Ch 7 Homework. (a) Label physical quantities in this problem using letters you choose.


 Shon Pearson
 9 months ago
 Views:
Transcription
1 Ch 7 Homework Name: Homework problems are from the Serway & Vuille 10 th edition. Follow the instructions and show your work clearly. 1. (Problem 7) A machine part rotates at an angular speed of 0.06 rad/s; its speed is then increased to 2.2 rad/s at and angular acceleration of 0.70 rad/s 2. (a) Label physical quantities in this problem using letters you choose. (b) Find the angle through which the part rotates before reaching this final speed.(first, write down an equation you will use and substitute numerical values in the equation) (c) In general, if both the initial and final angular speeds are doubled at the same angular acceleration, by what factor is the angular displacement changed? Why? (Hint: Look at the form of equation 7.9)
2 2.(Problem 12) A 45.0cm diameter disk rotates with a constant angular acceleration of 2.50 rad/s 2. It starts from rest at t = 0, and a line drawn from the center of the disk to a point P on the rim of the disk makes and angle of 57.3 with the positive xaxis at this time. At t= 2.30 s, find (a) the angular speed of the wheel, (b) the linear velocity and tangential acceleration of P, and (c) the position of P(in degree, with respect to the positive xaxis) (a) Complete the table below. Physical quantity Variable Numerical value Radius of the disk r Angular acceleration α Initial angle θ 0 Initial angular speed ω 0 Final angle θ f? Final angular speed ω f? Linear velocity v? Tangential acceleration a? (b) Using variables defined above, find the angular speed of the wheel and substitute numbers to the equation.
3 (c) Find the liner velocity and tangential acceleration of P in terms of the variables above and substitute numbers to the variable. (d) Find the position of P. 3. (Problem 16) It has been suggested that rotating cylinders about 10 miles long and 5.0 miles in diameter be placed in space and used as colonies. What angular speed must such a cylinder have so that the centripetal acceleration at its surface equals the freefall acceleration on Earth? (a) Draw a diagram and label physical quantities using variables you choose.
4 (b) Convert distances from mile to m. (c) Find the angular acceleration in terms of radius and angular speed. (d) Find the angular speed of the colony when the centripetal acceleration at its surface is g =9.8 m/s 2.
5 4. (Problem 19) One end of a cord is fixed and a small kg object is attached to the other end, where it swings in a section of a vertical circle of radius 2.00 m as shown in the figure below. When θ = 20.0, the speed of the object is 8.00 m/s. (a) Draw forces on the diagram above and label physical quantities using letters you choose.
6 (b) Write down the tangential and radial components of forces. Radial direction(ydirection) Tension in radial direction Weight in radial direction F nety Tangential direction(xdirection) Tension in tangential direction Weight in tangential direction. F netx (c) Find the tension in the spring. (d) Find the tangential and radial components of acceleration.
7 (e) Find the magnitude and direction of the total acceleration. (f) Is your answer changed if the object is swinging down toward its lowest point instead of swinging up? (g) Explain your answer to part (f)
8 5. (Problem 27) An air puck of mass m 1 = 0.25 kg is tied to a string and allowed to revolve in a circle of radius R = 1.0 m on a frictionless horizontal table. The other end of the string passes through a hole in the center of the table, and a mass of m 2 = 1.0 kg is tied to it. (See the figure below.) The suspended mass remains in equilibrium while the puck on the tabletop revolves. (a) Label all physical quantities using variables you choose. (b) Draw a freebody diagram of the puck.
9 (c) What is the tension in the string? (d) What is the horizontal force acting on the puck? (e) What is the speed of the puck?
10 6. (Problem 34) A satellite has a mass of 100 kg and is located at above the surface of Earth. (a) Draw a diagram and label all physical quantities in this problem using letters you choose. (b) What is the potential energy associated with the satellite at this location? (c) What is the magnitude of the gravitational force on the satellite?
11 7. (Problem 37) Objects with masses of 200 kg and 500 kg are separated by m (a) Find the net force exerted by these objects on a 50.0 kg object placed midway between them. (b) At what position (other than infinitely remote ones) can the 50.0kg object be placed so as to experience a net force of zero? a. Find the net force exerted by the 200 kg and 500 kg objects on the 50.0kg object placed distance d m away from the 200kg object and (0.400 d) m away from the 500kg object.(see the diagram below)
12 b. Find the distance d at which the net force on the 50.0kg object is zero. 8. (Problem 41) A satellite is in a circular orbit around the Earth at an altitude of m. (a) Find the period of the orbit.
