Quantum correlations by tailored dissipassion. Natalia Korolkova, St Andrews, UK R. Tatham, N. Quinn, L. Mišta

Size: px
Start display at page:

Download "Quantum correlations by tailored dissipassion. Natalia Korolkova, St Andrews, UK R. Tatham, N. Quinn, L. Mišta"

Transcription

1 Quantum correlations by tailored dissipassion Natalia Korolkova, St Andrews, UK R. Tatham, N. Quinn, L. Mišta

2 quantum correlations in separable mixed states entanglement "Quantum discord as resource for remote state preparation": B Dakic, Y-O Lipp, X Ma, M Ringbauer, S Kropatschek, S Barz, T Paterek, V Vedral, A Zeilinger, C Brukner, P Walther (Nature Physics 2012)

3 Classically - equivalent definitions of mutual information: Shannon entropy: Conditional: Quantum they are not equivalent; mutual information: von Neumann entropy: Quantum discord: (quantum mutual information) - (one way classical correlation)

4 quantum correlations in separable mixed states Dissipative systems, controlled dissipation, dissipative driving Early ideas: J. P. Poyatos, J. I. Cirac, P. Zoller, Phys. Rev. Lett. 77, 4728 (1996) Constructive use of nonlinear dissipation in ion traps (quantum state protection), Design of different couplings btw trapped ion and environment Cavity-loss-induced generation of entangled atoms, M. B. Plenio, S. F. Huelga, A. Beige, P. L. Knight, Phys. Rev. A 59, 2468 (1999)

5 Quantumness by dissipation (more recent examples) Interaction with a common environment can lead to the creation of an entangled state from an initial separable state F. Benatti and R. Floreanini, J. Phys. A: Math. Gen. 39, 2689 (2006); D. Mogilevtsev, T. Tyc, and N. Korolkova, Phys. Rev. A 79, (2009) Quantum computation, quantum state engineering, and quantum phase transitions driven by dissipation F. Verstraete, M. M. Wolf, and J. I. Cirac, Nature Physics 5, 633 (2009) Dissipatively driven entanglement of two macroscopic atomic ensembles C. A. Muschik, E. S. Polzik, and J. I. Cirac, Phys. Rev. A 83, (2011)

6 Quantifiers of non-classical correlations (quantum discord, etc): link the emergence of quantum correlations with changes in entropy in quantum systems coupled to the environment Quantum correlations as quantified by discord are about inducing quantumness by dissipation

7 Quantum discord: (quantum mutual information) - (one way classical correlation) Reasearch avenues: - operational interpretation? - fundamental nature of this resource?

8 Koashi-Winter inequality: Koashi, Winter, PRA 69, (2004) Monogamy of entanglement: a quantum system being entangled with another one limits its possible entanglement with a third system Interplay between entanglement and classical correlation. Perfect entanglement and perfect classical correlation are mutually exclusive

9 Emergence of quantum discord: simple example of two systems Local noisy channels, nonunital (!) e.g. dissipation. A C DV: Streltsov, Kampermann, Bruss, PRL 107, (2011); CV: Ciccarello, Giovannetti, PRA 85, (2012) Local non-unitary measurement. Streltsov, Kampermann, Bruss, PRL 2011 : Are there any noisy channels that might even increase the amount of quantum correlations? How does dissipation influence quantum correlations, and how are they affected by decoherence?

10 A mixed state is not a fundamental object, but a sign of our ignorance. Purification: every mixed state acting on finite dimensional Hilbert spaces can be viewed as the reduced state of some pure state. Ansatz: mixed quantum state + environment = pure quantum state

11 Local non-unitary measurement Discrete example after measurement on C: B A C with Purification: - GHZ state, max entangled Streltsov, Kampermann, Bruss, PRL 2011 : Are there any noisy channels that might even increase the amount of quantum correlations? How does dissipation influence quantum correlations, and how are they affected by decoherence?

12 Initially: entanglement across any bipartition (GHZ) Now: any subsystem traced out no entanglement btw two remaining ones: B A C classical correlations btw those are maximal: Koashi-Winter: The entropy of marginal quantifies capacity of Alice s state to form correlations

13 Local non-unitary measurement on C Alice s and Bob s capacities to create correlations remain unchanged B A C Charlie s capacity to create correlations decrease upon the measurement on C:

14 After non-unitary measurement on C: classical correlations decrease capacity for Alice s correlations must be filled up Alice and Bob become entangled The discord between A and C arises as a side effect of this entanglement formation between the subsystem unaffected by the measurement and environment Tatham, Quinn, Korolkova, in preparation

15 Koashi-Winter inequality: - for pure tripartite system - min taken over all ensembles satisfying this Quantum Discord:

16 The discord between A and C arises as a side effect of the entanglement formation between the subsystem unaffected by the measurement and environment correlated entangled entangled B A C Quantum discord is not really a fundamental phenomenon but a side effect of all the changes in local entropy in a quantum system coupled to the environment

17 CV version, first experimental results: Theory: Ciccarello, Giovannetti, PRA 85, (2012) A C Madsen, Berni, Lassen, Andersen, Phys. Rev. Lett. 109, (2012)

18 But: started with a Gaussian mixture of coherent states = completely classical resources; Where does quantumness come from? Is there any quantumness? Does Gaussian discord give me a correct picture? Problems with quantum discord of Gaussian states?

19 Definition OK! Gaussian Discord Gaussian measurements optimal - one way classical correlation Total info about A Quantum correlation: Info about A inferred via quantum measurement on B Quantum conditional entropy related to upon POVM on B. Infimum: optimization to single out the least disturbing measurement on B Indirect confirmation that Gaussiam meas. optimal: Nonclassical correlations in continuous-variable non-gaussian Werner states, Mišta, Adesso, Korolkova, Phys. Rev. A 85,

20 Gaussian bi-partite states Naïve thinking: Gaussian states positive Wigner function most classical All non-product (but separable) bi-partite Gaussian states have a non-zero discord - quantum P. Giorda and M. G. A. Paris, Phys. Rev. Lett. 105, (2010); G. Adesso and A. Datta, Phys. Rev. Lett. 105, (2010) ; Quantum???

