetic energy is directly proportional to the frequency. The time for one oscillation is

More information

Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia. 8.01t Nov 3, 2004

Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia. 8.01t Nov 3, 2004 Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia 8.01t Nov 3, 2004 Rotation and Translation of Rigid Body Motion of a thrown object Translational Motion of the Center of Mass Total

More information

Physics 4A Solutions to Chapter 4 Homework

Physics 4A Solutions to Chapter 4 Homework Physics 4A Solutions to Chapter 4 Homework Chapter 4 Questions: 4, 1, 1 Exercises & Problems: 5, 11, 3, 7, 8, 58, 67, 77, 87, 11 Answers to Questions: Q 4-4 (a) all tie (b) 1 and tie (the rocket is shot

More information

Advanced Higher Physics

Advanced Higher Physics Advanced Higher Physics Rotational Motion and Astrophysics Numerical examples Andrew McGuigan The Scottish Qualifications Authority regularly reviews the arrangements for National Qualifications. Users

More information

SAPTARSHI CLASSES PVT. LTD.

SAPTARSHI CLASSES PVT. LTD. SAPTARSHI CLASSES PVT. LTD. NEET/JEE Date : 13/05/2017 TEST ID: 120517 Time : 02:00:00 Hrs. PHYSICS, Chem Marks : 360 Phy : Circular Motion, Gravitation, Che : Halogen Derivatives Of Alkanes Single Correct

More information

Level 3 Physics, 2011

Level 3 Physics, 2011 90521 905210 3SUPERVISOR S Level 3 Physics, 2011 90521 Demonstrate understanding of mechanical systems 9.30 am riday Friday 2 25 November 2011 Credits: Six Check that the National Student Number (NSN)

More information

NATIONAL QUALIFICATIONS CURRICULUM SUPPORT. Physics. Rotational Motion and Astrophysics. Numerical Examples. Andrew McGuigan [REVISED ADVANCED HIGHER]

NATIONAL QUALIFICATIONS CURRICULUM SUPPORT. Physics. Rotational Motion and Astrophysics. Numerical Examples. Andrew McGuigan [REVISED ADVANCED HIGHER] NATIONAL QUALIFICATIONS CURRICULUM SUPPORT Physics Rotational Motion and Astrophysics Numerical Examples Andrew McGuigan [REVISED ADVANCED HIGHER] The Scottish Qualifications Authority regularly reviews

More information

Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion

Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion http://www.youtube.com/watch?v=zyf5wsmxrai Today s lecture will cover Chapter 5 Physics 101: Lecture 8, Pg 1 Circular Motion Act B A

More information

LECTURE 20: Rotational kinematics

LECTURE 20: Rotational kinematics Lectures Page 1 LECTURE 20: Rotational kinematics Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. vii. viii. Introduce the concept that objects possess momentum. Introduce the concept of impulse. Be

More information

Why Doesn t the Moon Hit us? In analysis of this question, we ll look at the following things: i. How do we get the acceleration due to gravity out

Why Doesn t the Moon Hit us? In analysis of this question, we ll look at the following things: i. How do we get the acceleration due to gravity out Why Doesn t the oon Hit us? In analysis of this question, we ll look at the following things: i. How do we get the acceleration due to gravity out of the equation for the force of gravity? ii. How does

More information

Basics of rotational motion

Basics of rotational motion Basics of rotational motion Motion of bodies rotating about a given axis, like wheels, blades of a fan and a chair cannot be analyzed by treating them as a point mass or particle. At a given instant of

More information

Lecture 6. Circular Motion. Pre-reading: KJF 6.1 and 6.2. Please take a clicker CIRCULAR MOTION KJF

Lecture 6. Circular Motion. Pre-reading: KJF 6.1 and 6.2. Please take a clicker CIRCULAR MOTION KJF Lecture 6 Circular Motion Pre-reading: KJF 6.1 and 6.2 Please take a clicker CIRCULAR MOTION KJF 6.1 6.4 Angular position If an object moves in a circle of radius r, then after travelling a distance s

More information

physics Chapter 4 Lecture a strategic approach randall d. knight FOR SCIENTISTS AND ENGINEERS CHAPTER4_LECTURE4_2 THIRD EDITION

physics Chapter 4 Lecture a strategic approach randall d. knight FOR SCIENTISTS AND ENGINEERS CHAPTER4_LECTURE4_2 THIRD EDITION Chapter 4 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight CHAPTER4_LECTURE4_2 1 QUICK REVIEW What we ve done so far A quick review: So far, we ve looked

