Mining Frequent Closed Unordered Trees Through Natural Representations

Size: px
Start display at page:

Download "Mining Frequent Closed Unordered Trees Through Natural Representations"

Transcription

1 Mining Frequent Closed Unordered Trees Through Natural Representations José L. Balcázar, Albert Bifet and Antoni Lozano Universitat Politècnica de Catalunya Pascal Workshop: learning from and with graphs 2007 Alicante

2 Trees are sanctuaries. Whoever knows how to listen to them, can learn the truth. Herman Hesse Mining frequent trees is becoming an important task Applications: chemical informatics computer vision text retrieval bioinformatics Web analysis. Many link-based structures may be studied formally by means of unordered trees

3 Introduction Unordered Trees One unordered tree with two different drawings, each of which corresponds to a different ordered tree.

4 Introduction Induced subtrees: obtained by repeatedly removing leaf nodes Embedded subtrees: obtained by contracting some of the edges

5 Introduction What Is Tree Pattern Mining? Given a dataset of trees, find the complete set of frequent subtrees Frequent Tree Pattern (FT): Include all the trees whose support is no less than min_sup Closed Frequent Tree Pattern (CT): Include no tree which has a super-tree with the same support CT FT Closed Frequent Tree Mining provides a compact representation of frequent trees without loss of information

6 Introduction Ordered Subtree Mining D = {A, B}, min_sup = 2 # Closed Subtrees : 2 # Frequent Subtrees: 8 Closed Subtrees: X, Y Frequent Subtrees:

7 Introduction Unordered Subtree Mining A: B: X: Y: D = {A, B}, min_sup = 2 # Closed Subtrees : 2 # Frequent Subtrees: 9 Closed Subtrees: X, Y Frequent Subtrees:

8 Related Work Yu Chi, Richard Muntz, Siegfried Nijssen, Joost Kok Frequent Subtree Mining-An overview 2005 FREQUENT Labelled and Rooted Trees UnOrdered Induced Unot [Asai 2003] UFreqT [Nijssen 2003] HybridTreeMiner [Chi 2004] PathJoin [Xiao 2003] CLOSED Labelled and Induced Trees: CMTREEMINER [Chi, Yang, Xia, Muntz 2004] Labelled and relaxed included Trees: DRYADE [Termier, Rousset, Sebag 2004] Labelled and Attribute Trees: CLOATT [Arimura, Uno 2005]

9 Natural Representation Definition Given two sequences of natural numbers x, y x y: concatenation of x and y x + i: addition of i to each component of x x + = x + 1 Definition A natural sequence is a sequence (x 1,..., x n ) of natural numbers such that x 1 = 0 each subsequent number x i+1 belongs to the range 1 x i+1 x i + 1. Example x = (0, 1, 2, 3, 1, 2) = (0) (0, 1, 2) + (0, 1) +

10 Natural Representation Definition Let t be an ordered tree. If t is a single node, then t = (0). Otherwise, if t is composed of the trees t 1,..., t k joined to a common root r (where the ordering t 1,..., t k is the same of the children of r), then Example x = (0, 1, 2, 2, 3, 1) t = (0) t 1 + t 2 + t k + t is the natural representation of t. (0) (0, 1, 1, 2) + (0) +

11 Mining frequent subtrees in the ordered case Definition y is a one-step extension of x (in symbols, x 1 y) if x is a prefix of y and y = x + 1. a series of one-step extensions from (0) to a natural sequence x (0) 1 x x k 1 1 x always exists and must be unique, since the x i s can only be the prefixes of x.

12 Mining frequent subtrees in the ordered case FREQUENT_SUBTREE_MINING(t, D, min_sup, T ) Input: A tree t, a tree dataset D, and min_sup. Output: The frequent tree set T. insert t into T for every t that can be extended from t in one step do if support(t ) min_sup then FREQUENT_SUBTREE_MINING(t, D, min_sup, T ) return T

13 Mining frequent subtrees in the ordered case FREQUENT_SUBTREE_MINING(t, D, min_sup, T ) Input: A tree t, a tree dataset D, and min_sup. Output: The frequent tree set T. insert t into T 1 C for every t that can be extended from t in one step do if support(t ) min_sup then insert t into C 2 for each t in C 3 do T FREQUENT_SUBTREE_MINING(t, D, min_sup, T ) return T

14 Canonical Forms Definition Let t be an unordered tree, and let t 1,..., t n be all the ordered trees obtained from t by ordering in all possible ways all the sets of siblings of t. The canonical representative of t is the ordered tree t 0 whose natural representation is maximal (according to lexicographic ordering) among the natural representations of the trees t i, that is, such that t 0 = max{ t i 1 i n}.