13 (b) Find the speed of the satellite (c) Find the acceleration of the satellite.(hint: Modify Equation 7.23 so it is suitable for objects orbiting the Earth than the Sun
14 9. (Problem 71) A 4.00kg object is attached to a vertical rod by two strings as shown in Figure below. The object rotates in a horizontal circle at constant speed 6.00 m/s. Find the tension in (a) the upper string and (b) lower string. (a) Draw a free body diagram and define a coordinate system. Then, label all physical quantities using letters you choose.
15 (b) Write down horizontal and vertical components of the forces. Variable xdirection Value in terms of other variables Variable ydirection Value in terms of other variables F netx F nety (c) Find the tension in the upper string. (d) Find the tension in the lower string.
2. To study circular motion, two students use the handheld device shown above, which consists of a rod on which a spring scale is attached.
1. A ball of mass M attached to a string of length L moves in a circle in a vertical plane as shown above. At the top of the circular path, the tension in the string is twice the weight of the ball. At
More informationAP Physics QUIZ Chapters 10
Name: 1. Torque is the rotational analogue of (A) Kinetic Energy (B) Linear Momentum (C) Acceleration (D) Force (E) Mass A 5kilogram sphere is connected to a 10kilogram sphere by a rigid rod of negligible
More information6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.
1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular
More informationAngular Speed and Angular Acceleration Relations between Angular and Linear Quantities
Angular Speed and Angular Acceleration Relations between Angular and Linear Quantities 1. The tires on a new compact car have a diameter of 2.0 ft and are warranted for 60 000 miles. (a) Determine the
More informationSuggested Problems. Chapter 1
Suggested Problems Ch1: 49, 51, 86, 89, 93, 95, 96, 102. Ch2: 9, 18, 20, 44, 51, 74, 75, 93. Ch3: 4, 14, 46, 54, 56, 75, 91, 80, 82, 83. Ch4: 15, 59, 60, 62. Ch5: 14, 52, 54, 65, 67, 83, 87, 88, 91, 93,
More informationCircular Motion and Gravitation Practice Test Provincial Questions
Circular Motion and Gravitation Practice Test Provincial Questions 1. A 1 200 kg car is traveling at 25 m s on a horizontal surface in a circular path of radius 85 m. What is the net force acting on this
More informationRotational Motion Examples:
Rotational Motion Examples: 1. A 60. cm diameter wheel rotates through 50. rad. a. What distance will it move? b. How many times will the wheel rotate in this time? 2. A saw blade is spinning at 2000.
More informationPhysics 111: Mechanics Lecture 9
Physics 111: Mechanics Lecture 9 Bin Chen NJIT Physics Department Circular Motion q 3.4 Motion in a Circle q 5.4 Dynamics of Circular Motion If it weren t for the spinning, all the galaxies would collapse
More informationPhysics 2211 ABC Quiz #3 Solutions Spring 2017
Physics 2211 ABC Quiz #3 Solutions Spring 2017 I. (16 points) A block of mass m b is suspended vertically on a ideal cord that then passes through a frictionless hole and is attached to a sphere of mass
More informationChapter 7. Rotational Motion and The Law of Gravity
Chapter 7 Rotational Motion and The Law of Gravity 1 The Radian The radian is a unit of angular measure The radian can be defined as the arc length s along a circle divided by the radius r s θ = r 2 More
More information1 MR SAMPLE EXAM 3 FALL 2013
SAMPLE EXAM 3 FALL 013 1. A merrygoround rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,
More informationω = k/m x = A cos (ωt + ϕ 0 ) L = I ω a x = ω 2 x P = F v P = de sys J = F dt = p w = m g F G = Gm 1m 2 D = 1 2 CρAv2 a r = v2
PHYS 2211 A, B, & C Final Exam Formulæ & Constants Spring 2017 Unless otherwise directed, drag is to be neglected and all problems take place on Earth, use the gravitational definition of weight, and all
More informationRotation. PHYS 101 Previous Exam Problems CHAPTER
PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that
More informationHW Chapter 5 Q 7,8,18,21 P 4,6,8. Chapter 5. The Law of Universal Gravitation Gravity
HW Chapter 5 Q 7,8,18,21 P 4,6,8 Chapter 5 The Law of Universal Gravitation Gravity Newton s Law of Universal Gravitation Every particle in the Universe attracts every other particle with a force that
More informationPhys 106 Practice Problems Common Quiz 1 Spring 2003
Phys 106 Practice Problems Common Quiz 1 Spring 2003 1. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed
More informationAP C  Webreview ch 7 (part I) Rotation and circular motion
Name: Class: _ Date: _ AP C  Webreview ch 7 (part I) Rotation and circular motion Multiple Choice Identify the choice that best completes the statement or answers the question. 1. 2 600 rev/min is equivalent
More informationSAPTARSHI CLASSES PVT. LTD.