21 - classical definition of non-classicality Gaussian states with non-zero quantum discord are often classical according to this definition A. Ferraro, M. G. Paris, Phys. Rev. Lett. 108, (2012): Our results suggest that there are other quantum correlations in nature than those revealed by entanglement and quantum discord.

22 Information-theoretical concept of quantum/classical entanglement/separability according to Werner 1989 can be physically indistinguishable not all the information about them can be locally retrieved; Cannot prepare by LOCC. This phenomenon has no classical counterpart, quantumness of the correlations in separable state with positive discord

23 Quantumness in separable states: Nonorthogonal separable states cannot be discriminated exactly Measuring a local observable on a separable bipartite state can perturb the state The eigenvectors of a separable state can be entangled superpositions In general separable states have not a purely classical nature

24 Sometimes this quantumness has to be activated by some sort of post processing Non-orthogonal fill states but need to select individual states from the distribution Non-orthogonality quantumness has to be revealed

25 Here, we demonstrate that under certain measurement constraints, discord between bipartite systems can be consumed to encode information that can only be accessed by coherent quantum interactions. The inability to access this information by any other means allows us to use discord to directly quantify this quantum advantage. We experimentally encode information within the discordant correlations of two separable Gaussian states. The amount of extra information recovered by coherent interaction is quantified and directly linked with the discord consumed during encoding.. M. Gue et al (ANU + T. C. Ralph + Singapore), Nature Physics 8, 671 (2012)

26 We still do not have an adequate map for the quantum classical boader States with zero discord (CC-states) can exhibit quantum correlations acc. to phase-space criteria; Classical states acc. to P-function can have positive discord and cannot be prepared by LOCC

27 Simplest test-bench for Gaussian discord: two optical modes Do our arguments based on Koashi-Winter apply? Nature and usefulness of Gaussian discord in this scenario?

28 A C B A C Add purifying mode and construct purification

29 Purification: add E, replace A with TMSV for AE: B A C Tatham, Quinn, Mista, Korolkova, in preparation

30 Using Koashi-Winter as in discrete case: correlated entangled entangled B A C Quantum discord emerges as a side effect of all the changes in local entropy in a quantum system coupled to the environment Confirmed by measurement results: see poster by V Chille & Ch Peuntinger

31

32

33

34

35 Purification: add E, replace A with TMSV for AE: B A C Tatham, Quinn, Mista, Korolkova, in preparation

36 Max QD is larger for stronger modulation; mixed states can be more non-classical correlated Max increase of QD with dissipation: less modulation and phase shift entangled B entangled A C

37 Dissipation-induced coherence Quantum optics: correlations, coherence, correlation functions, ability to interfere. Quantum information: quantum entropy, entropy of entanglement. Quantum discord: correlations via changes in local entropy across dissipative system non-classical correlations, such as quantified by quantum discord, unite coherence with changes in entropy in quantum systems coupled to the environment link coherent and dissipative dynamics together link coherence and correlations to the entropy flow in a global system

38 Quantum resource in entanglement distribution: correlations induced by controlled dissipation Tailored dissipation as a tool: Controlled flow of (quantum) information between system and environment

39 Tailored dissipation as a tool: Designing nonlinear loss to overcome linear loss D. Mogilevtsev, A. Mikhalychev, V. S. Shchesnovich, N. Korolkova, submitted (2012)

40 Rate of nonlinear dissipation Rate of linear dissipation Initial state The Lindblad operator for engineered dissipation: pure target state The pure stationary state of this equation: cohereret one For possible to generate any desired state

41 The two-photon Fock state generation (a) Fidelity of the target two-photon Fock state generation for the designed loss with the Lindblad operator (b) The photon number distribution of the generated state for the maximal fidelity of the target two photon state generation A coherent initial state; target state: The Lindblad operator: (nonlinear dissipation)

42 Simple picture: Dissipation: jumps to the lower energy levels Rate (of transitions to the lower levels due to nonlinear dissipation ) << rate of linear loss Stationary state for nonlinear dissipation nonclassical state; Designing dissipation (form of the Lindblad operator) we determine the nonclassical target state Implementations: e.g. ion traps allow for dissipation engineering

43 Theoretical Quantum Information group N Korolkova, S Ivanov, (D Vasylyev), (D Milne), (R Tatham), N Quinn, C Croal; L. Mista - regular visitor from Olomouc

44

45

46 Mutual information = total correlations btw A and B Classically - equivalent definitions of mutual information: Shannon entropy: Conditional: Quantum they are not equivalent; mutual information: von Neumann entropy: measurements!

47 - one way classical correlation Total info about A Quantum correlation: Info about A inferred via quantum measurement on B Quantum conditional entropy related to upon POVM on B. Infimum: optimization to single out the least disturbing measurement on B

48 Quantum discord: quantum mutual information one way classical correlation - classical - quantum, separable - entangled

49 quantum mutual information one way classical correlation QD = quantum mutual info - the classical mutual info of outcomes; QD = total correlations - classical correlations; + operational; conceptually easy; optimized over POVMs - hard to compute; asymmetric not unique DV: H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, (2001); L. Henderson and V. Vedral, J. Phys. A 34, 6899 (2001) CV: G. Adesso and A. Datta, Phys. Rev. Lett. 105, (2010) P. Giorda and M. G. A. Paris, Phys. Rev. Lett. 105, (2010) L. Mista, R. Tatham, D. Girolami, N. Korolkova, G. Adesso, Phys. Rev. A. (2011)