15 Mining frequent subtrees in the unordered case FREQUENT_SUBTREE_MINING(t, D, min_sup, T ) Input: A tree t, a tree dataset D, and min_sup. Output: The frequent tree set T. insert t into T C for every t that can be extended from t in one step do if support(t ) min_sup then insert t into C for each t in C do T FREQUENT_SUBTREE_MINING(t, D, min_sup, T ) return T

16 Mining frequent subtrees in the unordered case FREQUENT_SUBTREE_MINING(t, D, min_sup, T ) Input: A tree t, a tree dataset D, and min_sup. Output: The frequent tree set T. 1 if not CANONICAL_REPRESENTATIVE(t) 2 then return T insert t into T C for every t that can be extended from t in one step do if support(t ) min_sup then insert t into C for each t in C do T FREQUENT_SUBTREE_MINING(t, D, min_sup, T ) return T

17 Closure-based mining CLOSED_SUBTREE_MINING(t, D, min_sup, T ) if not CANONICAL_REPRESENTATIVE(t) then return T C for every t that can be extended from t in one step do if support(t ) min_sup then insert t into C for each t in C do T CLOSED_SUBTREE_MINING(t, D, min_sup, T ) return T

18 Closure-based mining CLOSED_SUBTREE_MINING(t, D, min_sup, T ) if not CANONICAL_REPRESENTATIVE(t) then return T C for every t that can be extended from t in one step do if support(t ) min_sup then insert t into C 1 do if support(t ) = support(t) 2 then t is not closed 3 if t is closed 4 then insert t into T for each t in C do T CLOSED_SUBTREE_MINING(t, D, min_sup, T ) return T

19 Example: Ordered Case min_sup = 2 A : (0, 1, 2, 3, 2, 1), B : (0, 1, 2, 3, 1, 2, 2) (0) 1 (0, 1) 1 (0, 1, 2) 1 (0, 1, 2, 2) 1 (0, 1, 2, 3) 1 (0, 1, 2, 3, 1)

20 Example: Unordered Case min_sup = 2 A : (0, 1, 2, 3, 2, 1), B : (0, 1, 2, 3, 1, 2, 2) A: B: X: Y: (0) 1 (0, 1) 1 (0, 1, 2) 1 (0, 1, 2, 2) 1 (0, 1, 2, 2, 1) 1 (0, 1, 2, 3) 1 (0, 1, 2, 3, 1)

21 Experiments: Gazelle Unordered Trees 10 8 CMTreeMiner Our method Time Support x 1000

22 Conclusions and Future Work Through our proposed representation of ordered trees, we have presented efficient algorithms for mining ordered and unordered frequent closed trees. The sequential form of our representation, where the number-encoded depth furnishes the two-dimensional information, is key in the fast processing of the data. Future work : Consider labelled subtrees Consider embedded subtrees

23 Future Work

24 Tree Kernels Definition (Subset Trees) Set of connected nodes of a tree T Definition (Colins and Duffy 2001) Denote by T, T trees and by t T a subset tree of T, then k(t, T ) = w t δ t,t t T,t T Definition (Vishwanathan and Smola 2002) In case we count matching subtrees then t T denotes that t is a subtree of T and k(t, T ) = w t δ t,t t T,t T

25 Tree Kernels S. V. N. Vishwanathan and Alexander J. Smola. Fast Kernels for String and Tree Matching 2002 We can compute tree kernel by Converting trees to strings Computing string kernels Advantages Simple storage and simple implementation (dynamic array, suffices) All speedups for strings work for tree kernels, too(xml documents,etc.)

