Quantum Statistics (2)

Size: px
Start display at page:

Download "Quantum Statistics (2)"

Transcription

1 Quantum Statistics Our final application of quantum mechanics deals with statistical physics in the quantum domain. We ll start by considering the combined wavefunction of two identical particles, 1 and 2. By identical we mean that the two particles cannot be distinguished in any way. For example, if there is an interaction between identical particles, then at the end you can t tell which is which even if you knew before the interaction. Suppose we write the combined wavefunction, for particle 1 at location r 1 and particle 2 at location r 2, as Ψ = ψ 1 (r 1 )ψ 2 (r 2 ). (1) Now we imagine switching the places of particles 1 and 2, so that particle 1 is at r 2 and particle 2 is at r 1. Given that the particles are identical to each other, you might imagine that the wavefunction is unchanged, and indeed that is one possibility. However, we have to be careful! The only thing we can say with certainty is that if we switch the places of the particles, then switch them again, we must be back to the original wavefunction. This is possible if switching multiplies the wavefunction by -1 as well as if it multiplies the wavefunction by +1. We therefore have the two possibilities ψ 1 (r 2 )ψ 2 (r 1 ) = +ψ 1 (r 1 )ψ 2 (r 2 ) or ψ 1 (r 2 )ψ 2 (r 1 ) = ψ 1 (r 1 )ψ 2 (r 2 ). Note that the probability, which is the square of the amplitude of the wavefunction, is unaffected in either case. Particles that obey the first form (with the +1 factor) are called bosons, and particles that obey the second form (with the -1 factor) are called fermions. The best-known boson is a photon. Fermions include electrons, protons, neutrons, and neutrinos. It so happens that all elementary particles have a kind of intrinsic angular momentum called spin (this is a purely quantum property, so don t think of electrons rotating in place). If the spin is an integral multiple of h, the particle is a boson. If the spin is a half-integral multiple of h, such as h/2 or 3 h/2, the particle is a fermion. More generally, if there are any number of identical particles, then the overall wavefunction must be either completely symmetric or completely antisymmetric with respect to a swap of any two of those particles. That is, ψ 1 (r 1 )ψ 2 (r 2 )... ψ n (r n )... ψ m (r m )... = ±ψ 1 (r 1 )ψ 2 (r 2 )... ψ n (r m )... ψ m (r n )... (3) What does this mean? Let s think again about the case of just two particles. Suppose that the particles are fermions, so they have the -1 factor. Ask class: what is the probability of finding those two particles at the same spot, so that r 1 = r 2? It has to be zero, because the swap means ψ 1 (r 2 )ψ 2 (r 1 ) = ψ 1 (r 2 )ψ 2 (r 1 ), (4) (2)

2 and the only way that can happen is if the amplitude is zero, so the probability is also zero. Now, in reality we ve simplified by considering only location as part of the wavefunction. The full wavefunction also includes the state of the spin (for example, is the spin up or down?). When this is included, the general rule for fermions is the Pauli exclusion principle: no two fermions may occupy the same quantum state. Ask class: what is the situation for bosons? Then we have ψ 1 (r 2 )ψ 2 (r 1 ) = ψ 1 (r 2 )ψ 2 (r 1 ). (5) This places no restrictions on the probability. In fact, if a boson occupies a state, it slightly increases the probability that another boson will occupy that same state. If you like, you can think of fermions being antisocial, and bosons being social! Let s divert a bit to explain what is meant by the same quantum state. If we have a particle with no interior structure, such as an electron, then its quantum state includes a spin state, a position, and a momentum. We ll ignore the spin for now. From the uncertainty principle we know that the position and momentum can t be known simultaneously with arbitrary precision. In fact, the uncertainty principle says x y z p x p y p z > h 3. (6) This is the product of a volume in space with a volume in momentum. Such a product is called a volume in phase space. You can think of an element of phase space as having a volume of h 3. If we now consider spin, an electron has a spin of h/2, which can therefore be up (+ h/2) or down ( h/2), meaning that no more than two electrons may occupy a volume in phase space less than or of order h 3. Notice that this condition has to apply jointly to position and momentum; two electrons can have almost exactly the same momentum if they are on opposite sides of the galaxy! More generally, we can say that given quantum state (including spin) cannot be occupied by more than one fermion of a given type. With the phase space volume in mind, we can take a stab at some quantum statistics. Remember Boltzmann s law: the probability of a state of energy E in thermal equilibrium at temperature T is proportional to exp( E/kT ). What does this imply about the average number of particles in a given state (this average number is sometimes called the occupation number )? First consider fermions. If there are n fermions in a given state, then the joint probability for this to occur is the product of n factors of exp( E/kT ), or exp( ne/kt ). Therefore, the average number of fermions at a given energy is n exp( ne/kt ) N =. (7) exp( ne/kt ) Ask class: for fermions, what values can n take on? Just 0 or 1, from the exclusion

