Not all entangled states are created equal (continued)

Size: px
Start display at page:

Download "Not all entangled states are created equal (continued)"

Transcription

1 Not all entangled states are created equal (continued) Compass states, et cetera: another caveat to the uncertainty principle N00N states revisited, along with their competition 29 Mar 2012 (part I)

2 Background (A) I ve already mentioned N00N states as the most sensitive probe of phase shifts, because of their narrow features in phase space.

3 Background (A) I ve already mentioned N00N states as the most sensitive probe of phase shifts, because of their narrow features in phase space. But these features are narrow in the azimuthal direction: these states are optimizing for measuring rotations about z. Are they also suited to measuring arbitrary SU(2) rotations, or is it better to stick with coherent states, or perhaps use a completely different entangled state?

4 Background (B) Full process tomography can be done on the em field by preparing only coherent states and doing homodyne measurements [Lobino et al., Science 322, 563 (2008).] Easy to imagine that this would be a good way to characterize translation, squeezing, et cetera. But how sensitive is it to generic Fock-space transformations? And could it possibly detect small dephasing as well as, say, a N00N or compass state? The x- and p-displacements δx and δp required to significantly lower the overlap with the initial state may have δxδp << h! [Zurek, Nature 412, 712 (2001)]

5 Full vs partial characterization Complete Characterization Process Tomography VS Detection of a Single Parameter e.g. degree of decoherence due to SU(2) blurring Send a complete set of states through the process, fully characterize each state at the output. Sample the process with a single state, perform a measurement on the state at the output General, requires no prior information and yields a complete description of the process Hard (many (~d 4 ) measurements) but general Requires assumptions about the process, and then yields a only a single parameter Easy (1 measurement) but requires assumptions

6 Process Tomography - Procedure Perform process tomography using different sets of input states Each set generated from SU(2) rotations of one fiducial state O R O R...?????? Experimentally test process tomography result Use the result to predict the output for different states Experimentally send those states through the process

7 The experiment: Prepares desired biphoton states with >95% fidelity see Hofmann & Ono, Phys. Rev. A 76, (07) and Afek, Ambar, &Silberberg, Science 328, (10)

8 Process Tomography - Results Results for several sets of input states and 2 decoherence strengths When x 0.15 the SU(2) orbit generates a 2-design N00N states x=0.5 and SU(2) operations cannot generate a complete set (Lines = simulations)

9 Using a single state as a detector of decoherence or SU(2)* rotations Prepare some initial state and add some decoherence by small random polarisation rotations; project onto original state OR OR... What is the best input state to use? Coherent states? N00N states? Compass states? 2-design promotive states?...? * not U(1) [phase] rotations, which is where N00N shines???????? OR OR... * not arbitrary SU(2 n ) rotations, which would be process tomography 2 2

10 Detecting Decoherence X=0 X=0.15 X=0.5 (solid from expt fits) (dash=theory) theory: exp t (so far):

11 Summary of Tomography/Metrology using Entangled States The sensitivities δx and δp of a state ( how much must I disturb it to see a difference ) obey no uncertainty principle such as δx δp h/2... Although coherent states alone can be used to do process tomography, they are less sensitive than 2-design promotive squeezed states. N00N states actually do not even form a tomographically complete set N00N states are more sensitive to small, random SU(2) rotations than either coherent states or 2-design promotive states (even though the latter are better for full tomography). N00N states are the most sensitive to decoherence, yet they form the worst set of states for process tomography on decoherence

12 Generalized measurement... POVMs, non-orthogonal state discrimination, and a few final remarks The moral of the course (what is measurement?) POVMs (generalized quantum measurements) Discrimination of non-orthogonal states "Best guess" approach Unambiguous discrimination POVMs versus projective measurements A linear-optical experiment State-filtering (discrimination of mixed states) 29 Mar 2012 [part II}

13 The moral of the course Measurement can be almost anything! If two systems interact, such that depending on the initial state of system 1, system 2 may evolve differently, then by looking at system 2, I can learn about the initial state of system 1. The question of how I measure system 2 remains, but if we understand that first step, the measurement interaction, we already know what has happened to system 1, and how much information is available in principle. THIS IS NOT AN APPROXIMATION TO THE REAL MEASUREMENT DESCRIBED BY PROJECTION OPERATORS! Rather, the theory of projective measurement is an approximate treatment of one idealized class of such interactions.

14 Inaccurate measurement All real measurements have finite accuracy. Either this means we never perform true (projective) measurements, or it means that the theory of projective measurements is never an exact description of true (experimental) measurements. There are exactly 2 orthogonal projectors in a 2D space, so 2 A Stern-Gerlach setup: measurement outcomes. spin-1/2

15 Inaccurate measurement All real measurements have finite accuracy. Either this means we never perform true (projective) measurements, or it means that the theory of projective measurements is never an exact description of true (experimental) measurements. There are exactly 2 orthogonal projectors in a 2D space, so 2 A Stern-Gerlach setup: measurement outcomes. spin-1/2 Except really, the screen (or particle position) is continuous; there are an infinite number of possible outcomes each giving different information about the initial state. No point means definitely +, but some mean 99% chance of +, 1% of - ; while others mean it s really a toss-up.

16 A real theory of measurement? The real theory of measurement should recognize that (a) there s no reason the measurement device should have exactly the same dimensionality as the system (b) the measurements may be uncertain (c) the system may change state when being measured (recall the decaying atoms) POVMs (positive operator-valued measures), or generalized measurements -- a set of operators E i defining probabilites P i of outcome i: They need to be positive and sum to I, but they are not necessarily orthogonal projectors; therefore, there may be an arbitrary number of them.