50 quantum mutual information non-gaussian classical correlation MID = quantum mutual info - the classical mutual info of outcomes of local Fock-state detectors; + symmetric - no optimizations over local measurements often overestimates quantum correlations Measurement-induced disturbance (MID) S. Luo, Phys. Rev. A 77, (2008)

51 quantum mutual information maximal classical correlation extractable by local (Gaussian) processing AMID (Gaussian) = quantum mutual info - the maximal classical mutual info obtainable by (Gaussian) local measurements AMID optimized as discord and symmetric as MID L. Mista, R. Tatham, D. Girolami, N. Korolkova, G. Adesso, Phys. Rev. A (2011)

Remote transfer of Gaussian quantum discord

Remote transfer of Gaussian quantum discord Remote transfer of Gaussian quantum discord Lingyu Ma and Xiaolong Su State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006,

More information

THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO

THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO THE INTERFEROMETRIC POWER OF QUANTUM STATES GERARDO ADESSO IDENTIFYING AND EXPLORING THE QUANTUM-CLASSICAL BORDER Quantum Classical FOCUSING ON CORRELATIONS AMONG COMPOSITE SYSTEMS OUTLINE Quantum correlations

More information

Transmitting and Hiding Quantum Information

Transmitting and Hiding Quantum Information 2018/12/20 @ 4th KIAS WORKSHOP on Quantum Information and Thermodynamics Transmitting and Hiding Quantum Information Seung-Woo Lee Quantum Universe Center Korea Institute for Advanced Study (KIAS) Contents

More information

Gerardo Adesso. Davide Girolami. Alessio Serafini. University of Nottingham. University of Nottingham. University College London

Gerardo Adesso. Davide Girolami. Alessio Serafini. University of Nottingham. University of Nottingham. University College London Gerardo Adesso University of Nottingham Davide Girolami University of Nottingham Alessio Serafini University College London arxiv:1203.5116; Phys. Rev. Lett. (in press) A family of useful additive entropies

More information

arxiv: v1 [quant-ph] 12 Mar 2016

arxiv: v1 [quant-ph] 12 Mar 2016 One-way Quantum Deficit Decoherence for Two-qubit X States Biao-Liang Ye, 1 Yao-Kun Wang,, 3 Shao-Ming Fei 1, 1 School of Mathematical Sciences, Capital Normal University, Beijing 18, China Institute of

More information

Quantum Correlations and Bell Inequality Violation under Decoherence

Quantum Correlations and Bell Inequality Violation under Decoherence Quantum Correlations and Bell Inequality Violation under Decoherence Volkan Erol Computer Engineering Department, Okan University, Istanbul, 34959, Turkey E-mail: volkan.erol@gmail.com Abstract Quantum

More information

Fundamental rate-loss tradeoff for optical quantum key distribution

Fundamental rate-loss tradeoff for optical quantum key distribution Fundamental rate-loss tradeoff for optical quantum key distribution Masahiro Takeoka (NICT) Saikat Guha (BBN) Mark M. Wilde (LSU) Quantum Krispy Kreme Seminar @LSU January 30, 2015 Outline Motivation Main

More information

Susana F. Huelga. Dephasing Assisted Transport: Quantum Networks and Biomolecules. University of Hertfordshire. Collaboration: Imperial College London

Susana F. Huelga. Dephasing Assisted Transport: Quantum Networks and Biomolecules. University of Hertfordshire. Collaboration: Imperial College London IQIS2008, Camerino (Italy), October 26th 2008 Dephasing Assisted Transport: Quantum Networks and Biomolecules Susana F. Huelga University of Hertfordshire Collaboration: Imperial College London Work supported

More information

BONA FIDE MEASURES OF NON-CLASSICAL CORRELATIONS

BONA FIDE MEASURES OF NON-CLASSICAL CORRELATIONS BON FIDE MESURES OF NON-CLSSICL CORRELTIONS New J. Phys. 16, 073010 (2014). De Pasquale in collaboration with. Farace, L. Rigovacca and V. Giovannetti Outline MIN IDE: Introduction of measures of non-classical

More information

1. Basic rules of quantum mechanics

1. Basic rules of quantum mechanics 1. Basic rules of quantum mechanics How to describe the states of an ideally controlled system? How to describe changes in an ideally controlled system? How to describe measurements on an ideally controlled

More information

Coherence, Discord, and Entanglement: Activating one resource into another and beyond

Coherence, Discord, and Entanglement: Activating one resource into another and beyond 586. WE-Heraeus-Seminar Quantum Correlations beyond Entanglement Coherence, Discord, and Entanglement: Activating one resource into another and beyond Gerardo School of Mathematical Sciences The University

More information

Entanglement and Correlation of Quantum Fields in an Expanding Universe

Entanglement and Correlation of Quantum Fields in an Expanding Universe Entanglement and Correlation of Quantum Fields in an Expanding Universe Yasusada Nambu (Nagoya University, Japan) International Workshop on Strings, Black Holes and Quantum Information @ Tohoku Univ 2015/9/9

More information

Nullity of Measurement-induced Nonlocality. Yu Guo

Nullity of Measurement-induced Nonlocality. Yu Guo Jul. 18-22, 2011, at Taiyuan. Nullity of Measurement-induced Nonlocality Yu Guo (Joint work with Pro. Jinchuan Hou) 1 1 27 Department of Mathematics Shanxi Datong University Datong, China guoyu3@yahoo.com.cn

More information

5. Communication resources

5. Communication resources 5. Communication resources Classical channel Quantum channel Entanglement How does the state evolve under LOCC? Properties of maximally entangled states Bell basis Quantum dense coding Quantum teleportation

More information

A Holevo-type bound for a Hilbert Schmidt distance measure

A Holevo-type bound for a Hilbert Schmidt distance measure Journal of Quantum Information Science, 205, *,** Published Online **** 204 in SciRes. http://www.scirp.org/journal/**** http://dx.doi.org/0.4236/****.204.***** A Holevo-type bound for a Hilbert Schmidt