3 principle. Therefore, the occupation number is N F = 0 exp(0) + 1 exp( E/kT ) 1 + exp( E/kT ) = 1 exp(e tot /kt ) + 1. (8) Note that N 1 for any energy, where the subscript tot indicates that the energy here is the total energy, including chemical potential as well as other forms of energy. Ask class: what does this function look like when kt 0? If E tot < 0, N = 1. If E tot > 0, N = 0. Therefore, the schematic diagram of occupation number versus energy is a step function: all states are occupied up to a certain energy, then no states are occupied. This situation (T 0) corresponds to complete degeneracy. Ask class: what is the situation for bosons? Then n can take on any integer value from 0 to, so 0 n exp( ne/kt ) N = 0 exp( ne/kt ). (9) This sum is a little trickier, but evaluation of the series leads to the simplification N B = 1 exp(e tot /kt ) 1. (10) Note that for a low occupation number (thus E tot kt ), bosons are indistinguishable from fermions. This is the realm of classical statistics. Putting everything together, we get a distribution function (i.e., a number per phase space density) that looks like n(p) = 1 h 3 states 1 e Etot(state)/kT ± 1. (11) Here E tot = µ + E(state) + E(p), where µ is the chemical potential, E(state) is the energy of the state of that species relative to some level (often the ground state energy) and E(p) is the kinetic energy for momentum p. Note that the energy level relative to which one determines E state is a free parameter, but µ + E(state) isn t, which can lead to varying definitions for µ (beware!). For degenerate energy states the distribution function is sometimes written with a g j in the numerator, which is the number of states having the same energy E j. The distribution function is in (cm-momentum) 3 units. It is usually assumed that momentum space is spherically symmetric, so that the physical number density is n = n(p)4πp 2 dp. (12) p In general, the kinetic energy is E(p) = (p 2 c 2 + m 2 c 4 ) 1/2 mc 2. The isotropic pressure is P = 1 n(p)pv4πp 2 dp (13) 3 p

4 where the velocity is E/ p, and the internal energy is E = n(p)e(p)4πp 2 dp. (14) p Tell class: we are now going to concentrate for a while on perfect noninteracting particles, for simplicity. Specific application: blackbody radiation. For photons, µ = 0, g = 2 (because there are two polarizations), E j = 0 (because there are no excited states), E(p) = pc, and minus in the denominator because photons are bosons. Put it together and what have you got? (bippity boppity boo, but never mind that). The photon number density is then n γ = 8π p 2 dp h 3 0 exp(pc/kt ) 1 20 T 3 cm 3. (15) The radiation pressure is at 4 /3 and the energy density is at 4, where a = 8π 5 k 4 /15c 3 h 3 = erg cm 3 K 4. If one considers this in the context of equations of state, this has the consequence that stars whose pressure and energy density are dominated by radiation are close to instability. This is one of the reasons that very high-mass stars M > 100 M are not very stable. For somewhat separate reasons having to do with cooling, accretion disks that are dominated by radiation pressure are also unstable. From this, we can also get the spectral distribution for a blackbody. u ν dν = 8πhν3 c 3 1 e hν/kt 1 dν erg cm 3 Hz 1 Hz. (16) One of the many successes of quantum theory was the ability to explain blackbody curves from fundamental physics. Monatomic Gas: For an ideal, classical, monatomic gas, we know that the occupation number is extremely small. Therefore, the ±1 in the denominator is superfluous. Assume a nonrelativistic gas for starters, so Ask class: E(p) = p 2 /2m and v = p/m. Assume only one energy level, E = E 0 ; we can reference the energy to this single energy level and define E 0 = 0 (this simply redefines µ relative to that energy level, and different definitions exist in the literature). For an ideal gas µ kt. The number density is then n = 4π h g p 2 e µ/kt e p2 /2mkT dp. (17) 3 0 This can be integrated to find the relation between µ and n, the total number density. This relation is e µ/kt nh 3 =. (18) g(2πmkt ) 3/2 If you have a state with an energy E j relative to the reference energy, then with this simplification the equation above would have to be multiplied by e Ej/kT on the right hand

5 side. Similar integrations show that P = nkt (big surprise!) and E = 3 nkt. For a 2 fairly low-density gas, you can use these expressions along with assumptions of statistical equilibrium to derive the relative populations of atoms in different ionization states, assuming thermal ionization only (this leads to the Saha equation). I d like to close by considering a number of qualitative implications of quantum statistics. First, let s consider electrons. Electrons are fermions, so no more than one of them can occupy a given quantum state. Ask class: what effect does this have on the structure of atoms? It means that for atoms with more and more electrons, the orbitals occupied by electrons move farther and farther out. First, think about hydrogen. As we found last time, the lowest energy state that an electron can occupy has zero angular momentum, and is in the first orbital (which is said to have a principal quantum number n = 1). In atomic spectroscopy, zero angular momentum gets the letter s, so we say that the electron is in the 1s state. Next, consider helium (two electrons). We put the first electron in the lowest energy level, again (n = 1). Ask class: where can we put the next electron? We can also put this one in the lowest energy level, because we can have one electron with an up spin, and one with a down spin. The electronic state is then 1s 2. Ask class: what about lithium, with three electrons? You can t fit any more electrons into the 1s state, and the n = 1 state doesn t have any angular momentum, so you have to put the electron into an n = 2 state. The lowest energy one turns out to be the 2s state, so the configuration is now 1s 2 2s 1. The n = 2 state can have angular momentum, and if the angular momentum is one unit then the letter used is p. One can show that the 2s state, like the 1s state, allows two electrons (one with spin up, one with spin down), but that the 2p state allows more because it has nonzero angular momentum. The total number of electrons that can be in the 2p state is 6 (three from angular momentum, times two spin states), so the total number of electrons in the n = 2 state is 8 (2 in 2s, 6 in 2p). Therefore, atoms up to neon (atomic number 10) can have all their electrons in n = 1 or n = 2. For a nice website that gives ground state electronic configurations for all the elements, check out Note that for the heavier elements there are some apparent irregularities in the order in which orbitals are filled; these are caused by subtle interactions between the electrons that we can t model with just the Schrödinger equation. The main point here is that the periodic table, and indeed all of chemistry, stems from the Pauli exclusion principle, because otherwise all electrons would just be jammed in the 1s state! If the electrons are in a degenerate gas, as in a white dwarf or neutron star, then Pauli exclusion plays another important role. The process of conduction transports energy by having it carried by electrons. If a typical electron can travel a long distance before it interacts, then it can carry its energy a long way and therefore be highly efficient at smoothing out temperature gradients. Now, if the electrons are degenerate, then scattering