Adaptive Learning and Mining for Data Streams and Frequent Patterns

Adaptive Learning and Mining for Data Streams and Frequent Patterns Adaptive Learning and Mining for Data Streams and Frequent Patterns Albert Bifet Laboratory for Relational Algorithmics, Complexity and Learning LARCA Departament de Llenguatges i Sistemes Informàtics

More information

Fast String Kernels. Alexander J. Smola Machine Learning Group, RSISE The Australian National University Canberra, ACT 0200

Fast String Kernels. Alexander J. Smola Machine Learning Group, RSISE The Australian National University Canberra, ACT 0200 Fast String Kernels Alexander J. Smola Machine Learning Group, RSISE The Australian National University Canberra, ACT 0200 Alex.Smola@anu.edu.au joint work with S.V.N. Vishwanathan Slides (soon) available

More information

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Syllabus Fri. 21.10. (1) 0. Introduction A. Supervised Learning: Linear Models & Fundamentals Fri. 27.10. (2) A.1 Linear Regression Fri. 3.11. (3) A.2 Linear Classification Fri. 10.11. (4) A.3 Regularization

More information

TTIC 31230, Fundamentals of Deep Learning David McAllester, April Information Theory and Distribution Modeling

TTIC 31230, Fundamentals of Deep Learning David McAllester, April Information Theory and Distribution Modeling TTIC 31230, Fundamentals of Deep Learning David McAllester, April 2017 Information Theory and Distribution Modeling Why do we model distributions and conditional distributions using the following objective

More information

SIGNAL COMPRESSION Lecture 7. Variable to Fix Encoding

SIGNAL COMPRESSION Lecture 7. Variable to Fix Encoding SIGNAL COMPRESSION Lecture 7 Variable to Fix Encoding 1. Tunstall codes 2. Petry codes 3. Generalized Tunstall codes for Markov sources (a presentation of the paper by I. Tabus, G. Korodi, J. Rissanen.

More information

Intrusion Detection and Malware Analysis

Intrusion Detection and Malware Analysis Intrusion Detection and Malware Analysis IDS feature extraction Pavel Laskov Wilhelm Schickard Institute for Computer Science Metric embedding of byte sequences Sequences 1. blabla blubla blablabu aa 2.

More information

Covering Linear Orders with Posets

Covering Linear Orders with Posets Covering Linear Orders with Posets Proceso L. Fernandez, Lenwood S. Heath, Naren Ramakrishnan, and John Paul C. Vergara Department of Information Systems and Computer Science, Ateneo de Manila University,

More information

Comp487/587 - Boolean Formulas

Comp487/587 - Boolean Formulas Comp487/587 - Boolean Formulas 1 Logic and SAT 1.1 What is a Boolean Formula Logic is a way through which we can analyze and reason about simple or complicated events. In particular, we are interested

More information

Computation Theory Finite Automata

Computation Theory Finite Automata Computation Theory Dept. of Computing ITT Dublin October 14, 2010 Computation Theory I 1 We would like a model that captures the general nature of computation Consider two simple problems: 2 Design a program

More information

ASSOCIATION ANALYSIS FREQUENT ITEMSETS MINING. Alexandre Termier, LIG

ASSOCIATION ANALYSIS FREQUENT ITEMSETS MINING. Alexandre Termier, LIG ASSOCIATION ANALYSIS FREQUENT ITEMSETS MINING, LIG M2 SIF DMV course 207/208 Market basket analysis Analyse supermarket s transaction data Transaction = «market basket» of a customer Find which items are

More information

WAM-Miner: In the Search of Web Access Motifs from Historical Web Log Data

WAM-Miner: In the Search of Web Access Motifs from Historical Web Log Data WAM-Miner: In the Search of Web Access Motifs from Historical Web Log Data Qiankun Zhao a, Sourav S Bhowmick a and Le Gruenwald b a School of Computer Engineering, Division of Information Systems, Nanyang

More information

EECS 229A Spring 2007 * * (a) By stationarity and the chain rule for entropy, we have

EECS 229A Spring 2007 * * (a) By stationarity and the chain rule for entropy, we have EECS 229A Spring 2007 * * Solutions to Homework 3 1. Problem 4.11 on pg. 93 of the text. Stationary processes (a) By stationarity and the chain rule for entropy, we have H(X 0 ) + H(X n X 0 ) = H(X 0,

More information

UNIT I INFORMATION THEORY. I k log 2

UNIT I INFORMATION THEORY. I k log 2 UNIT I INFORMATION THEORY Claude Shannon 1916-2001 Creator of Information Theory, lays the foundation for implementing logic in digital circuits as part of his Masters Thesis! (1939) and published a paper

More information

D B M G Data Base and Data Mining Group of Politecnico di Torino

D B M G Data Base and Data Mining Group of Politecnico di Torino Data Base and Data Mining Group of Politecnico di Torino Politecnico di Torino Association rules Objective extraction of frequent correlations or pattern from a transactional database Tickets at a supermarket