More information

Review of quantum discord in bipartite and multipartite systems

Review of quantum discord in bipartite and multipartite systems Quant. Phys. Lett. Vol. 1 No. 2 (2012) 69-77 Quantum Physics Letters An International Journal @ 2012 NSP Review of quantum discord in bipartite and multipartite systems Jian-Song Zhang and Ai-Xi Chen Department

More information

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Max-Planc-Institut für Mathemati in den Naturwissenschaften Leipzig Uncertainty Relations Based on Sew Information with Quantum Memory by Zhi-Hao Ma, Zhi-Hua Chen, and Shao-Ming Fei Preprint no.: 4 207

More information

Information-theoretic treatment of tripartite systems and quantum channels. Patrick Coles Carnegie Mellon University Pittsburgh, PA USA

Information-theoretic treatment of tripartite systems and quantum channels. Patrick Coles Carnegie Mellon University Pittsburgh, PA USA Information-theoretic treatment of tripartite systems and quantum channels Patrick Coles Carnegie Mellon University Pittsburgh, PA USA ArXiv: 1006.4859 a c b Co-authors Li Yu Vlad Gheorghiu Robert Griffiths

More information

arxiv: v1 [quant-ph] 30 Dec 2013

arxiv: v1 [quant-ph] 30 Dec 2013 A pedagogical overview of quantum discord arxiv:1312.7676v1 [quant-ph] 30 Dec 2013 Kavan Modi School of Physics, Monash University, Victoria 3800, Australia Email: kavan.modi@monash.edu (Processed: February

More information

Spin chain model for correlated quantum channels

Spin chain model for correlated quantum channels Spin chain model for correlated quantum channels Davide Rossini Scuola Internazionale Superiore di Studi Avanzati SISSA Trieste, Italy in collaboration with: Vittorio Giovannetti (Pisa) Simone Montangero

More information

arxiv: v1 [quant-ph] 11 Nov 2017

arxiv: v1 [quant-ph] 11 Nov 2017 Revealing Tripartite Quantum Discord with Tripartite Information Diagram Wei-Ting Lee and Che-Ming Li Department of Engineering Science, ational Cheng Kung University, Tainan 70101, Taiwan arxiv:1711.04119v1

More information

Lecture: Quantum Information

Lecture: Quantum Information Lecture: Quantum Information Transcribed by: Crystal Noel and Da An (Chi Chi) November 10, 016 1 Final Proect Information Find an issue related to class you are interested in and either: read some papers

More information

Perfect quantum teleportation and dense coding protocols via the 2N-qubit W state

Perfect quantum teleportation and dense coding protocols via the 2N-qubit W state Perfect quantum teleportation and dense coding protocols via the -qubit W state Wang Mei-Yu( ) a)b) and Yan Feng-Li( ) a)b) a) College of Physics Science and Information Engineering, Hebei ormal University,

More information

Quantification of Gaussian quantum steering. Gerardo Adesso

Quantification of Gaussian quantum steering. Gerardo Adesso Quantification of Gaussian quantum steering Gerardo Adesso Outline Quantum steering Continuous variable systems Gaussian entanglement Gaussian steering Applications Steering timeline EPR paradox (1935)

More information

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance.

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance. 9. Distance measures 9.1 Classical information measures How similar/close are two probability distributions? Trace distance Fidelity Example: Flipping two coins, one fair one biased Head Tail Trace distance

More information

Quantum correlations and decoherence in systems of interest for the quantum information processing

Quantum correlations and decoherence in systems of interest for the quantum information processing Universita' degli Studi di Milano Physics, Astrophysics and Applied Physics PhD School: 1 st Year-Student Mini-Workshop Quantum correlations and decoherence in systems of interest for the quantum information

More information

arxiv: v2 [quant-ph] 14 Sep 2013

arxiv: v2 [quant-ph] 14 Sep 2013 Hierarchy and dynamics of trace distance correlations arxiv:1307.3953v2 [quant-ph] 14 Sep 2013 Benjamin Aaronson 1, Rosario Lo Franco 2, Giuseppe Compagno 2, and Gerardo Adesso 1 1 School of Mathematical

More information

arxiv: v1 [quant-ph] 21 Dec 2016

arxiv: v1 [quant-ph] 21 Dec 2016 Environment generated quantum correlations in bipartite qubit-qutrit systems Salman Khan and Ishaq Ahmad Department of Physics, COMSATS Institute of Information Technology, arxiv:1612.06981v1 [quant-ph]

More information

Introduction to Quantum Information Hermann Kampermann

Introduction to Quantum Information Hermann Kampermann Introduction to Quantum Information Hermann Kampermann Heinrich-Heine-Universität Düsseldorf Theoretische Physik III Summer school Bleubeuren July 014 Contents 1 Quantum Mechanics...........................

More information

Redundant Information and the Quantum-Classical Transition

Redundant Information and the Quantum-Classical Transition University of California, Santa Barbara 22 August 2012 Redundant Information and the Quantum-Classical Transition C. Jess Riedel Acting advisor: Wojciech H. Zurek Theoretical Division Los Alamos National

More information

Unitary Process Discrimination with Error Margin

Unitary Process Discrimination with Error Margin Unitary Process Discrimination with Error Margin DEX-SMI Workshop on Quantum Statistical Inference March 2-4, 2009, National Institute of Informatics (NII), Tokyo A. Hayashi (Fukui) T. Hashimoto (Fukui),

More information

Quantum Minimax Theorem (Extended Abstract)

Quantum Minimax Theorem (Extended Abstract) Quantum Minimax Theorem (Extended Abstract) Fuyuhiko TANAKA November 23, 2014 Quantum statistical inference is the inference on a quantum system from relatively small amount of measurement data. It covers