6 is much more difficult. Why? Because if an electron scatters, the final state it enters must not already be occupied by another electron (because of Pauli exclusion). For nondegenerate matter this is no problem; few states are occupied, so scattering happens as normal. But for degenerate electrons, scattering is much less frequent as a result of this process. Therefore, a typical electron moves a lot farther than it would otherwise. The net result is that conduction is extremely efficient in degenerate matter, so that the temperature is nearly constant throughout. Therefore, white dwarfs and neutron stars are nearly isothermal in much of their interiors. Finally, let s talk about bosons and degeneracy. For bosons, having one boson in a state makes it more likely that an identical boson will also occupy that state. Take photons as an example. For two photons to occupy the same state means that their location, frequency, direction, and polarization all overlap. If you have a situation in which many photons are available, these all add up, and since they have the same direction, their intensity is tremendous. This is the principle behind lasers. In interstellar space, where densities are small and therefore collisions are infrequent, you can often find natural masers (microwave equivalents of lasers). These have great intensity, and are commonly found in places such as star forming regions. All made possible by quantum statistics!

Chapter 2: Equation of State

Chapter 2: Equation of State Introduction Chapter 2: Equation of State The Local Thermodynamic Equilibrium The Distribution Function Black Body Radiation Fermi-Dirac EoS The Complete Degenerate Gas Application to White Dwarfs Temperature

More information

φ(ν)dν = 1. (1) We can define an average intensity over this profile, J =

φ(ν)dν = 1. (1) We can define an average intensity over this profile, J = Ask about final Saturday, December 14 (avoids day of ASTR 100 final, Andy Harris final). Decided: final is 1 PM, Dec 14. Rate Equations and Detailed Balance Blackbodies arise if the optical depth is big

More information

Atoms, Molecules and Solids. From Last Time Superposition of quantum states Philosophy of quantum mechanics Interpretation of the wave function:

Atoms, Molecules and Solids. From Last Time Superposition of quantum states Philosophy of quantum mechanics Interpretation of the wave function: Essay outline and Ref to main article due next Wed. HW 9: M Chap 5: Exercise 4 M Chap 7: Question A M Chap 8: Question A From Last Time Superposition of quantum states Philosophy of quantum mechanics Interpretation

More information

HW posted on web page HW10: Chap 14 Concept 8,20,24,26 Prob. 4,8. From Last Time

HW posted on web page HW10: Chap 14 Concept 8,20,24,26 Prob. 4,8. From Last Time HW posted on web page HW10: Chap 14 Concept 8,20,24,26 Prob. 4,8 From Last Time Philosophical effects in quantum mechanics Interpretation of the wave function: Calculation using the basic premises of quantum

More information

Statistical Equilibria: Saha Equation

Statistical Equilibria: Saha Equation Statistical Equilibria: Saha Equation We are now going to consider the statistics of equilibrium. Specifically, suppose we let a system stand still for an extremely long time, so that all processes can

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST11 Lecture Notes Part 1G Quantum gases Questions to ponder before the lecture 1. If hydrostatic equilibrium in a star is lost and gravitational forces are stronger than pressure, what will happen with

More information

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5)

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5) LECTURE 12 Maxwell Velocity Distribution Suppose we have a dilute gas of molecules, each with mass m. If the gas is dilute enough, we can ignore the interactions between the molecules and the energy will

More information

Order of Magnitude Estimates in Quantum

Order of Magnitude Estimates in Quantum Order of Magnitude Estimates in Quantum As our second step in understanding the principles of quantum mechanics, we ll think about some order of magnitude estimates. These are important for the same reason

More information

class 21 Astro 16: Astrophysics: Stars, ISM, Galaxies November 20, 2018

class 21 Astro 16: Astrophysics: Stars, ISM, Galaxies November 20, 2018 Topics: Post-main-sequence stellar evolution, degeneracy pressure, and white dwarfs Summary of reading: Review section 2 of Ch. 17. Read the beginning and first section of Ch. 18 (up through the middle

More information

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation Lecture 17 Page 1 Lecture 17 L17.P1 Review Schrödinger equation The general solution of Schrödinger equation in three dimensions (if V does not depend on time) is where functions are solutions of time-independent

More information

Physics 3700 Introduction to Quantum Statistical Thermodynamics Relevant sections in text: Quantum Statistics: Bosons and Fermions

Physics 3700 Introduction to Quantum Statistical Thermodynamics Relevant sections in text: Quantum Statistics: Bosons and Fermions Physics 3700 Introduction to Quantum Statistical Thermodynamics Relevant sections in text: 7.1 7.4 Quantum Statistics: Bosons and Fermions We now consider the important physical situation in which a physical

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 20, March 8, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 20, March 8, 2006 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer Lecture 20, March 8, 2006 Solved Homework We determined that the two coefficients in our two-gaussian