More information

Information Theory and Statistics Lecture 2: Source coding

Information Theory and Statistics Lecture 2: Source coding Information Theory and Statistics Lecture 2: Source coding Łukasz Dębowski ldebowsk@ipipan.waw.pl Ph. D. Programme 2013/2014 Injections and codes Definition (injection) Function f is called an injection

More information

Association Rules. Fundamentals

Association Rules. Fundamentals Politecnico di Torino Politecnico di Torino 1 Association rules Objective extraction of frequent correlations or pattern from a transactional database Tickets at a supermarket counter Association rule

More information

D B M G. Association Rules. Fundamentals. Fundamentals. Elena Baralis, Silvia Chiusano. Politecnico di Torino 1. Definitions.

D B M G. Association Rules. Fundamentals. Fundamentals. Elena Baralis, Silvia Chiusano. Politecnico di Torino 1. Definitions. Definitions Data Base and Data Mining Group of Politecnico di Torino Politecnico di Torino Itemset is a set including one or more items Example: {Beer, Diapers} k-itemset is an itemset that contains k

More information

D B M G. Association Rules. Fundamentals. Fundamentals. Association rules. Association rule mining. Definitions. Rule quality metrics: example

D B M G. Association Rules. Fundamentals. Fundamentals. Association rules. Association rule mining. Definitions. Rule quality metrics: example Association rules Data Base and Data Mining Group of Politecnico di Torino Politecnico di Torino Objective extraction of frequent correlations or pattern from a transactional database Tickets at a supermarket

More information

Kernel Methods. Konstantin Tretyakov MTAT Machine Learning

Kernel Methods. Konstantin Tretyakov MTAT Machine Learning Kernel Methods Konstantin Tretyakov (kt@ut.ee) MTAT.03.227 Machine Learning So far Supervised machine learning Linear models Non-linear models Unsupervised machine learning Generic scaffolding So far Supervised

More information

Kernel Methods. Konstantin Tretyakov MTAT Machine Learning

Kernel Methods. Konstantin Tretyakov MTAT Machine Learning Kernel Methods Konstantin Tretyakov (kt@ut.ee) MTAT.03.227 Machine Learning So far Supervised machine learning Linear models Least squares regression, SVR Fisher s discriminant, Perceptron, Logistic model,

More information

Graph Mining Methods for Predictive Toxicology

Graph Mining Methods for Predictive Toxicology TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Informatik Lehrstuhl für Bioinformatik Graph Mining Methods for Predictive Toxicology Andreas Maunz Vollständiger Abdruck der von der Fakultät für Informatik

More information

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler Complexity Theory Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien 15 May, 2018 Reinhard

More information

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181.

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181. Complexity Theory Complexity Theory Outline Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität

More information

NP-Complete Problems. Complexity Class P. .. Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar..

NP-Complete Problems. Complexity Class P. .. Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar.. .. Cal Poly CSC 349: Design and Analyis of Algorithms Alexander Dekhtyar.. Complexity Class P NP-Complete Problems Abstract Problems. An abstract problem Q is a binary relation on sets I of input instances

More information

Efficient Reassembling of Graphs, Part 1: The Linear Case

Efficient Reassembling of Graphs, Part 1: The Linear Case Efficient Reassembling of Graphs, Part 1: The Linear Case Assaf Kfoury Boston University Saber Mirzaei Boston University Abstract The reassembling of a simple connected graph G = (V, E) is an abstraction

More information

CPT+: A Compact Model for Accurate Sequence Prediction

CPT+: A Compact Model for Accurate Sequence Prediction CPT+: A Compact Model for Accurate Sequence Prediction Ted Gueniche 1, Philippe Fournier-Viger 1, Rajeev Raman 2, Vincent S. Tseng 3 1 University of Moncton, Canada 2 University of Leicester, UK 3 National

More information

1. Prove: A full m- ary tree with i internal vertices contains n = mi + 1 vertices.

1. Prove: A full m- ary tree with i internal vertices contains n = mi + 1 vertices. 1. Prove: A full m- ary tree with i internal vertices contains n = mi + 1 vertices. Proof: Every vertex, except the root, is the child of an internal vertex. Since there are i internal vertices, each of

More information

4.8 Huffman Codes. These lecture slides are supplied by Mathijs de Weerd

4.8 Huffman Codes. These lecture slides are supplied by Mathijs de Weerd 4.8 Huffman Codes These lecture slides are supplied by Mathijs de Weerd Data Compression Q. Given a text that uses 32 symbols (26 different letters, space, and some punctuation characters), how can we

More information

What is this course about?