17 Note that the probability rule is the same as the familiar one. And the update rule is that upon finding result i, you know: The example of projectors: A destructive measurement: If you detect a photon in mode i, you get result i ; but you end up in the vacuum. The Ei POVM elements are the same as for projective measurements, but the Mi s also show the different action of this measurement. Another simple example an imperfect spin measurement: But remember: there is no limitation on the number of operators in this sum.

18 (Continuous measurement) We never had a chance to discuss continuous measurement, beyond the case of the decaying atom, but it becomes trivial once you use POVMs. Each instant of time Δt yields possible outcomes, one of which is always no new information (no photon emitted, for instance). The limit of Δt -> 0 is well behaved, and one can now ask about constructing different measurement series, even measuring X for a while, P for a while, et cetera. (See the references on Jessen & Deutsch s work on continuous measurement of cold atoms, for example, or Mabuchi s work on adaptive phase estimation)

19 Can one distinguish between nonorthogonal states? H-polarized photon 45 o -polarized photon Single instances of non-orthogonal quantum states cannot be distinguished with certainty. Obviously, ensembles can. This is one of the central features of quantum information which leads to secure (eavesdrop-proof) communications. Crucial element: we must learn how to distinguish quantum states as well as possible -- and we must know how well a potential eavesdropper could do.

20 What's the best way to tell these apart? "A" a θ b "B" (if they occur with equal a priori probability) Error rate = (1- sin θ)/2 0 if <a b> = 0 (ideal measurement) 1/2 if <a b> = 1 (pure guessing) BUT: can we ever tell for sure? 15% for 45 o Some interaction would take input states a> and b> to "meter states" "A"> and "B">, which we could distinguish perfectly. But unitary interactions preserve overlap:

21 Non-unitarity just means a success rate < 100%... b "A" a θ b "B" a The only way to be sure "A" means a is to be sure it doesn't mean b... Assuming, as always, equal probability of a> or b>, we choose in which basis to measure randomly. The success probability is then: (For 45 o, you can succeed up to 25% of the time)

22 Theory: how to distinguish nonorthogonal states optimally Step 1: Repeat the letters "POVM" over and over. Step 2: Ask your theorist friends for help. [or see, e.g., Y. Sun, J. Bergou, and M. Hillery, Phys. Rev. A 66, (2002).] The view from the laboratory: A projective measurement of a two-state system can only yield two possible results. If the measurement isn't guaranteed to succeed, there are three possible results: (1), (2), and ("I don't know"). Therefore, to discriminate between two non-orth. states, we need three measurement outcomes a POVM: or practically speaking, some interaction with a higher-dimensional system.

23 General bounds on the information... We need a nonunitary transformation to take non-orthogonal a and b to orthogonal "A" and "B". This can be accomplished by post-selection i.e., by throwing out events. But wait = 29.3% > 25%... is this upper bound unattainable?

24 The geometric picture 1 Θ Θ 2 90 o 1 Two non-orthogonal vectors The same vectors rotated so their projections onto x-y are orthogonal (The z-axis is inconclusive )

25 The POVM picture We want one measurement operator to be a><a and one to be b><b. If a & b are not orthogonal, these don t sum to I, and can t form part of a projective-measurement basis. But we can have three measurement operators α a><a β b><b I - α a><a - β b><b which sum to the identity. The third one is the inconclusive result. We require α & β < 1 to maintain the positivity of the third operator.

26 a θ b attenuate the 45 o component if you choose the right attenuation, a -> V and b -> H. Really, the attenuation is a third output port indicating DK. a = V + e DK b = H + e DK see also:

27 How do they compare? POVM von Neumann measurement At 0, the von Neumann strategy has a discontinuity-- only then can you succeed regardless of measurement choice. At <a b> = 0.707, the von Neumann strategy succeeds 25% of the time, while the optimum is 29.3%.

28 The advantage is higher in higher dim. Consider these three non-orthogonal states: Projective measurements can distinguish these states with certainty no more than 1/3 of the time. (No more than one member of an orthonormal basis is orthogonal to two of the above states, so only one pair may be ruled out.) But a unitary transformation in a 4D space produces: and these states can be distinguished with certainty up to 55% of the time

29 Experimental schematic (ancilla)

30 A 14-path interferometer for arbitrary 2-qubit unitaries...

31 Success! "Definitely 3" "Definitely 2" "Definitely 1" "I don't know" The correct state was identified 55% of the time-- Much better than the 33% maximum for standard measurements. Further interesting result: mixed states may also be discriminated, contrary to earlier wisdom.

32 STATE-DISCRIMINATION SUMMARY Non-orthogonal states may be distinguished with certainty ("unambiguously") if a finite rate of "inconclusives" is tolerated. The optimal (lowest) inconclusive rate is the absolute value of the overlap between the states (in 2D), and cannot be achieved by any projective measurement. POVMs, implementable by coupling to a larger Hilbert space, can achieve this optimum. In optics, they may be realized with optical multiports (interferometers). We successfully distinguish among 3 non-orthogonal states 55% of the time, where standard quantum measurements are limited to 33%. More recent observation: "state filtering" or discrimination of mixed states is also possible.

33 If measurement affects things, it can be useful! Examples: Which-path information -- measurement destroys interference Zeno effect -- measurement modified dynamics. Squeezing -- if I measure a previously unknown variable to some accuracy, then I know it to that accuracy; if I measure N to better than sqrt(n), for instance, then I have a squeezed state. Error correction / teleportation / et cetera -- by doing the right measurement, you can project all the possible (continuous) range of errors to a few discrete possibilities which can be compactly described and efficiently corrected. KLM-style LOQC (linear-optical quantum computation) Cluster-state computation Entanglement... - Recall that entanglement of two modes can just be related to squeezing of their sums and differences. Polzik, for instance, has used this to entangle two atomic ensembles. - If I have two independent excited ions, and I detect one photon the right way, I don t know which ion is still excited -- Monroe, for instance, has used this to entangle two separated trapped ions. - If I can measure the sum of the photon number in two beams (by letting the same probe interact with both before observing it), then I entangle that: Munro & Nemoto have shown that this interaction would be enough to build a whole quantum computer.