SAPTARSHI CLASSES PVT. LTD. NEET/JEE Date : 13/05/2017 TEST ID: 120517 Time : 02:00:00 Hrs. PHYSICS, Chem Marks : 360 Phy : Circular Motion, Gravitation, Che : Halogen Derivatives Of Alkanes Single Correct
More informationA Ferris wheel in Japan has a radius of 50m and a mass of 1.2 x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at
Option B Quiz 1. A Ferris wheel in Japan has a radius of 50m and a mass of 1. x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at rest, what is the wheel s angular acceleration?
More informationPHYS 1303 Final Exam Example Questions
PHYS 1303 Final Exam Example Questions 1.Which quantity can be converted from the English system to the metric system by the conversion factor 5280 mi f 12 f in 2.54 cm 1 in 1 m 100 cm 1 3600 h? s a. feet
More informationPHYS 124 Section A1 MidTerm Examination Spring 2006 SOLUTIONS
PHYS 14 Section A1 MidTerm Examination Spring 006 SOLUTIONS Name Student ID Number Instructor Marc de Montigny Date Monday, May 15, 006 Duration 60 minutes Instructions Items allowed: pen or pencil, calculator
More informationHATZIC SECONDARY SCHOOL
HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT CIRCULAR MOTION MULTIPLE CHOICE / 30 OPEN ENDED / 65 TOTAL / 95 NAME: 1. An object travels along a path at constant speed. There is a constant
More informationPhysics 201 Midterm Exam 3
Name: Date: _ Physics 201 Midterm Exam 3 Information and Instructions Student ID Number: Section Number: TA Name: Please fill in all the information above Please write and bubble your Name and Student
More informationis acting on a body of mass m = 3.0 kg and changes its velocity from an initial
PHYS 101 second major Exam Term 102 (Zero Version) Q1. A 15.0kg block is pulled over a rough, horizontal surface by a constant force of 70.0 N acting at an angle of 20.0 above the horizontal. The block
More informationAP practice ch 78 Multiple Choice
AP practice ch 78 Multiple Choice 1. A spool of thread has an average radius of 1.00 cm. If the spool contains 62.8 m of thread, how many turns of thread are on the spool? "Average radius" allows us to
More informationTopic 6 Circular Motion and Gravitation
Topic 6 Circular Motion and Gravitation ExamStyle Questions 1 a) Calculate the angular velocity of a person standing on the Earth s surface at sea level. b) The summit of Mount Everest is 8848m above
More informationSummer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.
Summer Physics 41 Pretest Name: Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. 1. An object hangs in equilibrium suspended by two identical ropes. Which rope
More informationPhysics 4A Solutions to Chapter 10 Homework
Physics 4A Solutions to Chapter 0 Homework Chapter 0 Questions: 4, 6, 8 Exercises & Problems 6, 3, 6, 4, 45, 5, 5, 7, 8 Answers to Questions: Q 04 (a) positive (b) zero (c) negative (d) negative Q 06
More information31 ROTATIONAL KINEMATICS
31 ROTATIONAL KINEMATICS 1. Compare and contrast circular motion and rotation? Address the following Which involves an object and which involves a system? Does an object/system in circular motion have
More informationLecture 10. Example: Friction and Motion
Lecture 10 Goals: Exploit Newton s 3 rd Law in problems with friction Employ Newton s Laws in 2D problems with circular motion Assignment: HW5, (Chapter 7, due 2/24, Wednesday) For Tuesday: Finish reading
More informationUNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 16, 2000 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION
More informationAP Physics 1 Lesson 9 Homework Outcomes. Name
AP Physics 1 Lesson 9 Homework Outcomes Name Date 1. Define uniform circular motion. 2. Determine the tangential velocity of an object moving with uniform circular motion. 3. Determine the centripetal
More informationDEVIL CHAPTER 6 TEST REVIEW
IB PHYSICS Name: Period: Date: # Marks: 51 DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 6 TEST REVIEW 1. A cyclist rides around a circular track at a uniform speed. Which of the following correctly gives
More informationPhysics 201 Midterm Exam 3
Physics 201 Midterm Exam 3 Information and Instructions Student ID Number: Section Number: TA Name: Please fill in all the information above. Please write and bubble your Name and Student Id number on
More informationCircular Motion PreTest
Circular Motion PreTest Date: 06/03/2008 Version #: 0 Name: 1. In a series of test runs, a car travels around the same circular track at different velocities. Which graph best shows the relationship between
More informationIts SI unit is rad/s and is an axial vector having its direction given by right hand thumb rule.