More information

On balance of information in bipartite quantum communication systems: entanglement-energy analogy

On balance of information in bipartite quantum communication systems: entanglement-energy analogy On balance of information in bipartite quantum communication systems: entanglement-energy analogy Ryszard Horodecki 1,, Micha l Horodecki 1, and Pawe l Horodecki 2, 1 Institute of Theoretical Physics and

More information

Quantum Hadamard channels (I)

Quantum Hadamard channels (I) .... Quantum Hadamard channels (I) Vlad Gheorghiu Department of Physics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. July 8, 2010 Vlad Gheorghiu (CMU) Quantum Hadamard channels (I) July 8, 2010

More information

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36 QUANTUM INFORMATION - THE NO-HIDING THEOREM Arun K Pati akpati@iopb.res.in Instititute of Physics, Bhubaneswar-751005, Orissa, INDIA and Th. P. D, BARC, Mumbai-400085, India QUANTUM INFORMATION -THE NO-HIDING

More information

Lecture 18: Quantum Information Theory and Holevo s Bound

Lecture 18: Quantum Information Theory and Holevo s Bound Quantum Computation (CMU 1-59BB, Fall 2015) Lecture 1: Quantum Information Theory and Holevo s Bound November 10, 2015 Lecturer: John Wright Scribe: Nicolas Resch 1 Question In today s lecture, we will

More information

Analytic Expression of Geometric Discord in Arbitrary Mixture of any Two Bi-qubit Product Pure States

Analytic Expression of Geometric Discord in Arbitrary Mixture of any Two Bi-qubit Product Pure States Commun. Theor. Phys. 63 (2015) 439 444 Vol. 63 No. 4 April 1 2015 Analytic Expression of Geometric Discord in Arbitrary Mixture of any Two Bi-qubit Product Pure States XIE Chuan-Mei ( Ö) 1 LIU Yi-Min (

More information

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Coherence of Assistance and Regularized Coherence of Assistance by Ming-Jing Zhao, Teng Ma, and Shao-Ming Fei Preprint no.: 14 2018

More information

Quantum Measurements: some technical background

Quantum Measurements: some technical background Quantum Measurements: some technical background [From the projection postulate to density matrices & (introduction to) von Neumann measurements] (AKA: the boring lecture) First: One more example I wanted

More information

How much entanglement is lost along a channel? TQC 2008, 30 Jan 2008

How much entanglement is lost along a channel? TQC 2008, 30 Jan 2008 How much entanglement is lost along a channel? Francesco Buscemi, TQC 2008, 30 Jan 2008 Overview Review of some known results about approximate quantum error correction Generalization of the theory to

More information

Exploring finite-dimensional Hilbert spaces by Quantum Optics. PhD Candidate: Andrea Chiuri PhD Supervisor: Prof. Paolo Mataloni

Exploring finite-dimensional Hilbert spaces by Quantum Optics. PhD Candidate: Andrea Chiuri PhD Supervisor: Prof. Paolo Mataloni Exploring finite-dimensional Hilbert spaces by Quantum Optics PhD Candidate: PhD Supervisor: Prof. Paolo Mataloni Outline t Introduction to Quantum Optics t Entanglement and Hyperentanglement t Some Experiments

More information

Emergence of the classical world from quantum physics: Schrödinger cats, entanglement, and decoherence

Emergence of the classical world from quantum physics: Schrödinger cats, entanglement, and decoherence Emergence of the classical world from quantum physics: Schrödinger cats, entanglement, and decoherence Luiz Davidovich Instituto de Física Universidade Federal do Rio de Janeiro Outline of the talk! Decoherence

More information

Quantum Entanglement and Measurement

Quantum Entanglement and Measurement Quantum Entanglement and Measurement Haye Hinrichsen in collaboration with Theresa Christ University of Würzburg, Germany 2nd Workhop on Quantum Information and Thermodynamics Korea Institute for Advanced

More information

A tutorial on non-markovian quantum processes. Kavan Modi Monash University Melbourne, Australia

A tutorial on non-markovian quantum processes. Kavan Modi Monash University Melbourne, Australia A tutorial on non-markovian quantum processes Kavan Modi Monash University Melbourne, Australia Quantum Information Science http://monqis.physics.monash.edu Postdoc Felix Pollock PhD Students Francesco

More information

A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels

A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels JOURNAL OF CHEMISTRY 57 VOLUME NUMBER DECEMBER 8 005 A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels Miri Shlomi

More information

Entanglement: concept, measures and open problems

Entanglement: concept, measures and open problems Entanglement: concept, measures and open problems Division of Mathematical Physics Lund University June 2013 Project in Quantum information. Supervisor: Peter Samuelsson Outline 1 Motivation for study

More information

arxiv: v1 [quant-ph] 23 Nov 2013

arxiv: v1 [quant-ph] 23 Nov 2013 Article Genuine Tripartite Entanglement and Nonlocality in Bose-Einstein Condensates by Collective Atomic Recoil Samanta Piano 1 and Gerardo Adesso, * arxiv:1311.5940v1 [quant-ph] 3 Nov 013 1 Midlands

More information

Problem Set: TT Quantum Information

Problem Set: TT Quantum Information Problem Set: TT Quantum Information Basics of Information Theory 1. Alice can send four messages A, B, C, and D over a classical channel. She chooses A with probability 1/, B with probability 1/4 and C

More information

Summary of professional accomplishments

Summary of professional accomplishments Summary of professional accomplishments. Name and surname: Zbigniew Walczak 2. Diplomas and scientific degrees: MSc in theoretical physics Faculty of Mathematics, Physics and Chemistry, University of d,

More information

Exploiting path-polarization hyperentangled photons for multiqubit quantum information protocols

Exploiting path-polarization hyperentangled photons for multiqubit quantum information protocols Exploiting path-polarization hyperentangled photons for multiqubit quantum information protocols Candidate: Mario A. Ciampini, Supervisor: Prof. Paolo Mataloni March 30, 015 Introduction A bit is the minimal