34 References STATE DISCRIMINATION C. W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976) I. D. Ivanovic, Phys. Lett. A \23} 257 (1987). A. Chefles and S. M. Barnett, J. Mod. Opt. 45, 1295 (1998) S. M. Barnett and E. Riis, J. Mod. Opt. 44, 1061 (1997) B. Huttner et al., Phys. Rev. A 54, 3783 (1996) R. B. M. Clarke et al., Phys Rev A 63, (2001) R. B. M. Clarke et al., Phys Rev A 64, (2001) T. Rudolph, R. W. Spekkens, and P. S. Turner, Phys. Rev. A 68, (2003) M. Takeoka, M. Ban, and M. Sasaki, Phys. Rev. A 68, (2003). A. Chefles, Phys. Lett. A 239, 339 (1998) D. Dieks, Phys. Lett. A 126, 303 (1998) A. Peres, Phys. Lett. A 128, 19 (1988) A. Chefles and S. M. Barnett, Phys. Lett. A 250, 223 (1998) Y. Sun, M. Hillery, and J. A. Bergou, Phys. Rev. A 64, (2001) J. A. Bergou, M. Hillery, and Y. Sun, J. Mod. Opt. 47, 487 (2000) Y. Sun, J. A. Bergou, and M. Hillery, Phys. Rev. A 66, (2002) J. A. Bergou, U. Herzog, and M. Hillery, Phys. Rev. Lett. 90, (2003) EXCITING TOPICS WE DIDN T REACH (or not fully) Compass states: Zurek, Nature 412, 712 (2001) Coherent-state process toography: Lobino et al, Science 322, 563 (2008) Reference frames & superselection: Bartlett et al, quant-ph/ Phase estimation using entangled states: Krischek et al, PRL 107, (2011) Adaptive homodyne measurement of optical phase: Armen et al, PRL 89, (2002) Quantum State Reconstruction via Continuous Measurement: Silberfarb et al, PRL 95, (2005) Continuous Weak Measurement and Nonlinear Dynamics: Smith et al, PRL 93, (2004) Spin-squeezing of a large-spin system via QND measurement: Sewell et al, quant-ph/ Can the quantum state be interpreted statistically?: Pusey, Barrett, & Rudolph, quant-ph Mladen Pavicic (and Oliver Benson?), to appear: a claim that all 4 Bell states can be efficiently discriminated using linear optics?! Menzel, Puhlmann, Heuer, & Schleich: Wave-particle dualism..., a suggestion that my presentation of complementarity this year has been wrong? To appear in PNAS

Quantum-controlled measurement device for quantum-state discrimination

Quantum-controlled measurement device for quantum-state discrimination PHYSICAL REVIEW A, 66, 022112 2002 Quantum-controlled measurement device for quantum-state discrimination Miloslav Dušek 1,2 and Vladimír Bužek 2,3 1 Department of Optics, Palacký University, 17. listopadu

More information

Unambiguous Quantum State Discrimination

Unambiguous Quantum State Discrimination Unambiguous Quantum State Discrimination Roy W. Keyes Department of Physics and Astronomy University of New Mexico Albuquerque, New Mexico, 87131, USA (Dated: 13 Dec 005) We review the use of POVM s as

More information

Quantum Measurements: some technical background

Quantum Measurements: some technical background Quantum Measurements: some technical background [From the projection postulate to density matrices & (introduction to) von Neumann measurements] (AKA: the boring lecture) First: One more example I wanted

More information

A Simple Model of Quantum Trajectories. Todd A. Brun University of Southern California

A Simple Model of Quantum Trajectories. Todd A. Brun University of Southern California A Simple Model of Quantum Trajectories Todd A. Brun University of Southern California Outline 1. Review projective and generalized measurements. 2. A simple model of indirect measurement. 3. Weak measurements--jump-like

More information

The information content of a quantum

The information content of a quantum The information content of a quantum A few words about quantum computing Bell-state measurement Quantum dense coding Teleportation (polarisation states) Quantum error correction Teleportation (continuous

More information

Probabilistic exact cloning and probabilistic no-signalling. Abstract

Probabilistic exact cloning and probabilistic no-signalling. Abstract Probabilistic exact cloning and probabilistic no-signalling Arun Kumar Pati Quantum Optics and Information Group, SEECS, Dean Street, University of Wales, Bangor LL 57 IUT, UK (August 5, 999) Abstract

More information

A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels

A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels JOURNAL OF CHEMISTRY 57 VOLUME NUMBER DECEMBER 8 005 A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels Miri Shlomi

More information

Unambiguous Discrimination Between Linearly Dependent States With Multiple Copies

Unambiguous Discrimination Between Linearly Dependent States With Multiple Copies Unambiguous Discrimination Between Linearly Dependent States With Multiple Copies Anthony Chefles Department of Physical Sciences, University of Hertfordshire, Hatfield AL10 9AB, Herts, UK arxiv:quant-ph/0105016v3

More information

Ph 219/CS 219. Exercises Due: Friday 3 November 2006

Ph 219/CS 219. Exercises Due: Friday 3 November 2006 Ph 9/CS 9 Exercises Due: Friday 3 November 006. Fidelity We saw in Exercise. that the trace norm ρ ρ tr provides a useful measure of the distinguishability of the states ρ and ρ. Another useful measure

More information

Quantum state discrimination and selected applications

Quantum state discrimination and selected applications Journal of Physics: Conference Series Quantum state discrimination and selected applications To cite this article: János A Bergou 2007 J. Phys.: Conf. Ser. 84 012001 View the article online for updates

More information

Optimal discrimination of quantum measurements. Michal Sedlák. Department of Optics, Palacký University, Olomouc, Czech Republic