More information

Physics Oct A Quantum Harmonic Oscillator

Physics Oct A Quantum Harmonic Oscillator Physics 301 5-Oct-2005 9-1 A Quantum Harmonic Oscillator The quantum harmonic oscillator (the only kind there is, really) has energy levels given by E n = (n + 1/2) hω, where n 0 is an integer and the

More information

The Postulates of Quantum Mechanics Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: 3-D case

The Postulates of Quantum Mechanics Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: 3-D case The Postulates of Quantum Mechanics Common operators in QM: Potential Energy Often depends on position operator: Kinetic Energy 1-D case: 3-D case Time Total energy = Hamiltonian To find out about the

More information

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules. Today From Last Time Important new Quantum Mechanical Concepts Indistinguishability: Symmetries of the wavefunction: Symmetric and Antisymmetric Pauli exclusion principle: only one fermion per state Spin

More information

PHYSICS 250 May 4, Final Exam - Solutions

PHYSICS 250 May 4, Final Exam - Solutions Name: PHYSICS 250 May 4, 999 Final Exam - Solutions Instructions: Work all problems. You may use a calculator and two pages of notes you may have prepared. There are problems of varying length and difficulty.

More information

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form Lecture 6 Page 1 Atoms L6.P1 Review of hydrogen atom Heavy proton (put at the origin), charge e and much lighter electron, charge -e. Potential energy, from Coulomb's law Potential is spherically symmetric.

More information

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 14 Relativistic Quantum Mechanics and Quantum Statistics

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 14 Relativistic Quantum Mechanics and Quantum Statistics Physics 576 Stellar Astrophysics Prof. James Buckley Lecture 14 Relativistic Quantum Mechanics and Quantum Statistics Reading/Homework Assignment Read chapter 3 in Rose. Midterm Exam, April 5 (take home)

More information

Identical Particles in Quantum Mechanics

Identical Particles in Quantum Mechanics Identical Particles in Quantum Mechanics Chapter 20 P. J. Grandinetti Chem. 4300 Nov 17, 2017 P. J. Grandinetti (Chem. 4300) Identical Particles in Quantum Mechanics Nov 17, 2017 1 / 20 Wolfgang Pauli

More information

Preliminary Quantum Questions

Preliminary Quantum Questions Preliminary Quantum Questions Thomas Ouldridge October 01 1. Certain quantities that appear in the theory of hydrogen have wider application in atomic physics: the Bohr radius a 0, the Rydberg constant

More information

Energy Level Energy Level Diagrams for Diagrams for Simple Hydrogen Model

Energy Level Energy Level Diagrams for Diagrams for Simple Hydrogen Model Quantum Mechanics and Atomic Physics Lecture 20: Real Hydrogen Atom /Identical particles http://www.physics.rutgers.edu/ugrad/361 physics edu/ugrad/361 Prof. Sean Oh Last time Hydrogen atom: electron in

More information

Final Exam - Solutions PHYS/ECE Fall 2011

Final Exam - Solutions PHYS/ECE Fall 2011 Final Exam - Solutions PHYS/ECE 34 - Fall 211 Problem 1 Cosmic Rays The telescope array project in Millard County, UT can detect cosmic rays with energies up to E 1 2 ev. The cosmic rays are of unknown

More information

Brief review of Quantum Mechanics (QM)

Brief review of Quantum Mechanics (QM) Brief review of Quantum Mechanics (QM) Note: This is a collection of several formulae and facts that we will use throughout the course. It is by no means a complete discussion of QM, nor will I attempt

More information

Basic Physical Chemistry Lecture 2. Keisuke Goda Summer Semester 2015

Basic Physical Chemistry Lecture 2. Keisuke Goda Summer Semester 2015 Basic Physical Chemistry Lecture 2 Keisuke Goda Summer Semester 2015 Lecture schedule Since we only have three lectures, let s focus on a few important topics of quantum chemistry and structural chemistry

More information

Degeneracy & in particular to Hydrogen atom

Degeneracy & in particular to Hydrogen atom Degeneracy & in particular to Hydrogen atom In quantum mechanics, an energy level is said to be degenerate if it corresponds to two or more different measurable states of a quantum system. Conversely,

More information

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics.

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics. Ch28 Quantum Mechanics of Atoms Bohr s model was very successful to explain line spectra and the ionization energy for hydrogen. However, it also had many limitations: It was not able to predict the line

More information

CHAPTER 9 Statistical Physics

CHAPTER 9 Statistical Physics CHAPTER 9 Statistical Physics 9.1 Historical Overview 9.2 Maxwell Velocity Distribution 9.3 Equipartition Theorem 9.4 Maxwell Speed Distribution 9.5 Classical and Quantum Statistics 9.6 Fermi-Dirac Statistics

More information

Sparks CH301. Quantum Mechanics. Waves? Particles? What and where are the electrons!? UNIT 2 Day 3. LM 14, 15 & 16 + HW due Friday, 8:45 am

Sparks CH301. Quantum Mechanics. Waves? Particles? What and where are the electrons!? UNIT 2 Day 3. LM 14, 15 & 16 + HW due Friday, 8:45 am Sparks CH301 Quantum Mechanics Waves? Particles? What and where are the electrons!? UNIT 2 Day 3 LM 14, 15 & 16 + HW due Friday, 8:45 am What are we going to learn today? The Simplest Atom - Hydrogen Relate

More information

Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory

Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory Marc R. Roussel January 5, 2018 Marc R. Roussel Introduction to molecular orbitals January 5, 2018 1 / 24 Review: quantum mechanics

More information

Chapter 7. Atomic Structure

Chapter 7. Atomic Structure Chapter 7 Atomic Structure Light Made up of electromagnetic radiation. Waves of electric and magnetic fields at right angles to each other. Parts of a wave Wavelength Frequency = number of cycles in one

More information

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation Chapter 12: Phenomena Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected and

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r ψ even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES

32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES 32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES 32.1 Biological Effects of Ionizing Radiation γ-rays (high-energy photons) can penetrate almost anything, but do comparatively little damage.