Circular motion An object is said to be having circular motion if it moves along a circular path. For example revolution of moon around earth, the revolution of an artificial satellite in circular orbit
More informationPractice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Date: _ Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20
More informationTest 7 wersja angielska
Test 7 wersja angielska 7.1A One revolution is the same as: A) 1 rad B) 57 rad C) π/2 rad D) π rad E) 2π rad 7.2A. If a wheel turns with constant angular speed then: A) each point on its rim moves with
More informationAdvanced Higher Physics. Rotational motion
Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration
More informationCOLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER I 2012/2013
COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER I 2012/2013 PROGRAMME SUBJECT CODE SUBJECT : Foundation in Engineering : PHYF115 : Physics I DATE : September 2012
More informationMultiple Choice Portion
Unit 5: Circular Motion and Gravitation Please Note that the gravitational potential energy questions are located in Unit 4 (Energy etc.) Multiple Choice Portion 1. What is the centripetal acceleration
More informationIt will be most difficult for the ant to adhere to the wheel as it revolves past which of the four points? A) I B) II C) III D) IV
AP Physics 1 Lesson 16 Homework Newton s First and Second Law of Rotational Motion Outcomes Define rotational inertia, torque, and center of gravity. State and explain Newton s first Law of Motion as it
More informationCHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque
7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity
More informationPH201 Chapter 6 Solutions
PH201 Chapter 6 Solutions 6.2. Set Up: Since the stone travels in a circular path, its acceleration is directed toward the center of the circle. The only horizontal force on the stone is the tension of
More informationTutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?
1. rpm is about rad/s. 7. ROTATIONAL MOTION 2. A wheel rotates with constant angular acceleration of π rad/s 2. During the time interval from t 1 to t 2, its angular displacement is π rad. At time t 2
More informationCircular_Gravitation_P2 [64 marks]
Circular_Gravitation_P2 [64 marks] A small ball of mass m is moving in a horizontal circle on the inside surface of a frictionless hemispherical bowl. The normal reaction force N makes an angle θ to the
More informationChapter 5. Force and MotionI
Chapter 5 Force and MotionI 5.3 Newton s First Law Newton s First Law: If no force acts on a body, the body s velocity cannot change The purpose of Newton s First Law is to introduce the special frames
More information1 Problems 13 A disc rotates about an axis through its center according to the relation θ (t) = t 4 /4 2t
Slide 1 / 30 1 Problems 13 disc rotates about an axis through its center according to the relation θ (t) = t 4 /4 2t etermine the angular velocity of the disc at t= 2 s 2 rad/s 4 rad/s 6 rad/s 8 rad/s
More informationSlide 1 / 30. Slide 2 / 30. Slide 3 / m/s 1 m/s
1 Problems 13 disc rotates about an axis through its center according to the relation θ (t) = t 4 /4 2t Slide 1 / 30 etermine the angular velocity of the disc at t= 2 s 2 rad/s 4 rad/s 6 rad/s 8 rad/s
More information= o + t = ot + ½ t 2 = o + 2
Chapters 89 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the
More informationName Date Period PROBLEM SET: ROTATIONAL DYNAMICS
Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget
More informationSolution to phys101t112final Exam
Solution to phys101t112final Exam Q1. An 800N man stands halfway up a 5.0m long ladder of negligible weight. The base of the ladder is.0m from the wall as shown in Figure 1. Assuming that the wallladder
More informationUniform Circular Motion AP
Uniform Circular Motion AP Uniform circular motion is motion in a circle at the same speed Speed is constant, velocity direction changes the speed of an object moving in a circle is given by v circumference
More informationPROBLEM 2 10 points. [ ] increases [ ] decreases [ ] stays the same. Briefly justify your answer:
PROBLEM 2 10 points A disk of mass m is tied to a block of mass 2m via a string that passes through a hole at the center of a rotating turntable. The disk rotates with the turntable at a distance R from
More informationCHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WENBIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY
CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WENBIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY OUTLINE 1. Angular Position, Velocity, and Acceleration 2. Rotational
More informationName (please print): UW ID# score last first
Name (please print): UW ID# score last first Question I. (20 pts) Projectile motion A ball of mass 0.3 kg is thrown at an angle of 30 o above the horizontal. Ignore air resistance. It hits the ground 100
More informationCircular Motion and Universal Law of Gravitation. 8.01t Oct 4, 2004
Circular Motion and Universal Law of Gravitation 8.01t Oct 4, 2004 Summary: Circular Motion arc length s= Rθ tangential velocity ds v = = dt dθ R = Rω dt 2 d θ 2 dt tangential acceleration a θ = dv θ =
More informationAP Physics Multiple Choice Practice Torque
AP Physics Multiple Choice Practice Torque 1. A uniform meterstick of mass 0.20 kg is pivoted at the 40 cm mark. Where should one hang a mass of 0.50 kg to balance the stick? (A) 16 cm (B) 36 cm (C) 44
More informationExam 3 PREP Chapters 6, 7, 8
PHY241  General Physics I Dr. Carlson, Fall 2013 Prep Exam 3 PREP Chapters 6, 7, 8 Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Astronauts in orbiting satellites
More information8.012 Physics I: Classical Mechanics Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE
More informationPHYSICS 218. Final Exam SPRING, Do not fill out the information below until instructed to do so! Name: Signature: Student ID:
PHYSICS 218 Final Exam SPRING, 2015 Do not fill out the information below until instructed to do so! Name: Signature: Student ID: Email: Section Number: You have the full class period to complete the
More informationCentripetal acceleration ac = to2r Kinetic energy of rotation KE, = \lto2. Moment of inertia. / = mr2 Newton's second law for rotational motion t = la
The Language of Physics Angular displacement The angle that a body rotates through while in rotational motion (p. 241). Angular velocity The change in the angular displacement of a rotating body about
More informationCircular Motion Dynamics Concept Questions
Circular Motion Dynamics Concept Questions Problem 1: A puck of mass m is moving in a circle at constant speed on a frictionless table as shown above. The puck is connected by a string to a suspended bob,
More informationDO NOT TURN PAGE TO START UNTIL TOLD TO DO SO.
University of California at Berkeley Physics 7A Lecture 1 Professor Lin Spring 2006 Final Examination May 15, 2006, 12:30 PM 3:30 PM Print Name Signature Discussion Section # Discussion Section GSI Student
More informationCircular Motion Dynamics
Circular Motion Dynamics 8.01 W04D2 Today s Reading Assignment: MIT 8.01 Course Notes Chapter 9 Circular Motion Dynamics Sections 9.19.2 Announcements Problem Set 3 due Week 5 Tuesday at 9 pm in box outside
More informationFind the acceleration of the train B Find the distance traveled during this 20 s? C D
75 A train with a mass of 25000 kg increases its speed from 10 m/s to 25 m/s in 20 seconds. Assume that the acceleration is constant and that you can neglect friction. A Find the acceleration of the train
More informationChapter 8. Centripetal Force and The Law of Gravity
Chapter 8 Centripetal Force and The Law of Gravity Centripetal Acceleration An object traveling in a circle, even though it moves with a constant speed, will have an acceleration The centripetal acceleration
More informationPhysics. Student Materials Advanced Higher. Tutorial Problems Mechanics HIGHER STILL. Spring 2000
Spring 2000 HIGHER STILL Physics Student Materials Advanced Higher Tutorial Problems Mechanics TUTORIAL 1 You will find tutorials on each topic. The fully worked out answers are available. The idea is
More informationAP Physics 1 Multiple Choice Questions  Chapter 7
1 A grindstone increases in angular speed from 4.00 rad/sec to 12.00 rad/sec in 4.00 seconds. Through what angle does it turn during that time if the angular acceleration is constant? a 8.00 rad b 12.0