Optimal discrimination of quantum measurements. Michal Sedlák. Department of Optics, Palacký University, Olomouc, Czech Republic Department of Optics, Palacký University, Olomouc, Czech Republic Optimal discrimination of quantum measurements Michal Sedlák joint work with M. Ziman Research Center for Quantum Information Institute

More information

More measurement & computing (Clusters, N00N states, Zeno gates,...) 13 Mar 2012

More measurement & computing (Clusters, N00N states, Zeno gates,...) 13 Mar 2012 More measurement & computing (Clusters, N00N states, Zeno gates,...) 13 Mar 2012 The cost of postselection Of course, if each gate only succeeds some fraction p of the time... the odds of an N-gate computer

More information

The reality of de Broglie s pilot wave

The reality of de Broglie s pilot wave The reality of de Broglie s pilot wave António Cardoso Centro de Filosofia das Ciências da Universidade de Lisboa, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Edifício C4, 1749-016 Lisboa,

More information

1. Basic rules of quantum mechanics

1. Basic rules of quantum mechanics 1. Basic rules of quantum mechanics How to describe the states of an ideally controlled system? How to describe changes in an ideally controlled system? How to describe measurements on an ideally controlled

More information

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139 Quantum Error Correcting Codes and Quantum Cryptography Peter Shor M.I.T. Cambridge, MA 02139 1 We start out with two processes which are fundamentally quantum: superdense coding and teleportation. Superdense

More information

Experimental scheme for unambiguous discrimination of linearly independent symmetric states

Experimental scheme for unambiguous discrimination of linearly independent symmetric states Experimental scheme for unambiguous discrimination of linearly independent symmetric states O. Jiménez, X. Sánchez-Lozano,,2 E. Burgos-Inostroza, A. Delgado, and C. Saavedra Center for Quantum Optics and

More information

Simple scheme for efficient linear optics quantum gates

Simple scheme for efficient linear optics quantum gates PHYSICAL REVIEW A, VOLUME 65, 012314 Simple scheme for efficient linear optics quantum gates T. C. Ralph,* A. G. White, W. J. Munro, and G. J. Milburn Centre for Quantum Computer Technology, University

More information

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology Towards quantum metrology with N00N states enabled by ensemble-cavity interaction Hao Zhang Monika Schleier-Smith Robert McConnell Jiazhong Hu Vladan Vuletic Massachusetts Institute of Technology MIT-Harvard

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:1.138/nature1366 I. SUPPLEMENTARY DISCUSSION A. Success criterion We shall derive a success criterion for quantum teleportation applicable to the imperfect, heralded dual-rail

More information

Introduction to Quantum Information Hermann Kampermann

Introduction to Quantum Information Hermann Kampermann Introduction to Quantum Information Hermann Kampermann Heinrich-Heine-Universität Düsseldorf Theoretische Physik III Summer school Bleubeuren July 014 Contents 1 Quantum Mechanics...........................

More information

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36 QUANTUM INFORMATION - THE NO-HIDING THEOREM Arun K Pati akpati@iopb.res.in Instititute of Physics, Bhubaneswar-751005, Orissa, INDIA and Th. P. D, BARC, Mumbai-400085, India QUANTUM INFORMATION -THE NO-HIDING

More information

Content of the lectures

Content of the lectures Content of the lectures Lecture 1 Introduction to quantum noise, squeezed light and entanglement generation Quantization of light, Continuous-variable, Homodyne detection, Gaussian states, Optical parametric

More information

Nonlocality of single fermions branches that borrow particles

Nonlocality of single fermions branches that borrow particles 1 Nonlocality of single fermions branches that borrow particles Sofia Wechsler Computers Engineering Center, Nahariya, P.O.B. 2004, 22265, Israel Abstract An experiment performed in 2002 by Sciarrino et

More information

Quantum control of dissipative systems. 1 Density operators and mixed quantum states

Quantum control of dissipative systems. 1 Density operators and mixed quantum states Quantum control of dissipative systems S. G. Schirmer and A. I. Solomon Quantum Processes Group, The Open University Milton Keynes, MK7 6AA, United Kingdom S.G.Schirmer@open.ac.uk, A.I.Solomon@open.ac.uk

More information

Quantum Teleportation

Quantum Teleportation Fortschr. Phys. 50 (2002) 5 7, 608 613 Quantum Teleportation Samuel L. Braunstein Informatics, Bangor University, Bangor LL57 1UT, UK schmuel@sees.bangor.ac.uk Abstract Given a single copy of an unknown

More information

Entanglement and Quantum Teleportation

Entanglement and Quantum Teleportation Entanglement and Quantum Teleportation Stephen Bartlett Centre for Advanced Computing Algorithms and Cryptography Australian Centre of Excellence in Quantum Computer Technology Macquarie University, Sydney,

More information

Quantum Entanglement. Chapter Introduction. 8.2 Entangled Two-Particle States

Quantum Entanglement. Chapter Introduction. 8.2 Entangled Two-Particle States Chapter 8 Quantum Entanglement 8.1 Introduction In our final chapter on quantum mechanics we introduce the concept of entanglement. This is a feature of two-particle states (or multi-particle states) in

More information

Quantum non-demolition measurements:

Quantum non-demolition measurements: Quantum non-demolition measurements: One path to truly scalable quantum computation Kae Nemoto Tim Spiller Sean Barrett Ray Beausoleil Pieter Kok Bill Munro HP Labs (Bristol) Why should optical quantum

More information

Transmitting and Hiding Quantum Information

Transmitting and Hiding Quantum Information 2018/12/20 @ 4th KIAS WORKSHOP on Quantum Information and Thermodynamics Transmitting and Hiding Quantum Information Seung-Woo Lee Quantum Universe Center Korea Institute for Advanced Study (KIAS) Contents