More information

Outline. Today we will learn what is thermal radiation

Outline. Today we will learn what is thermal radiation Thermal Radiation & Outline Today we will learn what is thermal radiation Laws Laws of of themodynamics themodynamics Radiative Radiative Diffusion Diffusion Equation Equation Thermal Thermal Equilibrium

More information

Line Broadening. φ(ν) = Γ/4π 2 (ν ν 0 ) 2 + (Γ/4π) 2, (3) where now Γ = γ +2ν col includes contributions from both natural broadening and collisions.

Line Broadening. φ(ν) = Γ/4π 2 (ν ν 0 ) 2 + (Γ/4π) 2, (3) where now Γ = γ +2ν col includes contributions from both natural broadening and collisions. Line Broadening Spectral lines are not arbitrarily sharp. There are a variety of mechanisms that give them finite width, and some of those mechanisms contain significant information. We ll consider a few

More information

Astronomy 112: The Physics of Stars. Class 5 Notes: The Pressure of Stellar Material

Astronomy 112: The Physics of Stars. Class 5 Notes: The Pressure of Stellar Material Astronomy 2: The Physics of Stars Class 5 Notes: The Pressure of Stellar Material As we discussed at the end of last class, we ve written down the evolution equations, but we still need to specify how

More information

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m.

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m. PHY464 Introduction to Quantum Mechanics Fall 4 Final Eam SOLUTIONS December 7, 4, 7:3 a.m.- 9:3 a.m. No other materials allowed. If you can t do one part of a problem, solve subsequent parts in terms

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r y even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

EQUATION OF STATE. e (E µ)/kt ± 1, 1 f =

EQUATION OF STATE. e (E µ)/kt ± 1, 1 f = EQUATION OF STATE An elementary cell in phase space has a volume x y z p x p y p z. (1) According to quantum mechanics an elementary unit of phase space is, where h = 6.63 1 27 erg s is Planck s constant.

More information

PHYS 633: Introduction to Stellar Astrophysics

PHYS 633: Introduction to Stellar Astrophysics PHYS 633: Introduction to Stellar Astrophysics Spring Semester 2006 Rich Townsend (rhdt@bartol.udel.edu) Ionization During our derivation of the equation of state for stellar material, we saw that the

More information

1. Why photons? 2. Photons in a vacuum

1. Why photons? 2. Photons in a vacuum Photons and Other Messengers 1. Why photons? Ask class: most of our information about the universe comes from photons. What are the reasons for this? Let s compare them with other possible messengers,

More information

Quantum Mechanics of Atoms

Quantum Mechanics of Atoms Quantum Mechanics of Atoms Your theory is crazy, but it's not crazy enough to be true N. Bohr to W. Pauli Quantum Mechanics of Atoms 2 Limitations of the Bohr Model The model was a great break-through,

More information

Wolfgang Pauli Multielectron atoms, Pauli Exclusion Principle, and the Periodic Table

Wolfgang Pauli Multielectron atoms, Pauli Exclusion Principle, and the Periodic Table Multielectron atoms, Pauli Exclusion Principle, and the Periodic Table Final is on Mon. Dec. 16 from 7:30pm-10:00pm in this room. Homework Set #12 due next Wed. Rest of the semester: Today we will cover

More information

Announcements. Chapter. 8 Spin & Atomic Physics SPIN. For and electron: s = 1/2. s the quantum number of SPIN. Intrinsic property of a particle

Announcements. Chapter. 8 Spin & Atomic Physics SPIN. For and electron: s = 1/2. s the quantum number of SPIN. Intrinsic property of a particle Announcements! HW8 : Chap.8 30, 31, 35, 41, 49! Physics Colloquium: Development in Electron Nuclear Dynamics Theory on Thursday @ 3:40pm! Quiz3: 4/19 (Chap. 6,7,8) *** Course Web Page ** http://highenergy.phys.ttu.edu/~slee/2402/

More information

Atomic Structure Ch , 9.6, 9.7

Atomic Structure Ch , 9.6, 9.7 Ch. 9.2-4, 9.6, 9.7 Magnetic moment of an orbiting electron: An electron orbiting a nucleus creates a current loop. A current loop behaves like a magnet with a magnetic moment µ:! µ =! µ B " L Bohr magneton:

More information

de = j ν dvdωdtdν. (1)

de = j ν dvdωdtdν. (1) Transfer Equation and Blackbodies Initial questions: There are sources in the centers of some galaxies that are extraordinarily bright in microwaves. What s going on? The brightest galaxies in the universe

More information

Lecture 32: The Periodic Table

Lecture 32: The Periodic Table Lecture 32: The Periodic Table (source: What If by Randall Munroe) PHYS 2130: Modern Physics Prof. Ethan Neil (ethan.neil@colorado.edu) Announcements Homework #9 assigned, due next Wed. at 5:00 PM as usual.