More informationPSI AP Physics B Circular Motion
PSI AP Physics B Circular Motion Multiple Choice 1. A ball is fastened to a string and is swung in a vertical circle. When the ball is at the highest point of the circle its velocity and acceleration directions
More informationName: Date: Period: AP Physics C Rotational Motion HO19
1.) A wheel turns with constant acceleration 0.450 rad/s 2. (99) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions
More informationPhysics 101 Lab 6: Rotational Motion Dr. Timothy C. Black Fall, 2005
Theoretical Discussion Physics 101 Lab 6: Rotational Motion Dr. Timothy C. Black Fall, 2005 An object moving in a circular orbit[1] at constant speed is said to be executing uniform circular motion. The
More informationWebreview Torque and Rotation Practice Test
Please do not write on test. ID A Webreview  8.2 Torque and Rotation Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 0.30mradius automobile
More informationRotation review packet. Name:
Rotation review packet. Name:. A pulley of mass m 1 =M and radius R is mounted on frictionless bearings about a fixed axis through O. A block of equal mass m =M, suspended by a cord wrapped around the
More informationAP Physics C! name I CM R 2. v cm K = m
AP Physics C! name 120pt TAKE HOME TEST Chap 11 Rolling Mot., Angular Mom., Torque 3/914/12 Show your work on the problems Box in answers No Naked Numbers! 80pts from Chap 11 in class Questions and Problems:
More informationPhysics for Scientists and Engineers 4th Edition, 2017
A Correlation of Physics for Scientists and Engineers 4th Edition, 2017 To the AP Physics C: Mechanics Course Descriptions AP is a trademark registered and/or owned by the College Board, which was not
More informationUNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 5.3 FINAL EXAMINATION NAME: (Last) Please Print (Given) Time: 80 minutes STUDENT NO.: LECTURE SECTION (please check): 0
More informationRaymond A. Serway Chris Vuille. Chapter Seven. Rota9onal Mo9on and The Law of Gravity
Raymond A. Serway Chris Vuille Chapter Seven Rota9onal Mo9on and The Law of Gravity Rota9onal Mo9on An important part of everyday life Mo9on of the Earth Rota9ng wheels Angular mo9on Expressed in terms
More informationSample Final Exam 02 Physics 106 (Answers on last page)
Sample Final Exam 02 Physics 106 (Answers on last page) Name (Print): 4 Digit ID: Section: Instructions: 1. There are 30 multiple choice questions on the test. There is no penalty for guessing, so you
More informationPhysics 101: Lecture 08 Centripetal Acceleration and Circular Motion
Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion http://www.youtube.com/watch?v=zyf5wsmxrai Today s lecture will cover Chapter 5 Physics 101: Lecture 8, Pg 1 Circular Motion Act B A
More informationName St. Mary's HS AP Physics Circular Motion HW
Name St. Mary's HS AP Physics Circular Motion HW Base your answers to questions 1 and 2 on the following situation. An object weighing 10 N swings at the end of a rope that is 0.72 m long as a simple pendulum.
More informationSun Earth Moon Mars Mass kg kg kg kg Radius m m m 3.
Sun Earth Moon Mars Mass 1.99 10 30 kg 5.97 10 24 kg 7.35 10 22 kg 6.42 10 23 kg Radius 6.96 10 8 m 6.38 10 6 m 1.74 10 6 m 3.40 10 6 m Orbital Radius  1.50 10 11 m 3.84 10 8 m 2.28 10 11 m Orbital Period
More informationI pt mass = mr 2 I sphere = (2/5) mr 2 I hoop = mr 2 I disk = (1/2) mr 2 I rod (center) = (1/12) ml 2 I rod (end) = (1/3) ml 2
Fall 008 RED Barcode Here Physics 105, sections 1 and Exam 3 Please write your CID Colton 3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.
More informationOn my honor as a Texas A&M University student, I will neither give nor receive unauthorized help on this exam.
Physics 201, Exam 2 Name (printed) On my honor as a Texas A&M University student, I will neither give nor receive unauthorized help on this exam. Name (signed) The multiplechoice problems carry no partial
More informationThe maximum kinetic energy is directly proportional to the frequency. The time for one oscillation is directly proportional to the frequency.