More information

Similarities and Differences Between Two-Particle and Three-Particle Interference

Similarities and Differences Between Two-Particle and Three-Particle Interference Fortschr. Phys. 48 (000) 4, 4 ±5 Similarities and Differences Between Two-Particle and Three-Particle Interference Daniel M. Greenberger, City College of the City University of New York New York, New York

More information

Ensembles and incomplete information

Ensembles and incomplete information p. 1/32 Ensembles and incomplete information So far in this course, we have described quantum systems by states that are normalized vectors in a complex Hilbert space. This works so long as (a) the system

More information

1 1D Schrödinger equation: Particle in an infinite box

1 1D Schrödinger equation: Particle in an infinite box 1 OF 5 NOTE: This problem set is to be handed in to my mail slot (SMITH) located in the Clarendon Laboratory by 5:00 PM (noon) Tuesday, 24 May. 1 1D Schrödinger equation: Particle in an infinite box Consider

More information

arxiv: v3 [quant-ph] 6 Sep 2014

arxiv: v3 [quant-ph] 6 Sep 2014 Unambiguous discrimination of linearly independent pure quantum states: Optimal average probability of success Somshubhro Bandyopadhyay Department of Physics and Center for Astroparticle Physics and Space

More information

FIG. 16: A Mach Zehnder interferometer consists of two symmetric beam splitters BS1 and BS2

FIG. 16: A Mach Zehnder interferometer consists of two symmetric beam splitters BS1 and BS2 Lecture 11: Application: The Mach Zehnder interferometer Coherent-state input Squeezed-state input Mach-Zehnder interferometer with coherent-state input: Now we apply our knowledge about quantum-state

More information

Quantum Mechanics C (130C) Winter 2014 Final exam

Quantum Mechanics C (130C) Winter 2014 Final exam University of California at San Diego Department of Physics Prof. John McGreevy Quantum Mechanics C (130C Winter 014 Final exam Please remember to put your name on your exam booklet. This is a closed-book

More information

1 1D Schrödinger equation: Particle in an infinite box

1 1D Schrödinger equation: Particle in an infinite box 1 OF 5 1 1D Schrödinger equation: Particle in an infinite box Consider a particle of mass m confined to an infinite one-dimensional well of width L. The potential is given by V (x) = V 0 x L/2, V (x) =

More information

Entanglement and information

Entanglement and information Ph95a lecture notes for 0/29/0 Entanglement and information Lately we ve spent a lot of time examining properties of entangled states such as ab è 2 0 a b è Ý a 0 b è. We have learned that they exhibit

More information

Coherent superposition states as quantum rulers

Coherent superposition states as quantum rulers PHYSICAL REVIEW A, VOLUME 65, 042313 Coherent superposition states as quantum rulers T. C. Ralph* Centre for Quantum Computer Technology, Department of Physics, The University of Queensland, St. Lucia,

More information

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino

New schemes for manipulating quantum states using a Kerr cell. Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I Torino New schemes for manipulating quantum states using a Kerr cell Marco Genovese and C.Novero Istituto Elettrotecnico Nazionale Galileo Ferraris, Str. delle Cacce 91, I-10135 Torino Recently, Quantum Non Demolition

More information

Analogy between optimal spin estimation and interferometry

Analogy between optimal spin estimation and interferometry Analogy between optimal spin estimation and interferometry Zdeněk Hradil and Miloslav Dušek Department of Optics, Palacký University, 17. listopadu 50, 77 00 Olomouc, Czech Republic (DRAFT: November 17,

More information

Decoherence and The Collapse of Quantum Mechanics. A Modern View

Decoherence and The Collapse of Quantum Mechanics. A Modern View Decoherence and The Collapse of Quantum Mechanics A Modern View It s time to make decoherence mainstream QM is ~90 years old But it is still taught like the 1930s Modern textbooks still ignore measurement

More information

Collapse versus correlations, EPR, Bell Inequalities, Cloning

Collapse versus correlations, EPR, Bell Inequalities, Cloning Collapse versus correlations, EPR, Bell Inequalities, Cloning The Quantum Eraser, continued Equivalence of the collapse picture and just blithely/blindly calculating correlations EPR & Bell No cloning

More information

University of New Mexico

University of New Mexico Quantum State Reconstruction via Continuous Measurement Ivan H. Deutsch, Andrew Silberfarb University of New Mexico Poul Jessen, Greg Smith University of Arizona Information Physics Group http://info.phys.unm.edu

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Quantum Computers. Todd A. Brun Communication Sciences Institute USC

Quantum Computers. Todd A. Brun Communication Sciences Institute USC Quantum Computers Todd A. Brun Communication Sciences Institute USC Quantum computers are in the news Quantum computers represent a new paradigm for computing devices: computers whose components are individual

More information

Bell inequality for qunits with binary measurements

Bell inequality for qunits with binary measurements Bell inequality for qunits with binary measurements arxiv:quant-ph/0204122v1 21 Apr 2002 H. Bechmann-Pasquinucci and N. Gisin Group of Applied Physics, University of Geneva, CH-1211, Geneva 4, Switzerland

More information

Quantum information processing. Two become one

Quantum information processing. Two become one Quantum information processing Two become one Scientists experimentally demonstrate a scheme for quantum joining, which allow the number of qubits encoded per photon to be varied while keeping the overall

More information

Coherent states, beam splitters and photons

Coherent states, beam splitters and photons Coherent states, beam splitters and photons S.J. van Enk 1. Each mode of the electromagnetic (radiation) field with frequency ω is described mathematically by a 1D harmonic oscillator with frequency ω.