More information

Entanglement-Assisted Capacity of a Quantum Channel and the Reverse Shannon Theorem

Entanglement-Assisted Capacity of a Quantum Channel and the Reverse Shannon Theorem IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 10, OCTOBER 2002 2637 Entanglement-Assisted Capacity of a Quantum Channel the Reverse Shannon Theorem Charles H. Bennett, Peter W. Shor, Member, IEEE,

More information

Mixed-state sensitivity of several quantum-information benchmarks

Mixed-state sensitivity of several quantum-information benchmarks PHYSICAL REVIEW A 70, 05309 (004) Mixed-state sensitivity of several quantum-information benchmarks Nicholas A. Peters, Tzu-Chieh Wei, and Paul G. Kwiat Physics Department, University of Illinois, 1110

More information

arxiv: v1 [quant-ph] 3 Jan 2008

arxiv: v1 [quant-ph] 3 Jan 2008 A paradigm for entanglement theory based on quantum communication Jonathan Oppenheim 1 1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge U.K. arxiv:0801.0458v1 [quant-ph]

More information

arxiv:quant-ph/ v1 13 Mar 2007

arxiv:quant-ph/ v1 13 Mar 2007 Quantumness versus Classicality of Quantum States Berry Groisman 1, Dan Kenigsberg 2 and Tal Mor 2 1. Centre for Quantum Computation, DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce

More information

arxiv: v1 [quant-ph] 2 Nov 2018

arxiv: v1 [quant-ph] 2 Nov 2018 Entanglement and Measurement-induced quantum correlation in Heisenberg spin models arxiv:1811.733v1 [quant-ph] 2 Nov 218 Abstract Indrajith V S, R. Muthuganesan, R. Sankaranarayanan Department of Physics,

More information

Quantum rate distortion, reverse Shannon theorems, and source-channel separation

Quantum rate distortion, reverse Shannon theorems, and source-channel separation Quantum rate distortion, reverse Shannon theorems, and source-channel separation ilanjana Datta, Min-Hsiu Hsieh, Mark Wilde (1) University of Cambridge,U.K. (2) McGill University, Montreal, Canada Classical

More information

arxiv: v1 [quant-ph] 12 Dec 2016

arxiv: v1 [quant-ph] 12 Dec 2016 Generation of a non-zero discord bipartite state with classical second-order interference arxiv:1612.03613v1 [quant-ph] 12 Dec 2016 Yuun Choi, 1, 2 Kang-Hee Hong, 3 Hyang-Tag Lim, 3, 4 Jiwon Yune, 1 Osung

More information

Optimal discrimination of quantum measurements. Michal Sedlák. Department of Optics, Palacký University, Olomouc, Czech Republic

Optimal discrimination of quantum measurements. Michal Sedlák. Department of Optics, Palacký University, Olomouc, Czech Republic Department of Optics, Palacký University, Olomouc, Czech Republic Optimal discrimination of quantum measurements Michal Sedlák joint work with M. Ziman Research Center for Quantum Information Institute

More information

Quantum Photonics Renaissance: from Quantum Clouds to Boson Sampling

Quantum Photonics Renaissance: from Quantum Clouds to Boson Sampling Quantum Photonics Renaissance: from Quantum Clouds to Boson Sampling Philip Walther Faculty of Physics University of Vienna Austria GDR - IQFA / 2nd Workshop Grenoble, France 28-30 November 2012 Encoding

More information

Compression and entanglement, entanglement transformations

Compression and entanglement, entanglement transformations PHYSICS 491: Symmetry and Quantum Information April 27, 2017 Compression and entanglement, entanglement transformations Lecture 8 Michael Walter, Stanford University These lecture notes are not proof-read

More information

Quantum error correction in the presence of spontaneous emission

Quantum error correction in the presence of spontaneous emission PHYSICAL REVIEW A VOLUME 55, NUMBER 1 JANUARY 1997 Quantum error correction in the presence of spontaneous emission M. B. Plenio, V. Vedral, and P. L. Knight Blackett Laboratory, Imperial College London,

More information

arxiv: v2 [quant-ph] 21 Feb 2012

arxiv: v2 [quant-ph] 21 Feb 2012 Nonclassical correlations in continuous-variable non-gaussian Werner states arxiv:1111.1101v [quant-ph] 1 Feb 01 Richard Tatham, 1 Ladislav Mišta, Jr., Gerardo Adesso, 3 and Natalia Korolkova 1 1 School

More information

Gilles Brassard. Université de Montréal

Gilles Brassard. Université de Montréal Gilles Brassard Université de Montréal Gilles Brassard Université de Montréal VOLUME 76, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 29 JANUARY 1996 Purification of Noisy Entanglement and Faithful

More information

Entanglement: Definition, Purification and measures

Entanglement: Definition, Purification and measures Entanglement: Definition, Purification and measures Seminar in Quantum Information processing 3683 Gili Bisker Physics Department Technion Spring 006 Gili Bisker Physics Department, Technion Introduction

More information

Distinguishing different classes of entanglement for three qubit pure states

Distinguishing different classes of entanglement for three qubit pure states Distinguishing different classes of entanglement for three qubit pure states Chandan Datta Institute of Physics, Bhubaneswar chandan@iopb.res.in YouQu-2017, HRI Chandan Datta (IOP) Tripartite Entanglement

More information

The information content of a quantum

The information content of a quantum The information content of a quantum A few words about quantum computing Bell-state measurement Quantum dense coding Teleportation (polarisation states) Quantum error correction Teleportation (continuous

More information

arxiv: v1 [quant-ph] 12 Nov 2014

arxiv: v1 [quant-ph] 12 Nov 2014 Quantum Discord and its role in quantum inormation theory arxiv:1411.3208v1 [quant-ph] 12 Nov 2014 Alexander Streltsov Alexander Streltsov ICFO The Institute o Photonic Sciences 08860 Castelldeels (Barcelona),