What is this course about? What is this course about? Examining the power of an abstract machine What can this box of tricks do? What is this course about? Examining the power of an abstract machine Domains of discourse: automata

More information

Lecture 1 : Data Compression and Entropy

Lecture 1 : Data Compression and Entropy CPS290: Algorithmic Foundations of Data Science January 8, 207 Lecture : Data Compression and Entropy Lecturer: Kamesh Munagala Scribe: Kamesh Munagala In this lecture, we will study a simple model for

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

XRules: An Effective Structural Classifier for XML Data

XRules: An Effective Structural Classifier for XML Data XRules: An Effective Structural Classifier for XML Data Mohammed J. Zaki Rensselaer Polytechnic Institute zaki@cs.rpi.edu Charu C. Aggarwal IBM T.J. Watson Research Center charu@us.ibm.com ABSTRACT XML

More information

Compressed Fisher vectors for LSVR

Compressed Fisher vectors for LSVR XRCE@ILSVRC2011 Compressed Fisher vectors for LSVR Florent Perronnin and Jorge Sánchez* Xerox Research Centre Europe (XRCE) *Now with CIII, Cordoba University, Argentina Our system in a nutshell High-dimensional

More information

Linear Classifiers (Kernels)

Linear Classifiers (Kernels) Universität Potsdam Institut für Informatik Lehrstuhl Linear Classifiers (Kernels) Blaine Nelson, Christoph Sawade, Tobias Scheffer Exam Dates & Course Conclusion There are 2 Exam dates: Feb 20 th March

More information

Dictionary: an abstract data type

Dictionary: an abstract data type 2-3 Trees 1 Dictionary: an abstract data type A container that maps keys to values Dictionary operations Insert Search Delete Several possible implementations Balanced search trees Hash tables 2 2-3 trees

More information

Hierarchical Overlap Graph

Hierarchical Overlap Graph Hierarchical Overlap Graph B. Cazaux and E. Rivals LIRMM & IBC, Montpellier 8. Feb. 2018 arxiv:1802.04632 2018 B. Cazaux & E. Rivals 1 / 29 Overlap Graph for a set of words Consider the set P := {abaa,

More information

Algorithm for Enumerating All Maximal Frequent Tree Patterns among Words in Tree-Structured Documents and Its Application

Algorithm for Enumerating All Maximal Frequent Tree Patterns among Words in Tree-Structured Documents and Its Application Algorithm for Enumerating All Maximal Frequent Tree Patterns among Words in Tree-Structured Documents and Its Application Tomoyuki Uchida and Kayo Kawamoto Faculty of Information Sciences, Hiroshima City

More information

Advanced Implementations of Tables: Balanced Search Trees and Hashing

Advanced Implementations of Tables: Balanced Search Trees and Hashing Advanced Implementations of Tables: Balanced Search Trees and Hashing Balanced Search Trees Binary search tree operations such as insert, delete, retrieve, etc. depend on the length of the path to the

More information

Lecture 1: September 25, A quick reminder about random variables and convexity

Lecture 1: September 25, A quick reminder about random variables and convexity Information and Coding Theory Autumn 207 Lecturer: Madhur Tulsiani Lecture : September 25, 207 Administrivia This course will cover some basic concepts in information and coding theory, and their applications

More information

Lecture 18 April 26, 2012

Lecture 18 April 26, 2012 6.851: Advanced Data Structures Spring 2012 Prof. Erik Demaine Lecture 18 April 26, 2012 1 Overview In the last lecture we introduced the concept of implicit, succinct, and compact data structures, and

More information

Algorithm Theory - Exercise Class

Algorithm Theory - Exercise Class Algorithm Theory - Exercise Class Exercise Lesson 3 Albert-Ludwigs-Universität Freiburg Philipp Schneider Algorithms and Complexity - Professor Dr. Fabian Kuhn Organizational Matters English Tutorial in

More information

Slides for CIS 675. Huffman Encoding, 1. Huffman Encoding, 2. Huffman Encoding, 3. Encoding 1. DPV Chapter 5, Part 2. Encoding 2