More information

On the origin of probability in quantum mechanics

On the origin of probability in quantum mechanics On the origin of probability in quantum mechanics Steve Hsu Benasque, September 2010 Outline 1. No Collapse quantum mechanics 2. Does the Born rule (probabilities) emerge? 3. Possible resolutions R. Buniy,

More information

Quantum Cloning WOOTTERS-ZUREK CLONER

Quantum Cloning WOOTTERS-ZUREK CLONER Quantum Cloning Quantum cloning has been a topic of considerable interest for many years. It turns out to be quantum limit for copying an input state and is closely related to linear amplification when

More information

TWO-LAYER QUANTUM KEY DISTRIBUTION

TWO-LAYER QUANTUM KEY DISTRIBUTION TWO-LAYER QUANTUM KEY DISTRIBUTION PAULO VINÍCIUS PEREIRA PINHEIRO and RUBENS VIANA RAMOS paulovpp@gmail.com rubens.viana@pq.cnpq.br Laboratory of Quantum Information Technology, Department of Teleinformatic

More information

Multimode Entanglement in. Continuous Variables

Multimode Entanglement in. Continuous Variables Multimode Entanglement in Continuous Variables Entanglement with continuous variables What are we measuring? How are we measuring it? Why are we using the Optical Parametric Oscillator? What do we learn?

More information

Weak measurements: subensembles from tunneling to Let s Make a Quantum Deal to Hardy s Paradox

Weak measurements: subensembles from tunneling to Let s Make a Quantum Deal to Hardy s Paradox Weak measurements: subensembles from tunneling to Let s Make a Quantum Deal to Hardy s Paradox First: some more on tunneling times, by way of motivation... How does one discuss subensembles in quantum

More information

Quantum Gates, Circuits & Teleportation

Quantum Gates, Circuits & Teleportation Chapter 3 Quantum Gates, Circuits & Teleportation Unitary Operators The third postulate of quantum physics states that the evolution of a quantum system is necessarily unitary. Geometrically, a unitary

More information

THE DELAYED CHOICE QUANTUM EXPERIMENT

THE DELAYED CHOICE QUANTUM EXPERIMENT Project optic physics 2008 Professor: Andres La Rosa THE DELAYED CHOICE QUANTUM EXPERIMENT by THOMAS BENJAMIN 1 st of June, 2008 1 Introduction The delayed choice quantum experiment, and electron coupling.

More information

Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage

Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage Closing the Debates on Quantum Locality and Reality: EPR Theorem, Bell's Theorem, and Quantum Information from the Brown-Twiss Vantage C. S. Unnikrishnan Fundamental Interactions Laboratory Tata Institute

More information

Shedding A Bit of Information on Light: (measurement & manipulation of quantum states)

Shedding A Bit of Information on Light: (measurement & manipulation of quantum states) Shedding A Bit of Information on Light: (measurement & manipulation of quantum states) Aephraim Steinberg Center for Q. Info. & Q. Control & Dept. of Physics Univ. of Toronto CQIQC, Fields Institute, Toronto,

More information

Solutions Final exam 633

Solutions Final exam 633 Solutions Final exam 633 S.J. van Enk (Dated: June 9, 2008) (1) [25 points] You have a source that produces pairs of spin-1/2 particles. With probability p they are in the singlet state, ( )/ 2, and with

More information

The controlled-not (CNOT) gate exors the first qubit into the second qubit ( a,b. a,a + b mod 2 ). Thus it permutes the four basis states as follows:

The controlled-not (CNOT) gate exors the first qubit into the second qubit ( a,b. a,a + b mod 2 ). Thus it permutes the four basis states as follows: C/CS/Phys C9 Qubit gates, EPR, ell s inequality 9/8/05 Fall 005 Lecture 4 Two-qubit gate: COT The controlled-not (COT) gate exors the first qubit into the second qubit ( a,b a,a b = a,a + b mod ). Thus

More information

Quantum computing. Jan Černý, FIT, Czech Technical University in Prague. České vysoké učení technické v Praze. Fakulta informačních technologií

Quantum computing. Jan Černý, FIT, Czech Technical University in Prague. České vysoké učení technické v Praze. Fakulta informačních technologií České vysoké učení technické v Praze Fakulta informačních technologií Katedra teoretické informatiky Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-MVI Methods of Computational Intelligence(2010/2011)

More information

A single quantum cannot be teleported

A single quantum cannot be teleported 1 quant-ph/010060 A single quantum cannot be teleported Daniele Tommasini Departamento de Física Aplicada, Universidad de Vigo, 3004 Ourense, Spain Due to the Heisemberg uncertainty principle, it is impossible

More information

arxiv:quant-ph/ v1 8 Jul 1998

arxiv:quant-ph/ v1 8 Jul 1998 Unambiguous Discrimination Between Linearly-Independent Quantum States Anthony Chefles Department of Physics and Applied Physics, University of Strathclyde, Glasgow G4 0NG, Scotland e-mail: tony@phys.strath.ac.u

More information

Towards Scalable Linear-Optical Quantum Computers

Towards Scalable Linear-Optical Quantum Computers Quantum Information Processing, Vol. 3, Nos. 1 5, October 2004 ( 2004) Towards Scalable Linear-Optical Quantum Computers J. P. Dowling, 1,5 J. D. Franson, 2 H. Lee, 1,4 and G. J. Milburn 3 Received February

More information

Secrets of Quantum Information Science

Secrets of Quantum Information Science Secrets of Quantum Information Science Todd A. Brun Communication Sciences Institute USC Quantum computers are in the news Quantum computers represent a new paradigm for computing devices: computers whose

More information

Quantum Information Transfer and Processing Miloslav Dušek

Quantum Information Transfer and Processing Miloslav Dušek Quantum Information Transfer and Processing Miloslav Dušek Department of Optics, Faculty of Science Palacký University, Olomouc Quantum theory Quantum theory At the beginning of 20 th century about the