More information

where R represents the radius of the circle and T represents the period.

where R represents the radius of the circle and T represents the period. Chapter 3 Circular Motion Uniform circular motion is the motion of an object in a circle with a constant or uniform speed. Speed When moving in a circle, an object traverses a distance around the perimeter

More information

Physics. TOPIC : Rotational motion. 1. A shell (at rest) explodes in to smalll fragment. The C.M. of mass of fragment will move with:

Physics. TOPIC : Rotational motion. 1. A shell (at rest) explodes in to smalll fragment. The C.M. of mass of fragment will move with: TOPIC : Rotational motion Date : Marks : 120 mks Time : ½ hr 1. A shell (at rest) explodes in to smalll fragment. The C.M. of mass of fragment will move with: a) zero velocity b) constantt velocity c)

More information

ROTATIONAL KINEMATICS

ROTATIONAL KINEMATICS CHAPTER 8 ROTATIONAL KINEMATICS ANSWERS TO FOCUS ON CONCEPTS QUESTIONS. (d) Using Equation 8. (θ = Arc length / Radius) to calculate the angle (in radians) that each object subtends at your eye shows that

More information

Physics Teach Yourself Series Topic 2: Circular motion

Physics Teach Yourself Series Topic 2: Circular motion Physics Teach Yourself Series Topic : Circular motion A: Leel 14, 474 Flinders Street Melbourne VIC 3000 T: 1300 134 518 W: tssm.com.au E: info@tssm.com.au TSSM 013 Page 1 of 7 Contents What you need to

More information

7 Rotational Motion Pearson Education, Inc. Slide 7-2

7 Rotational Motion Pearson Education, Inc. Slide 7-2 7 Rotational Motion Slide 7-2 Slide 7-3 Recall from Chapter 6 Angular displacement = θ θ= ω t Angular Velocity = ω (Greek: Omega) ω = 2 π f and ω = θ/ t All points on a rotating object rotate through the

More information

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring ROTATIONAL STRESSES INTRODUCTION High centrifugal forces are developed in machine components rotating at a high angular speed of the order of 100 to 500 revolutions per second (rps). High centrifugal force

More information

AP Physics 1 Lesson 15.a Rotational Kinematics Graphical Analysis and Kinematic Equation Use. Name. Date. Period. Engage

AP Physics 1 Lesson 15.a Rotational Kinematics Graphical Analysis and Kinematic Equation Use. Name. Date. Period. Engage AP Physics 1 Lesson 15.a Rotational Kinematics Graphical Analysis and Kinematic Equation Use Name Outcomes Date Interpret graphical evidence of angular motion (uniform speed & uniform acceleration). Apply

More information

Chapter 3.5. Uniform Circular Motion

Chapter 3.5. Uniform Circular Motion Chapter 3.5 Uniform Circular Motion 3.5 Uniform Circular Motion DEFINITION OF UNIFORM CIRCULAR MOTION Uniform circular motion is the motion of an object traveling at a constant speed on a circular path.

More information

Chapter 8. Rotational Kinematics

Chapter 8. Rotational Kinematics Chapter 8 Rotational Kinematics In the simplest kind of rotation, points on a rigid object move on circular paths around an axis of rotation. Example Hans Brinker is on skates and there is no friction.

More information

Chapter 8. Accelerated Circular Motion

Chapter 8. Accelerated Circular Motion Chapter 8 Accelerated Circular Motion 8.1 Rotational Motion and Angular Displacement A new unit, radians, is really useful for angles. Radian measure θ(radians) = s = rθ s (arc length) r (radius) (s in

More information

Year 12 Physics Holiday Work

Year 12 Physics Holiday Work Year 1 Physics Holiday Work 1. Coplete questions 1-8 in the Fields assessent booklet and questions 1-3 In the Further Mechanics assessent booklet (repeated below in case you have lost the booklet).. Revise

More information

TOPIC D: ROTATION EXAMPLES SPRING 2018

TOPIC D: ROTATION EXAMPLES SPRING 2018 TOPIC D: ROTATION EXAMPLES SPRING 018 Q1. A car accelerates uniformly from rest to 80 km hr 1 in 6 s. The wheels have a radius of 30 cm. What is the angular acceleration of the wheels? Q. The University

More information

PHYSICS 220 LAB #6: CIRCULAR MOTION

PHYSICS 220 LAB #6: CIRCULAR MOTION Name: Partners: PHYSICS 220 LAB #6: CIRCULAR MOTION The picture above is a copy of Copernicus drawing of the orbits of the planets which are nearly circular. It appeared in a book published in 1543. Since

More information

Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 (2 weeks!

Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 (2 weeks! Exam I Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion http://www.youtube.com/watch?v=zyf5wsmxrai Today s lecture will cover Chapter 5 Exam I is Monday, Oct. 7 ( weeks!) Physics 101:

More information

Cp physics web review chapter 7 gravitation and circular motion

Cp physics web review chapter 7 gravitation and circular motion Name: Class: _ Date: _ ID: A Cp physics web review chapter 7 gravitation and circular motion Multiple Choice Identify the choice that best completes the statement or answers the question.. What is the

More information

We define angular displacement, θ, and angular velocity, ω. What's a radian?

We define angular displacement, θ, and angular velocity, ω. What's a radian? We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise

More information

ROTATIONAL KINEMATICS

ROTATIONAL KINEMATICS CHAPTER 8 ROTATIONAL KINEMATICS CONCEPTUAL QUESTIONS 1. REASONING AND SOLUTION The figures below show two axes in the plane of the paper and located so that the points B and C move in circular paths having

More information

Precalculus Lesson 6.1: Angles and Their Measure Lesson 6.2: A Unit Circle Approach Part 2

Precalculus Lesson 6.1: Angles and Their Measure Lesson 6.2: A Unit Circle Approach Part 2 Precalculus Lesson 6.1: Angles and Their Measure Lesson 6.2: A Unit Circle Approach Part 2 Lesson 6.2 Before we look at the unit circle with respect to the trigonometric functions, we need to get some

More information

Physics A - PHY 2048C

Physics A - PHY 2048C Physics A - PHY 2048C Newton s Laws & Equations of 09/27/2017 My Office Hours: Thursday 2:00-3:00 PM 212 Keen Building Warm-up Questions 1 In uniform circular motion (constant speed), what is the direction

More information

Chapter 7. Rotational Motion and The Law of Gravity

Chapter 7. Rotational Motion and The Law of Gravity Chapter 7 Rotational Motion and The Law of Gravity 1 The Radian The radian is a unit of angular measure The radian can be defined as the arc length s along a circle divided by the radius r s θ = r 2 More

More information

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged

A. unchanged increased B. unchanged unchanged C. increased increased D. increased unchanged IB PHYSICS Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS CHAPTER B TEST REVIEW. A rocket is fired ertically. At its highest point, it explodes. Which one of the following describes what happens

More information

Rotational Kinematics, Physics. Worksheet 1: Practice working with rotation and revolution

Rotational Kinematics, Physics. Worksheet 1: Practice working with rotation and revolution Rotational Kinematics, Physics Worksheet 1: Practice working with rotation and revolution Circular motion can involve rotation and/or revolution. Rotation occurs when the object spins about an internal

More information

Unit 2: Forces Chapter 6: Systems in Motion

Unit 2: Forces Chapter 6: Systems in Motion Forces Unit 2: Forces Chapter 6: Systems in Motion 6.1 Motion in Two Dimension 6.2 Circular Motion 6.3 Centripetal Force, Gravitation, and Satellites 6.4 Center of Mass 6.1 Investigation: Launch Angle

More information

Suggested Problems. Chapter 1

Suggested Problems. Chapter 1 Suggested Problems Ch1: 49, 51, 86, 89, 93, 95, 96, 102. Ch2: 9, 18, 20, 44, 51, 74, 75, 93. Ch3: 4, 14, 46, 54, 56, 75, 91, 80, 82, 83. Ch4: 15, 59, 60, 62. Ch5: 14, 52, 54, 65, 67, 83, 87, 88, 91, 93,

More information

Centripetal force. Objectives. Assessment. Assessment. Equations. Physics terms 5/13/14

Centripetal force. Objectives. Assessment. Assessment. Equations. Physics terms 5/13/14 Centripetal force Objecties Describe and analyze the motion of objects moing in circular motion. Apply Newton s second law to circular motion problems. Interpret free-body force diagrams. 1. A race car

More information

Grove Academy. Advanced Higher Physics. Rotational Motion and Astrophysics Problem Booklet

Grove Academy. Advanced Higher Physics. Rotational Motion and Astrophysics Problem Booklet Grove Academy Advanced Higher Physics Rotational Motion and Astrophysics Problem Booklet EXERCISE 1.1 Equations of motion 1. The displacement, s in metres, of an object after a time, t in seconds, is given

More information

Recap. The bigger the exhaust speed, ve, the higher the gain in velocity of the rocket.