More information

Atomic Structure and Atomic Spectra

Atomic Structure and Atomic Spectra Atomic Structure and Atomic Spectra Atomic Structure: Hydrogenic Atom Reading: Atkins, Ch. 10 (7 판 Ch. 13) The principles of quantum mechanics internal structure of atoms 1. Hydrogenic atom: one electron

More information

Star Formation and Evolution

Star Formation and Evolution Star Formation and Evolution Low and Medium Mass Stars Four Components of the Interstellar Medium Component Temperature Density (K) (atoms/cm 3 ) HI Clouds 50 150 1 1000 Intercloud Medium 10 3-10 4 0.01

More information

Physics 102: Lecture 24. Bohr vs. Correct Model of Atom. Physics 102: Lecture 24, Slide 1

Physics 102: Lecture 24. Bohr vs. Correct Model of Atom. Physics 102: Lecture 24, Slide 1 Physics 102: Lecture 24 Bohr vs. Correct Model of Atom Physics 102: Lecture 24, Slide 1 Plum Pudding Early Model for Atom positive and negative charges uniformly distributed throughout the atom like plums

More information

Addition of Opacities and Absorption

Addition of Opacities and Absorption Addition of Opacities and Absorption If the only way photons could interact was via simple scattering, there would be no blackbodies. We ll go into that in much more detail in the next lecture, but the

More information

For the case of S = 1/2 the eigenfunctions of the z component of S are φ 1/2 and φ 1/2

For the case of S = 1/2 the eigenfunctions of the z component of S are φ 1/2 and φ 1/2 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 03 Excited State Helium, He An Example of Quantum Statistics in a Two Particle System By definition He has

More information

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation Lecture 27st Page 1 Lecture 27 L27.P1 Review Schrödinger equation The general solution of Schrödinger equation in three dimensions (if V does not depend on time) is where functions are solutions of time-independent

More information

Chemistry 111 Dr. Kevin Moore

Chemistry 111 Dr. Kevin Moore Chemistry 111 Dr. Kevin Moore Black Body Radiation Heated objects emit radiation based on its temperature Higher temperatures produce higher frequencies PhotoElectric Effect Light on a clean metal surface

More information

Quantum Mechanics. Exam 3. Photon(or electron) interference? Photoelectric effect summary. Using Quantum Mechanics. Wavelengths of massive objects

Quantum Mechanics. Exam 3. Photon(or electron) interference? Photoelectric effect summary. Using Quantum Mechanics. Wavelengths of massive objects Exam 3 Hour Exam 3: Wednesday, November 29th In-class, Quantum Physics and Nuclear Physics Twenty multiple-choice questions Will cover:chapters 13, 14, 15 and 16 Lecture material You should bring 1 page

More information

Theory of optically thin emission line spectroscopy

Theory of optically thin emission line spectroscopy Theory of optically thin emission line spectroscopy 1 Important definitions In general the spectrum of a source consists of a continuum and several line components. Processes which give raise to the continuous

More information

Atomic Structure. Chapter 8

Atomic Structure. Chapter 8 Atomic Structure Chapter 8 Overview To understand atomic structure requires understanding a special aspect of the electron - spin and its related magnetism - and properties of a collection of identical

More information

Atomic Structure & Radiative Transitions

Atomic Structure & Radiative Transitions Atomic Structure & Radiative Transitions electron kinetic energy nucleus-electron interaction electron-electron interaction Remember the meaning of spherical harmonics Y l, m (θ, ϕ) n specifies the

More information

Chapter 12: Phenomena

Chapter 12: Phenomena Chapter 12: Phenomena K Fe Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected

More information

Lecture 01. Introduction to Elementary Particle Physics

Lecture 01. Introduction to Elementary Particle Physics Introduction to Elementary Particle Physics Particle Astrophysics Particle physics Fundamental constituents of nature Most basic building blocks Describe all particles and interactions Shortest length

More information

Electrons in a periodic potential

Electrons in a periodic potential Chapter 3 Electrons in a periodic potential 3.1 Bloch s theorem. We consider in this chapter electrons under the influence of a static, periodic potential V (x), i.e. such that it fulfills V (x) = V (x

More information

2. The evolution and structure of the universe is governed by General Relativity (GR).

2. The evolution and structure of the universe is governed by General Relativity (GR). 7/11 Chapter 12 Cosmology Cosmology is the study of the origin, evolution, and structure of the universe. We start with two assumptions: 1. Cosmological Principle: On a large enough scale (large compared

More information

Unit III Free Electron Theory Engineering Physics

Unit III Free Electron Theory Engineering Physics . Introduction The electron theory of metals aims to explain the structure and properties of solids through their electronic structure. The electron theory is applicable to all solids i.e., both metals

More information

Chancellor Phyllis Wise invites you to a birthday party!