More information

Einstein-Podolsky-Rosen paradox and Bell s inequalities

Einstein-Podolsky-Rosen paradox and Bell s inequalities Einstein-Podolsky-Rosen paradox and Bell s inequalities Jan Schütz November 27, 2005 Abstract Considering the Gedankenexperiment of Einstein, Podolsky, and Rosen as example the nonlocal character of quantum

More information

Strathprints Institutional Repository

Strathprints Institutional Repository Strathprints Institutional Repository Croke, Sarah and Andersson, Erika and Barnett, Stephen M. 2008 No-signaling bound on quantum state discrimination. Physical Review A, 77 1. 012113-012118. ISSN 1050-2947

More information

A New Wireless Quantum Key Distribution Protocol based on Authentication And Bases Center (AABC)

A New Wireless Quantum Key Distribution Protocol based on Authentication And Bases Center (AABC) A New Wireless Quantum Key Distribution Protocol based on Authentication And Bases Center (AABC) Majid Alshammari and Khaled Elleithy Department of Computer Science and Engineering University of Bridgeport

More information

Line Broadening. φ(ν) = Γ/4π 2 (ν ν 0 ) 2 + (Γ/4π) 2, (3) where now Γ = γ +2ν col includes contributions from both natural broadening and collisions.

Line Broadening. φ(ν) = Γ/4π 2 (ν ν 0 ) 2 + (Γ/4π) 2, (3) where now Γ = γ +2ν col includes contributions from both natural broadening and collisions. Line Broadening Spectral lines are not arbitrarily sharp. There are a variety of mechanisms that give them finite width, and some of those mechanisms contain significant information. We ll consider a few

More information

Week 11: April 9, The Enigma of Measurement: Detecting the Quantum World

Week 11: April 9, The Enigma of Measurement: Detecting the Quantum World Week 11: April 9, 2018 Quantum Measurement The Enigma of Measurement: Detecting the Quantum World Two examples: (2) Measuring the state of electron in H-atom Electron can be in n = 1, 2, 3... state. In

More information

CSE 599d - Quantum Computing The No-Cloning Theorem, Classical Teleportation and Quantum Teleportation, Superdense Coding

CSE 599d - Quantum Computing The No-Cloning Theorem, Classical Teleportation and Quantum Teleportation, Superdense Coding CSE 599d - Quantum Computing The No-Cloning Theorem, Classical Teleportation and Quantum Teleportation, Superdense Coding Dave Bacon Department of Computer Science & Engineering, University of Washington

More information

Quantum Dense Coding and Quantum Teleportation

Quantum Dense Coding and Quantum Teleportation Lecture Note 3 Quantum Dense Coding and Quantum Teleportation Jian-Wei Pan Bell states maximally entangled states: ˆ Φ Ψ Φ x σ Dense Coding Theory: [C.. Bennett & S. J. Wiesner, Phys. Rev. Lett. 69, 88

More information

Problem Set: TT Quantum Information

Problem Set: TT Quantum Information Problem Set: TT Quantum Information Basics of Information Theory 1. Alice can send four messages A, B, C, and D over a classical channel. She chooses A with probability 1/, B with probability 1/4 and C

More information

Quantum Money, Teleportation and Computation. Steven Girvin Yale University

Quantum Money, Teleportation and Computation. Steven Girvin Yale University Quantum Money, Teleportation and Computation Steven Girvin Yale University 1 Quantum Uncertainty Good news or bad? We used to think it was bad, but now 2 Haggar Physicists Develop Quantum Slacks DALLAS-At

More information

DEPHASING CHANNELS FOR OVERCOMPLETE BASES

DEPHASING CHANNELS FOR OVERCOMPLETE BASES DEPHASING CHANNELS FOR OVERCOMPLETE BASES C. Jess Riedel IBM Research Quantum Lunch LANL 24 July 2014 Pointer states Pointer states are a fundamental concept in decoherence and quantum-classical transition

More information

INTRODUCTORY NOTES ON QUANTUM COMPUTATION

INTRODUCTORY NOTES ON QUANTUM COMPUTATION INTRODUCTORY NOTES ON QUANTUM COMPUTATION Keith Hannabuss Balliol College, Oxford Hilary Term 2009 Notation. In these notes we shall often use the physicists bra-ket notation, writing ψ for a vector ψ

More information

Quantum Mechanics - I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 16 The Quantum Beam Splitter

Quantum Mechanics - I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 16 The Quantum Beam Splitter Quantum Mechanics - I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Lecture - 16 The Quantum Beam Splitter (Refer Slide Time: 00:07) In an earlier lecture, I had

More information

Quantum communications

Quantum communications 06.0.05 Quantum communications Quantum teleportation Trapping of single atoms Atom-photon entanglement Entanglement of remote single atoms Elementary quantum network Telecommunication today Secure communication

More information

Seminar 1. Introduction to Quantum Computing

Seminar 1. Introduction to Quantum Computing Seminar 1 Introduction to Quantum Computing Before going in I am also a beginner in this field If you are interested, you can search more using: Quantum Computing since Democritus (Scott Aaronson) Quantum

More information

Notes for Class Meeting 19: Uncertainty

Notes for Class Meeting 19: Uncertainty Notes for Class Meeting 19: Uncertainty Uncertainty in Momentum and Position In 1926, Werner Heisenberg formulated the uncertainty principle: It is impossible to determine both the momentum and position

More information

Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting

Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting PHYSICAL REVIEW A, VOLUME 65, 042304 Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting Stephen D. Bartlett 1 and Barry C. Sanders 1,2 1 Department

More information

b) (5 points) Give a simple quantum circuit that transforms the state

b) (5 points) Give a simple quantum circuit that transforms the state C/CS/Phy191 Midterm Quiz Solutions October 0, 009 1 (5 points) Short answer questions: a) (5 points) Let f be a function from n bits to 1 bit You have a quantum circuit U f for computing f If you wish