Q1.For a body performing simple harmonic motion, which one of the following statements is correct? The maximum kinetic energy is directly proportional to the frequency. The time for one oscillation is
More informationEQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid
EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body undergoing rotational motion. APPLICATIONS The crank
More informationPhysics 201, Practice Midterm Exam 3, Fall 2006
Physics 201, Practice Midterm Exam 3, Fall 2006 1. A figure skater is spinning with arms stretched out. A moment later she rapidly brings her arms close to her body, but maintains her dynamic equilibrium.
More informationKinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph.
Kinematics 1993B1 (modified) A student stands in an elevator and records his acceleration as a function of time. The data are shown in the graph above. At time t = 0, the elevator is at displacement x
More informationAP Physics. Harmonic Motion. Multiple Choice. Test E
AP Physics Harmonic Motion Multiple Choice Test E A 0.10Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.
More informationJURONG JUNIOR COLLEGE Physics Department Tutorial: Motion in a Circle
JURONG JUNIOR COLLEGE Physics Department Tutorial: Motion in a Circle Angular elocity 1 (a) Define the radian. [1] (b) Explain what is meant by the term angular elocity. [1] (c) Gie the angular elocity
More informationChoose the best answer for Questions 115 below. Mark your answer on your scantron form using a #2 pencil.
Name: ID #: Section #: PART I: MULTIPLE CHOICE QUESTIONS Choose the best answer for Questions 115 below. Mark your answer on your scantron form using a #2 pencil. 1. A 55.0kg box rests on a horizontal
More informationpg B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is dra
pg 165 A 0.20 kg object moves along a straight line. The net force acting on the object varies with the object's displacement as shown in the graph above. The object starts from rest at displacement x
More information第 1 頁, 共 7 頁 Chap10 1. Test Bank, Question 3 One revolution per minute is about: 0.0524 rad/s 0.105 rad/s 0.95 rad/s 1.57 rad/s 6.28 rad/s 2. *Chapter 10, Problem 8 The angular acceleration of a wheel
More informationTopic 1: Newtonian Mechanics Energy & Momentum
Work (W) the amount of energy transferred by a force acting through a distance. Scalar but can be positive or negative ΔE = W = F! d = Fdcosθ Units N m or Joules (J) Work, Energy & Power Power (P) the
More informationShow all work in answering the following questions. Partial credit may be given for problems involving calculations.
Physics 3210, Spring 2017 Exam #1 Name: Signature: UID: Please read the following before continuing: Show all work in answering the following questions. Partial credit may be given for problems involving
More informationAP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems
AP Physics C: Rotation II (Torque and Rotational Dynamics, Rolling Motion) Problems 1980M3. A billiard ball has mass M, radius R, and moment of inertia about the center of mass I c = 2 MR²/5 The ball is
More informationLectures Chapter 10 (Cutnell & Johnson, Physics 7 th edition)
PH 2014A spring 2007 Simple Harmonic Motion Lectures 2425 Chapter 10 (Cutnell & Johnson, Physics 7 th edition) 1 The Ideal Spring Springs are objects that exhibit elastic behavior. It will return back
More informationWrite your name legibly on the top right hand corner of this paper
NAME Phys 631 Summer 2007 Quiz 2 Tuesday July 24, 2007 Instructor R. A. Lindgren 9:00 am 12:00 am Write your name legibly on the top right hand corner of this paper No Books or Notes allowed Calculator
More informationWhy Doesn t the Moon Hit us? In analysis of this question, we ll look at the following things: i. How do we get the acceleration due to gravity out
Why Doesn t the oon Hit us? In analysis of this question, we ll look at the following things: i. How do we get the acceleration due to gravity out of the equation for the force of gravity? ii. How does
More informationPage 2. Q1.A satellite X is in a circular orbit of radius r about the centre of a spherical planet of mass
Q1. satellite X is in a circular orbit of radius r about the centre of a spherical planet of mass M. Which line, to, in the table gives correct expressions for the centripetal acceleration a and the speed
More informationWorksheet for Exploration 10.1: Constant Angular Velocity Equation
Worksheet for Exploration 10.1: Constant Angular Velocity Equation By now you have seen the equation: θ = θ 0 + ω 0 *t. Perhaps you have even derived it for yourself. But what does it really mean for the
More information