Slides for CIS 675. Huffman Encoding, 1. Huffman Encoding, 2. Huffman Encoding, 3. Encoding 1. DPV Chapter 5, Part 2. Encoding 2 Huffman Encoding, 1 EECS Slides for CIS 675 DPV Chapter 5, Part 2 Jim Royer October 13, 2009 A toy example: Suppose our alphabet is { A, B, C, D }. Suppose T is a text of 130 million characters. What is

More information

An Approximation Algorithm for Constructing Error Detecting Prefix Codes

An Approximation Algorithm for Constructing Error Detecting Prefix Codes An Approximation Algorithm for Constructing Error Detecting Prefix Codes Artur Alves Pessoa artur@producao.uff.br Production Engineering Department Universidade Federal Fluminense, Brazil September 2,

More information

CS6901: review of Theory of Computation and Algorithms

CS6901: review of Theory of Computation and Algorithms CS6901: review of Theory of Computation and Algorithms Any mechanically (automatically) discretely computation of problem solving contains at least three components: - problem description - computational

More information

Enhancing Active Automata Learning by a User Log Based Metric

Enhancing Active Automata Learning by a User Log Based Metric Master Thesis Computing Science Radboud University Enhancing Active Automata Learning by a User Log Based Metric Author Petra van den Bos First Supervisor prof. dr. Frits W. Vaandrager Second Supervisor

More information

Graph-theoretic Problems

Graph-theoretic Problems Graph-theoretic Problems Parallel algorithms for fundamental graph-theoretic problems: We already used a parallelization of dynamic programming to solve the all-pairs-shortest-path problem. Here we are

More information

1 Introduction to information theory

1 Introduction to information theory 1 Introduction to information theory 1.1 Introduction In this chapter we present some of the basic concepts of information theory. The situations we have in mind involve the exchange of information through

More information

I519 Introduction to Bioinformatics, Genome Comparison. Yuzhen Ye School of Informatics & Computing, IUB

I519 Introduction to Bioinformatics, Genome Comparison. Yuzhen Ye School of Informatics & Computing, IUB I519 Introduction to Bioinformatics, 2011 Genome Comparison Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Whole genome comparison/alignment Build better phylogenies Identify polymorphism

More information

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 6

Data Mining: Concepts and Techniques. (3 rd ed.) Chapter 6 Data Mining: Concepts and Techniques (3 rd ed.) Chapter 6 Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University 2013 Han, Kamber & Pei. All rights

More information

Greedy Trees, Caterpillars, and Wiener-Type Graph Invariants

Greedy Trees, Caterpillars, and Wiener-Type Graph Invariants Georgia Southern University Digital Commons@Georgia Southern Mathematical Sciences Faculty Publications Mathematical Sciences, Department of 2012 Greedy Trees, Caterpillars, and Wiener-Type Graph Invariants

More information

Data Compression Techniques

Data Compression Techniques Data Compression Techniques Part 2: Text Compression Lecture 5: Context-Based Compression Juha Kärkkäinen 14.11.2017 1 / 19 Text Compression We will now look at techniques for text compression. These techniques

More information

An O(N) Semi-Predictive Universal Encoder via the BWT

An O(N) Semi-Predictive Universal Encoder via the BWT An O(N) Semi-Predictive Universal Encoder via the BWT Dror Baron and Yoram Bresler Abstract We provide an O(N) algorithm for a non-sequential semi-predictive encoder whose pointwise redundancy with respect

More information

PROBABILITY AND INFORMATION THEORY. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

PROBABILITY AND INFORMATION THEORY. Dr. Gjergji Kasneci Introduction to Information Retrieval WS PROBABILITY AND INFORMATION THEORY Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Probability space Rules of probability

More information

Context-Free Languages

Context-Free Languages CS:4330 Theory of Computation Spring 2018 Context-Free Languages Non-Context-Free Languages Haniel Barbosa Readings for this lecture Chapter 2 of [Sipser 1996], 3rd edition. Section 2.3. Proving context-freeness

More information

Tree-adjoined spaces and the Hawaiian earring

Tree-adjoined spaces and the Hawaiian earring Tree-adjoined spaces and the Hawaiian earring W. Hojka (TU Wien) Workshop on Fractals and Tilings 2009 July 6-10, 2009, Strobl (Austria) W. Hojka (TU Wien) () Tree-adjoined spaces and the Hawaiian earring

More information

Chapter 6. Frequent Pattern Mining: Concepts and Apriori. Meng Jiang CSE 40647/60647 Data Science Fall 2017 Introduction to Data Mining