More information

Lecture 4: Postulates of quantum mechanics

Lecture 4: Postulates of quantum mechanics Lecture 4: Postulates of quantum mechanics Rajat Mittal IIT Kanpur The postulates of quantum mechanics provide us the mathematical formalism over which the physical theory is developed. For people studying

More information

Flocks of Quantum Clones: Multiple Copying of Qubits

Flocks of Quantum Clones: Multiple Copying of Qubits Fortschr. Phys. 46 (998) 4 ±5, 5 ±5 Flocks of Quantum Clones: Multiple Copying of Qubits V. BuzÏek ;, M. Hillery and P. L. Knight 4 Institute of Physics, Slovak Academy of Sciences, DuÂbravska cesta 9,

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

Linear-optical quantum information processing: A few experiments

Linear-optical quantum information processing: A few experiments Linear-optical quantum information processing: A few experiments Miloslav Dušek Lucie Čelechovská, Karel Lemr, Michal Mičuda, Antonín Černoch, Jaromír Fiurášek, Miroslav Ježek, ek, Jan Soubusta, Radim

More information

The Weak Measurement in Quantum Mechanics

The Weak Measurement in Quantum Mechanics University of Ljubljana Faculty of Mathematics and Physics Seminar The Weak Measurement in Quantum Mechanics Tilen Knaflič Mentor: prof. dr. Anton Ramšak November 16, 2012 Abstract The topic of this seminar

More information

Interference Between Distinguishable States. Thomas Alexander Meyer

Interference Between Distinguishable States. Thomas Alexander Meyer Interference Between Distinguishable States Thomas Alexander Meyer Interference effects are known to have a dependence upon indistinguishability of path. For this reason, it is accepted that different

More information

arxiv:quant-ph/ v5 6 Apr 2005

arxiv:quant-ph/ v5 6 Apr 2005 Nonunitary quantum circuit Hiroaki Terashima 1, and Masahito Ueda 1, arxiv:quant-ph/3461v5 6 Apr 5 1 Department of Physics, Tokyo Institute of Technology, Tokyo 15-8551, Japan CREST, Japan Science and

More information

The Einstein-Podolsky-Rosen thought experiment and Bell s theorem

The Einstein-Podolsky-Rosen thought experiment and Bell s theorem PHYS419 Lecture 0 The Einstein-Podolsky-Rosen thought experiment and Bell s theorem 1 The Einstein-Podolsky-Rosen thought experiment and Bell s theorem As first shown by Bell (1964), the force of the arguments

More information

OPERATORS AND MEASUREMENT

OPERATORS AND MEASUREMENT Chapter OPERATORS AND MEASUREMENT In Chapter we used the results of experiments to deduce a mathematical description of the spin-/ system. The Stern-Gerlach experiments demonstrated that spin component

More information

High-fidelity Z-measurement error encoding of optical qubits

High-fidelity Z-measurement error encoding of optical qubits Griffith Research Online https://research-repository.griffith.edu.au High-fidelity Z-measurement error encoding of optical qubits Author O'Brien, J., Pryde, G., White, A., Ralph, T. Published 2005 Journal

More information

Two-State Vector Formalism

Two-State Vector Formalism 802 Two-State Vector Formalism Secondary Literature 9. E. Merzbacher: Quantum Mechanics, 2nd ed. (Wiley, New York 1970) 10. S. Gasiorowicz: Quantum Physics (Wiley, New York 1996) 11. A. Sommerfeld: Lectures

More information

The Einstein-Podolsky-Rosen thought-experiment and Bell s theorem

The Einstein-Podolsky-Rosen thought-experiment and Bell s theorem PHYS419 Lecture 0 The Einstein-Podolsky-Rosen thought-experiment and Bell s theorem 1 The Einstein-Podolsky-Rosen thought-experiment and Bell s theorem As first shown by Bell (1964), the force of the arguments

More information

Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state

Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state XuBo Zou, K. Pahlke and W. Mathis Electromagnetic Theory Group at THT Department

More information

Quantum Teleportation Pt. 3

Quantum Teleportation Pt. 3 Quantum Teleportation Pt. 3 PHYS 500 - Southern Illinois University March 7, 2017 PHYS 500 - Southern Illinois University Quantum Teleportation Pt. 3 March 7, 2017 1 / 9 A Bit of History on Teleportation

More information

C/CS/Phys C191 Amplitude Amplification, Quantum Zeno, Vaidman s bomb 11/10/09 Fall 2009 Lecture 22

C/CS/Phys C191 Amplitude Amplification, Quantum Zeno, Vaidman s bomb 11/10/09 Fall 2009 Lecture 22 C/CS/Phys C191 Amplitude Amplification, Quantum Zeno, Vaidman s bomb 11/10/09 Fall 2009 Lecture 22 1 Readings Kaye et al, Ch 83 Nielsen and Chuang: Ch 63-65 Grover s algorithm and amplitude amplification:

More information

Quantum Mechanics: Interpretation and Philosophy

Quantum Mechanics: Interpretation and Philosophy Quantum Mechanics: Interpretation and Philosophy Significant content from: Quantum Mechanics and Experience by David Z. Albert, Harvard University Press (1992). Main Concepts: -- complementarity -- the

More information

Lecture 3 Quantum non-demolition photon counting and quantum jumps of light

Lecture 3 Quantum non-demolition photon counting and quantum jumps of light Lecture 3 Quantum non-demolition photon counting and quantum jumps of light A stream of atoms extracts information continuously and non-destructively from a trapped quantum field Fundamental test of measurement

More information

Continuous quantum states, Particle on a line and Uncertainty relations

Continuous quantum states, Particle on a line and Uncertainty relations Continuous quantum states, Particle on a line and Uncertainty relations So far we have considered k-level (discrete) quantum systems. Now we turn our attention to continuous quantum systems, such as a

More information