More information

arxiv: v2 [quant-ph] 17 Feb 2017

arxiv: v2 [quant-ph] 17 Feb 2017 Reexamination of strong subadditivity: A quantum-correlation approach Razieh Taghiabadi, 1 Seyed Javad Ahtarshenas, 1, and Mohsen Sarbishaei 1 1 Department of Physics, Ferdowsi University of Mashhad, Mashhad,

More information

arxiv:quant-ph/ v3 17 Jul 2005

arxiv:quant-ph/ v3 17 Jul 2005 Quantitative measures of entanglement in pair coherent states arxiv:quant-ph/0501012v3 17 Jul 2005 G. S. Agarwal 1 and Asoka Biswas 2 1 Department of Physics, Oklahoma state University, Stillwater, OK

More information

arxiv: v2 [quant-ph] 3 Mar 2017

arxiv: v2 [quant-ph] 3 Mar 2017 Intrinsic coherence in assisted sub-state discrimination Fu-Lin Zhang and Teng Wang Physics Department, School of Science, Tianjin University, Tianjin 300072, China (Dated: June 11, 2018) arxiv:1609.05134v2

More information

Detection of photonic Bell states

Detection of photonic Bell states LECTURE 3 Detection of photonic Bell states d a c Beam-splitter transformation: b ˆB ˆB EXERCISE 10: Derive these three relations V a H a ˆB Detection: or V b H b or Two photons detected in H a, H b, V

More information

ENTANGLEMENT TRANSFORMATION AT ABSORBING AND AMPLIFYING DIELECTRIC FOUR-PORT DEVICES

ENTANGLEMENT TRANSFORMATION AT ABSORBING AND AMPLIFYING DIELECTRIC FOUR-PORT DEVICES acta physica slovaca vol. 50 No. 3, 351 358 June 2000 ENTANGLEMENT TRANSFORMATION AT ABSORBING AND AMPLIFYING DIELECTRIC FOUR-PORT DEVICES S. Scheel 1, L. Knöll, T. Opatrný, D.-G.Welsch Theoretisch-Physikalisches

More information

Entropies & Information Theory

Entropies & Information Theory Entropies & Information Theory LECTURE I Nilanjana Datta University of Cambridge,U.K. See lecture notes on: http://www.qi.damtp.cam.ac.uk/node/223 Quantum Information Theory Born out of Classical Information

More information

EVOLUTION OF CONTINUOUS VARIABLE CORRELATIONS IN OPEN QUANTUM SYSTEMS

EVOLUTION OF CONTINUOUS VARIABLE CORRELATIONS IN OPEN QUANTUM SYSTEMS Dedicated to Academician Aureliu Sandulescu s 80 th Anniversary EVOLUTION OF CONTINUOUS VARIABLE CORRELATIONS IN OPEN QUANTUM SYSTEMS AURELIAN ISAR 1,2 1 Department of Theoretical Physics, Horia Hulubei

More information

Entanglement of projection and a new class of quantum erasers

Entanglement of projection and a new class of quantum erasers PHYSICAL REVIEW A VOLUME 60, NUMBER 2 AUGUST 1999 Entanglement of projection and a new class of quantum erasers Robert Garisto BNL Theory Group, Building 510a, Brookhaven National Laboratory, Upton, New

More information

Quantum control of dissipative systems. 1 Density operators and mixed quantum states

Quantum control of dissipative systems. 1 Density operators and mixed quantum states Quantum control of dissipative systems S. G. Schirmer and A. I. Solomon Quantum Processes Group, The Open University Milton Keynes, MK7 6AA, United Kingdom S.G.Schirmer@open.ac.uk, A.I.Solomon@open.ac.uk

More information

Quantum Memory with Atomic Ensembles

Quantum Memory with Atomic Ensembles Lecture Note 5 Quantum Memory with Atomic Ensembles 04.06.2008 Difficulties in Long-distance Quantum Communication Problems leads Solutions Absorption (exponentially) Decoherence Photon loss Degrading

More information

to mere bit flips) may affect the transmission.

to mere bit flips) may affect the transmission. 5 VII. QUANTUM INFORMATION THEORY to mere bit flips) may affect the transmission. A. Introduction B. A few bits of classical information theory Information theory has developed over the past five or six

More information

Not all entangled states are created equal (continued)

Not all entangled states are created equal (continued) Not all entangled states are created equal (continued) Compass states, et cetera: another caveat to the uncertainty principle N00N states revisited, along with their competition 29 Mar 2012 (part I) Background

More information

Probabilistic exact cloning and probabilistic no-signalling. Abstract

Probabilistic exact cloning and probabilistic no-signalling. Abstract Probabilistic exact cloning and probabilistic no-signalling Arun Kumar Pati Quantum Optics and Information Group, SEECS, Dean Street, University of Wales, Bangor LL 57 IUT, UK (August 5, 999) Abstract

More information

Theory of Quantum Entanglement

Theory of Quantum Entanglement Theory of Quantum Entanglement Shao-Ming Fei Capital Normal University, Beijing Universität Bonn, Bonn Richard Feynman 1980 Certain quantum mechanical effects cannot be simulated efficiently on a classical

More information

On the Relation between Quantum Discord and Purified Entanglement

On the Relation between Quantum Discord and Purified Entanglement On the Relation between Quantum Discord and Purified Entanglement by Eric Webster A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics

More information

Entanglement concentration for multi-atom GHZ class state via cavity QED

Entanglement concentration for multi-atom GHZ class state via cavity QED Vol 5 No, December 006 c 006 Chin. Phys. Soc. 009-963/006/5()/953-06 Chinese Physics and IOP Publishing Ltd Entanglement concentration for multi-atom GHZ class state via cavity QED Jiang Chun-Lei( ), Fang