Recap. The bigger the exhaust speed, ve, the higher the gain in velocity of the rocket. Recap Classical rocket propulsion works because of momentum conservation. Exhaust gas ejected from a rocket pushes the rocket forwards, i.e. accelerates it. The bigger the exhaust speed, ve, the higher

More information

Chapter 6 Motion in Two Dimensions

Chapter 6 Motion in Two Dimensions Conceptual Physics/ PEP Name: Date: Chapter 6 Motion in Two Dimensions Section Review 6.1 1. What is the word for the horizontal distance a projectile travels? 2. What does it mean to say a projectile

More information

University Physics 226N/231N Old Dominion University Rotational Motion rolling

University Physics 226N/231N Old Dominion University Rotational Motion rolling University Physics 226N/231N Old Dominion University Rotational Motion rolling Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2012-odu Monday October 22, 2012 Happy

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 15, 2001 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION

More information

Advanced Higher Physics. Rotational Motion

Advanced Higher Physics. Rotational Motion Wallace Hall Academy Physics Department Advanced Higher Physics Rotational Motion Solutions AH Physics: Rotational Motion Problems Solutions Page 1 013 TUTORIAL 1.0 Equations of motion 1. (a) v = ds, ds

More information

PHYSICS - CLUTCH CH 14: ANGULAR MOMENTUM.

PHYSICS - CLUTCH CH 14: ANGULAR MOMENTUM. !! www.clutchprep.com EXAMPLE: HOLDING WEIGHTS ON A SPINNING STOOL EXAMPLE: You stand on a stool that is free to rotate about an axis perpendicular to itself and through its center. Suppose that your combined

More information

CIRCULAR MOTION AND UNIVERSAL GRAVITATION

CIRCULAR MOTION AND UNIVERSAL GRAVITATION CIRCULAR MOTION AND UNIVERSAL GRAVITATION Uniform Circular Motion What holds an object in a circular path? A force. String Friction Gravity What happens when the force is diminished? Object flies off in

More information

Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed.

Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed. Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed. 1. Distance around a circle? circumference 2. Distance from one side of circle to the opposite

More information

In physics, motion in circles is just as important as motion along lines, but there are all

In physics, motion in circles is just as important as motion along lines, but there are all Chapter 6 Round and Round: Circular Motion In This Chapter Converting angles Handling period and frequency Working with angular frequency Using angular acceleration In physics, motion in circles is just

More information

In-Class Problems 30-32: Moment of Inertia, Torque, and Pendulum: Solutions

In-Class Problems 30-32: Moment of Inertia, Torque, and Pendulum: Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 TEAL Fall Term 004 In-Class Problems 30-3: Moment of Inertia, Torque, and Pendulum: Solutions Problem 30 Moment of Inertia of a

More information

Motion in Two and Three Dimensions

Motion in Two and Three Dimensions PH 1-1D Spring 013 Motion in Two and Three Dimensions Lectures 5,6,7 Chapter 4 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) 1 Chapter 4 Motion in Two and Three Dimensions In this chapter

More information

PH201 Chapter 6 Solutions

PH201 Chapter 6 Solutions PH201 Chapter 6 Solutions 6.2. Set Up: Since the stone travels in a circular path, its acceleration is directed toward the center of the circle. The only horizontal force on the stone is the tension of

More information

Topic 6 Circular Motion and Gravitation

Topic 6 Circular Motion and Gravitation Topic 6 Circular Motion and Gravitation Exam-Style Questions 1 a) Calculate the angular velocity of a person standing on the Earth s surface at sea level. b) The summit of Mount Everest is 8848m above