Chancellor Phyllis Wise invites you to a birthday party! Chancellor Phyllis Wise invites you to a birthday party! 50 years ago, Illinois alumnus Nick Holonyak Jr. demonstrated the first visible light-emitting diode (LED) while working at GE. Holonyak returned

More information

Chapter 8: Electrons in Atoms Electromagnetic Radiation

Chapter 8: Electrons in Atoms Electromagnetic Radiation Chapter 8: Electrons in Atoms Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy transmission modeled as waves moving through space. (see below left) Electromagnetic Radiation

More information

Core Collapse Supernovae

Core Collapse Supernovae Core Collapse Supernovae Supernovae, the catastrophic explosions of stars, are some of the most luminous events in the universe for the few weeks that they are at peak brightness. As we will discuss in

More information

The Building Blocks of Nature

The Building Blocks of Nature The Building Blocks of Nature PCES 15.1 Schematic picture of constituents of an atom, & rough length scales. The size quoted for the nucleus here (10-14 m) is too large- a single nucleon has size 10-15

More information

Using that density as the electronic density, we find the following table of information for the requested quantities:

Using that density as the electronic density, we find the following table of information for the requested quantities: Physics 40 Solutions to Problem Set 11 Problems: Fermi gases! The Pauli Exclusion Principle causes much of the behavior of matter, both of the type you are quite familiar with e.g, the hardness of solids,

More information

ECE440 Nanoelectronics. Lecture 07 Atomic Orbitals

ECE440 Nanoelectronics. Lecture 07 Atomic Orbitals ECE44 Nanoelectronics Lecture 7 Atomic Orbitals Atoms and atomic orbitals It is instructive to compare the simple model of a spherically symmetrical potential for r R V ( r) for r R and the simplest hydrogen

More information

n=0 l (cos θ) (3) C l a lm 2 (4)

n=0 l (cos θ) (3) C l a lm 2 (4) Cosmic Concordance What does the power spectrum of the CMB tell us about the universe? For that matter, what is a power spectrum? In this lecture we will examine the current data and show that we now have

More information

Chapter Electron Spin. * Fine structure:many spectral lines consist of two separate. lines that are very close to each other.

Chapter Electron Spin. * Fine structure:many spectral lines consist of two separate. lines that are very close to each other. Chapter 7 7. Electron Spin * Fine structure:many spectral lines consist of two separate lines that are very close to each other. ex. H atom, first line of Balmer series n = 3 n = => 656.3nm in reality,

More information

Advanced Quantum Mechanics, Notes based on online course given by Leonard Susskind - Lecture 8

Advanced Quantum Mechanics, Notes based on online course given by Leonard Susskind - Lecture 8 Advanced Quantum Mechanics, Notes based on online course given by Leonard Susskind - Lecture 8 If neutrinos have different masses how do you mix and conserve energy Mass is energy. The eigenstates of energy

More information

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m LS coupling 1 The big picture We start from the Hamiltonian of an atomic system: H = [ ] 2 2 n Ze2 1 + 1 e 2 1 + H s o + H h f + H B. (1) 2m n e 4πɛ 0 r n 2 4πɛ 0 r nm n,m Here n runs pver the electrons,

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

E = hν light = hc λ = ( J s)( m/s) m = ev J = ev

E = hν light = hc λ = ( J s)( m/s) m = ev J = ev Problem The ionization potential tells us how much energy we need to use to remove an electron, so we know that any energy left afterwards will be the kinetic energy of the ejected electron. So first we

More information

Atomic Structure and Processes

Atomic Structure and Processes Chapter 5 Atomic Structure and Processes 5.1 Elementary atomic structure Bohr Orbits correspond to principal quantum number n. Hydrogen atom energy levels where the Rydberg energy is R y = m e ( e E n

More information

6. Qualitative Solutions of the TISE

6. Qualitative Solutions of the TISE 6. Qualitative Solutions of the TISE Copyright c 2015 2016, Daniel V. Schroeder Our goal for the next few lessons is to solve the time-independent Schrödinger equation (TISE) for a variety of one-dimensional

More information

The Atom and its components The 4 phases of matter The electromagnetic field Light traveling electromagnetic waves, quantized as photons Accelerate

The Atom and its components The 4 phases of matter The electromagnetic field Light traveling electromagnetic waves, quantized as photons Accelerate Astro 7: Chapter 5 Matter & Light The Atom and its components The 4 phases of matter The electromagnetic field Light traveling electromagnetic waves, quantized as photons Accelerate an electric charge,

More information

Electrons/bonding and quantum numbers

Electrons/bonding and quantum numbers Electrons/bonding and quantum numbers Electrons, Atomic Orbitals, and Energy Levels In an atom, the number if electrons equals the number if protons in the nucleus. Thus an electrically neutral carbon

More information

Light. Light (con t.) 2/28/11. Examples

Light. Light (con t.) 2/28/11. Examples Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Quantum mechanics of many-fermion systems

Quantum mechanics of many-fermion systems Quantum mechanics of many-fermion systems Kouichi Hagino Tohoku University, Sendai, Japan 1. Identical particles: Fermions and Bosons 2. Simple examples: systems with two identical particles 3. Pauli principle

More information

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Pre-Quantum Atomic Structure The existence of atoms and molecules had long been theorized, but never rigorously proven until the late 19

More information

Quantum Physics II (8.05) Fall 2002 Outline

Quantum Physics II (8.05) Fall 2002 Outline Quantum Physics II (8.05) Fall 2002 Outline 1. General structure of quantum mechanics. 8.04 was based primarily on wave mechanics. We review that foundation with the intent to build a more formal basis

More information

3 Observational Cosmology Evolution from the Big Bang Lecture 2

3 Observational Cosmology Evolution from the Big Bang Lecture 2 3 Observational Cosmology Evolution from the Big Bang Lecture 2 http://www.sr.bham.ac.uk/~smcgee/obscosmo/ Sean McGee smcgee@star.sr.bham.ac.uk http://www.star.sr.bham.ac.uk/~smcgee/obscosmo Nucleosynthesis

More information

CHAPTER 28 Quantum Mechanics of Atoms Units

CHAPTER 28 Quantum Mechanics of Atoms Units CHAPTER 28 Quantum Mechanics of Atoms Units Quantum Mechanics A New Theory The Wave Function and Its Interpretation; the Double-Slit Experiment The Heisenberg Uncertainty Principle Philosophic Implications;

More information

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r The Hydrogen Atom Atom is a 3D object, and the electron motion is three-dimensional. We ll start with the simplest case - The hydrogen atom. An electron and a proton (nucleus) are bound by the central-symmetric

More information

Chapter 1 Some Properties of Stars

Chapter 1 Some Properties of Stars Chapter 1 Some Properties of Stars This chapter is assigned reading for review. 1 2 CHAPTER 1. SOME PROPERTIES OF STARS Chapter 2 The Hertzsprung Russell Diagram This chapter is assigned reading for review.