More information

Entanglement Manipulation

Entanglement Manipulation Entanglement Manipulation Steven T. Flammia 1 1 Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5 Canada (Dated: 22 March 2010) These are notes for my RIT tutorial lecture at the

More information

INSTITUT FOURIER. Quantum correlations and Geometry. Dominique Spehner

INSTITUT FOURIER. Quantum correlations and Geometry. Dominique Spehner i f INSTITUT FOURIER Quantum correlations and Geometry Dominique Spehner Institut Fourier et Laboratoire de Physique et Modélisation des Milieux Condensés, Grenoble Outlines Entangled and non-classical

More information

arxiv: v2 [quant-ph] 21 Oct 2013

arxiv: v2 [quant-ph] 21 Oct 2013 Genuine hidden quantum nonlocality Flavien Hirsch, 1 Marco Túlio Quintino, 1 Joseph Bowles, 1 and Nicolas Brunner 1, 1 Département de Physique Théorique, Université de Genève, 111 Genève, Switzerland H.H.

More information

Quantum mechanics and reality

Quantum mechanics and reality Quantum mechanics and reality Margaret Reid Centre for Atom Optics and Ultrafast Spectroscopy Swinburne University of Technology Melbourne, Australia Thank you! Outline Non-locality, reality and quantum

More information

Quantum theory without predefined causal structure

Quantum theory without predefined causal structure Quantum theory without predefined causal structure Ognyan Oreshkov Centre for Quantum Information and Communication, niversité Libre de Bruxelles Based on work with Caslav Brukner, Nicolas Cerf, Fabio

More information

Quantum Information Processing and Diagrams of States

Quantum Information Processing and Diagrams of States Quantum Information and Diagrams of States September 17th 2009, AFSecurity Sara Felloni sara@unik.no / sara.felloni@iet.ntnu.no Quantum Hacking Group: http://www.iet.ntnu.no/groups/optics/qcr/ UNIK University

More information

Connections of Coherent Information, Quantum Discord, and Entanglement

Connections of Coherent Information, Quantum Discord, and Entanglement Commun. Theor. Phys. 57 (212) 589 59 Vol. 57, No., April 15, 212 Connections of Coherent Information, Quantum Discord, and Entanglement FU Hui-Juan ( ), LI Jun-Gang (Ó ), ZOU Jian (Õ ), and SHAO Bin (ÅÉ)

More information

Quantum Entanglement- Fundamental Aspects

Quantum Entanglement- Fundamental Aspects Quantum Entanglement- Fundamental Aspects Debasis Sarkar Department of Applied Mathematics, University of Calcutta, 92, A.P.C. Road, Kolkata- 700009, India Abstract Entanglement is one of the most useful

More information

BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS

BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS P. Caban, K. Podlaski, J. Rembieliński, K. A. Smoliński and Z. Walczak Department of Theoretical Physics, University of Lodz Pomorska 149/153,

More information

arxiv: v1 [quant-ph] 24 Dec 2018

arxiv: v1 [quant-ph] 24 Dec 2018 QUANTUM INFORMATION GEOMETRY IN THE SPACE OF MEASUREMENTS arxiv:1812.09810v1 [quant-ph] 24 Dec 2018 WARNER A. MILLER Abstract. We introduce a new approach to evaluating entangled quantum networks using

More information

Quantum Information and Many-Body Physics with Atomic and Quantum Optical Systems

Quantum Information and Many-Body Physics with Atomic and Quantum Optical Systems Quantum Information and Many-Body Physics with Atomic and Quantum Optical Systems Fabrizio Illuminati Quantum Theory Group - Dipartimento di Matematica e Informatica, Università degli Studi di Salerno,

More information

Quantum entanglement and macroscopic quantum superpositions

Quantum entanglement and macroscopic quantum superpositions Max Planck Institute of Quantum Optics (MPQ) Garching / Munich, Germany Quantum entanglement and macroscopic quantum superpositions Johannes Kofler Quantum Information Symposium Institute of Science and

More information

Teleportation of a two-atom entangled state via cavity decay

Teleportation of a two-atom entangled state via cavity decay Vol 16 No 6, June 007 c 007 Chin. Phys. Soc. 1009-1963/007/16(06)/1678-05 Chinese Physics and IOP Publishing Ltd Teleportation of a two-atom entangled state via cavity decay Ye Sai-Yun( ) Department of

More information

arxiv: v4 [quant-ph] 22 Feb 2012

arxiv: v4 [quant-ph] 22 Feb 2012 International Journal of Quantum Information c World Scientific Publishing Company arxiv:1012.3075v4 [quant-ph] 22 Feb 2012 CLASSICALITY WITNESS FOR TWO-QUBIT STATES JONAS MAZIERO Centro de Ciências Naturais

More information

Experiments testing macroscopic quantum superpositions must be slow

Experiments testing macroscopic quantum superpositions must be slow Experiments testing macroscopic quantum superpositions must be slow spatial (Scientic Reports (2016) - arxiv:1509.02408) Andrea Mari, Giacomo De Palma, Vittorio Giovannetti NEST - Scuola Normale Superiore

More information

Quantum Information Types

Quantum Information Types qitd181 Quantum Information Types Robert B. Griffiths Version of 6 February 2012 References: R. B. Griffiths, Types of Quantum Information, Phys. Rev. A 76 (2007) 062320; arxiv:0707.3752 Contents 1 Introduction

More information

Lecture 13B: Supplementary Notes on Advanced Topics. 1 Inner Products and Outer Products for Single Particle States

Lecture 13B: Supplementary Notes on Advanced Topics. 1 Inner Products and Outer Products for Single Particle States Lecture 13B: Supplementary Notes on Advanced Topics Outer Products, Operators, Density Matrices In order to explore the complexity of many particle systems a different way to represent multiparticle states

More information