More information

Phys 106 Practice Problems Common Quiz 1 Spring 2003

Phys 106 Practice Problems Common Quiz 1 Spring 2003 Phys 106 Practice Problems Common Quiz 1 Spring 2003 1. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed

More information

Mechanics Topic D (Rotation) - 1 David Apsley

Mechanics Topic D (Rotation) - 1 David Apsley TOPIC D: ROTATION SPRING 2019 1. Angular kinematics 1.1 Angular velocity and angular acceleration 1.2 Constant-angular-acceleration formulae 1.3 Displacement, velocity and acceleration in circular motion

More information

Rotation. Rotational Variables

Rotation. Rotational Variables Rotation Rigid Bodies Rotation variables Constant angular acceleration Rotational KE Rotational Inertia Rotational Variables Rotation of a rigid body About a fixed rotation axis. Rigid Body an object that

More information

APC PHYSICS CHAPTER 11 Mr. Holl Rotation

APC PHYSICS CHAPTER 11 Mr. Holl Rotation APC PHYSICS CHAPTER 11 Mr. Holl Rotation Student Notes 11-1 Translation and Rotation All of the motion we have studied to this point was linear or translational. Rotational motion is the study of spinning

More information

Section 4.2: Radians, Arc Length, and the Area of a Sector

Section 4.2: Radians, Arc Length, and the Area of a Sector CHAPTER 4 Trigonometric Functions Section 4.: Radians, Arc Length, and the Area of a Sector Measure of an Angle Formulas for Arc Length and Sector Area Measure of an Angle Degree Measure: 368 SECTION 4.

More information

7.1 Describing Circular and Rotational Motion.notebook November 03, 2017

7.1 Describing Circular and Rotational Motion.notebook November 03, 2017 Describing Circular and Rotational Motion Rotational motion is the motion of objects that spin about an axis. Section 7.1 Describing Circular and Rotational Motion We use the angle θ from the positive

More information

Interpolation. Create a program for linear interpolation of a three axis manufacturing machine with a constant

Interpolation. Create a program for linear interpolation of a three axis manufacturing machine with a constant QUESTION 1 Create a program for linear interpolation of a three axis manufacturing machine with a constant velocity profile. The inputs are the initial and final positions, feed rate, and sample period.

More information

Uniform Circular Motion

Uniform Circular Motion Circular Motion Uniform Circular Motion Uniform Circular Motion Traveling with a constant speed in a circular path Even though the speed is constant, the acceleration is non-zero The acceleration responsible

More information

CIRCULAR MOTION, HARMONIC MOTION, ROTATIONAL MOTION

CIRCULAR MOTION, HARMONIC MOTION, ROTATIONAL MOTION CIRCULAR MOTION, HARMONIC MOTION, ROTATIONAL MOTION 1 UNIFORM CIRCULAR MOTION path circle distance arc Definition: An object which moves on a circle, travels equal arcs in equal times. Periodic motion

More information

Physics 201, Practice Midterm Exam 3, Fall 2006

Physics 201, Practice Midterm Exam 3, Fall 2006 Physics 201, Practice Midterm Exam 3, Fall 2006 1. A figure skater is spinning with arms stretched out. A moment later she rapidly brings her arms close to her body, but maintains her dynamic equilibrium.

More information

dt 2 For an object travelling in a circular path: State that angular velocity (ω) is the rate of change of angular displacement (θ).

dt 2 For an object travelling in a circular path: State that angular velocity (ω) is the rate of change of angular displacement (θ). For an object travelling in a circular path: State that angular velocity (ω) is the rate of change of angular displacement (θ). ω = dθ dt State that angular acceleration (α) is the rate of change of angular

More information

Chapter 7: Circular Motion

Chapter 7: Circular Motion Chapter 7: Circular Motion Spin about an axis located within the body Example: Spin about an axis located outside the body. Example: Example: Explain why it feels like you are pulled to the right side

More information

UNIFORM CIRCULAR MOVEMENT

UNIFORM CIRCULAR MOVEMENT UNIFORM CIRCULAR MOVEMENT OBJECTIVES Circular movement can be seen in many gadgets which surround us; engines, the hands of a clock and wheels are some examples. This teaching unit presents the characteristic

More information

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart Rotational Motion & Angular Momentum Rotational Motion Every quantity that we have studied with translational motion has a rotational counterpart TRANSLATIONAL ROTATIONAL Displacement x Angular Displacement

More information