More information

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler UNIT 4 Electrons in Atoms Advanced Chemistry 235 Lanphier High School Mr. David Peeler Section 4.1 Models of the Atom OBJECTIVES: Identify the inadequacies in the Rutherford atomic model. Section 4.1 Models

More information

Matter vs. Antimatter in the Big Bang. E = mc 2

Matter vs. Antimatter in the Big Bang. E = mc 2 Matter vs. Antimatter in the Big Bang Threshold temperatures If a particle encounters its corresponding antiparticle, the two will annihilate: particle + antiparticle ---> radiation * Correspondingly,

More information

Physics 314 (Survey of Astronomy) Exam 1

Physics 314 (Survey of Astronomy) Exam 1 Physics 314 (Survey of Astronomy) Exam 1 Please show all significant steps clearly in all problems. Please give clear and legible responses to qualitative questions. See the last page for values of constants.

More information

Applications of Quantum Theory to Some Simple Systems

Applications of Quantum Theory to Some Simple Systems Applications of Quantum Theory to Some Simple Systems Arbitrariness in the value of total energy. We will use classical mechanics, and for simplicity of the discussion, consider a particle of mass m moving

More information

Compton Scattering. hω 1 = hω 0 / [ 1 + ( hω 0 /mc 2 )(1 cos θ) ]. (1) In terms of wavelength it s even easier: λ 1 λ 0 = λ c (1 cos θ) (2)

Compton Scattering. hω 1 = hω 0 / [ 1 + ( hω 0 /mc 2 )(1 cos θ) ]. (1) In terms of wavelength it s even easier: λ 1 λ 0 = λ c (1 cos θ) (2) Compton Scattering Last time we talked about scattering in the limit where the photon energy is much smaller than the mass-energy of an electron. However, when X-rays and gamma-rays are considered, this

More information

Ay Fall 2004 Lecture 6 (given by Tony Travouillon)

Ay Fall 2004 Lecture 6 (given by Tony Travouillon) Ay 122 - Fall 2004 Lecture 6 (given by Tony Travouillon) Stellar atmospheres, classification of stellar spectra (Many slides c/o Phil Armitage) Formation of spectral lines: 1.excitation Two key questions:

More information

MITOCW ocw lec8

MITOCW ocw lec8 MITOCW ocw-5.112-lec8 The following content is provided by MIT OpenCourseWare under a Creative Commons license. Additional information about our license and MIT OpenCourseWare in general is available at

More information

Lecture #13 1. Incorporating a vector potential into the Hamiltonian 2. Spin postulates 3. Description of spin states 4. Identical particles in

Lecture #13 1. Incorporating a vector potential into the Hamiltonian 2. Spin postulates 3. Description of spin states 4. Identical particles in Lecture #3. Incorporating a vector potential into the Hamiltonian. Spin postulates 3. Description of spin states 4. Identical particles in classical and QM 5. Exchange degeneracy - the fundamental problem

More information

PH104 Lab 1 Light and Matter Pre-lab

PH104 Lab 1 Light and Matter Pre-lab Name: Lab Time: PH04 Lab Light and Matter Pre-lab. Goals Since this is the first lab, we don t want to try to do things that are too complex. We would like to get used to the lab room and some of the steps

More information

Appendix A Powers of Ten

Appendix A Powers of Ten Conclusion This has been a theory book for observational amateur astronomers. This is perhaps a bit unusual because most astronomy theory books tend to be written for armchair astronomers and they tend

More information

7/9. What happens to a star depends almost completely on the mass of the star. Mass Categories: Low-Mass Stars 0.2 solar masses and less

7/9. What happens to a star depends almost completely on the mass of the star. Mass Categories: Low-Mass Stars 0.2 solar masses and less 7/9 What happens to a star depends almost completely on the mass of the star. Mass Categories: Low-Mass Stars 0.2 solar masses and less Medium-Mass Stars 0.2 solar masses up to between 2 and 3 solar masses.

More information

Fermi gas model. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 2, 2011

Fermi gas model. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 2, 2011 Fermi gas model Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 2, 2011 NUCS 342 (Lecture 9) February 2, 2011 1 / 34 Outline 1 Bosons and fermions NUCS 342 (Lecture

More information

CHM Physical Chemistry II Chapter 9 - Supplementary Material. 1. Constuction of orbitals from the spherical harmonics

CHM Physical Chemistry II Chapter 9 - Supplementary Material. 1. Constuction of orbitals from the spherical harmonics CHM 3411 - Physical Chemistry II Chapter 9 - Supplementary Material 1. Constuction of orbitals from the spherical harmonics The wavefunctions that are solutions to the time independent Schrodinger equation

More information