Chapter 6. Frequent Pattern Mining: Concepts and Apriori. Meng Jiang CSE 40647/60647 Data Science Fall 2017 Introduction to Data Mining Chapter 6. Frequent Pattern Mining: Concepts and Apriori Meng Jiang CSE 40647/60647 Data Science Fall 2017 Introduction to Data Mining Pattern Discovery: Definition What are patterns? Patterns: A set of

More information

On the minimum neighborhood of independent sets in the n-cube

On the minimum neighborhood of independent sets in the n-cube Matemática Contemporânea, Vol. 44, 1 10 c 2015, Sociedade Brasileira de Matemática On the minimum neighborhood of independent sets in the n-cube Moysés da S. Sampaio Júnior Fabiano de S. Oliveira Luérbio

More information

A An Overview of Complexity Theory for the Algorithm Designer

A An Overview of Complexity Theory for the Algorithm Designer A An Overview of Complexity Theory for the Algorithm Designer A.1 Certificates and the class NP A decision problem is one whose answer is either yes or no. Two examples are: SAT: Given a Boolean formula

More information

Digital search trees JASS

Digital search trees JASS Digital search trees Analysis of different digital trees with Rice s integrals. JASS Nicolai v. Hoyningen-Huene 28.3.2004 28.3.2004 JASS 04 - Digital search trees 1 content Tree Digital search tree: Definition

More information

WEIGHTS OF TESTS Vesela Angelova

WEIGHTS OF TESTS Vesela Angelova International Journal "Information Models and Analyses" Vol.1 / 2012 193 WEIGHTS OF TESTS Vesela Angelova Abstract: Terminal test is subset of features in training table that is enough to distinguish objects

More information

HW #4. (mostly by) Salim Sarımurat. 1) Insert 6 2) Insert 8 3) Insert 30. 4) Insert S a.

HW #4. (mostly by) Salim Sarımurat. 1) Insert 6 2) Insert 8 3) Insert 30. 4) Insert S a. HW #4 (mostly by) Salim Sarımurat 04.12.2009 S. 1. 1. a. 1) Insert 6 2) Insert 8 3) Insert 30 4) Insert 40 2 5) Insert 50 6) Insert 61 7) Insert 70 1. b. 1) Insert 12 2) Insert 29 3) Insert 30 4) Insert

More information

.. Cal Poly CSC 466: Knowledge Discovery from Data Alexander Dekhtyar..

.. Cal Poly CSC 466: Knowledge Discovery from Data Alexander Dekhtyar.. .. Cal Poly CSC 4: Knowledge Discovery from Data Alexander Dekhtyar.. Data Mining: Mining Association Rules Examples Course Enrollments Itemset. I = { CSC3, CSC3, CSC40, CSC40, CSC4, CSC44, CSC4, CSC44,

More information

E D I C T The internal extent formula for compacted tries

E D I C T The internal extent formula for compacted tries E D C T The internal extent formula for compacted tries Paolo Boldi Sebastiano Vigna Università degli Studi di Milano, taly Abstract t is well known [Knu97, pages 399 4] that in a binary tree the external

More information

Treedy: A Heuristic for Counting and Sampling Subsets

Treedy: A Heuristic for Counting and Sampling Subsets 1 / 27 HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Treedy: A Heuristic for Counting and Sampling Subsets Teppo Niinimäki, Mikko Koivisto July 12, 2013 University of Helsinki Department

More information

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Limitations of Algorithms

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Limitations of Algorithms Computer Science 385 Analysis of Algorithms Siena College Spring 2011 Topic Notes: Limitations of Algorithms We conclude with a discussion of the limitations of the power of algorithms. That is, what kinds

More information

Lecture 4 : Adaptive source coding algorithms

Lecture 4 : Adaptive source coding algorithms Lecture 4 : Adaptive source coding algorithms February 2, 28 Information Theory Outline 1. Motivation ; 2. adaptive Huffman encoding ; 3. Gallager and Knuth s method ; 4. Dictionary methods : Lempel-Ziv

More information

CA-SVM: Communication-Avoiding Support Vector Machines on Distributed System

CA-SVM: Communication-Avoiding Support Vector Machines on Distributed System CA-SVM: Communication-Avoiding Support Vector Machines on Distributed System Yang You 1, James Demmel 1, Kent Czechowski 2, Le Song 2, Richard Vuduc 2 UC Berkeley 1, Georgia Tech 2 Yang You (Speaker) James

More information

Object Detection Grammars

Object Detection Grammars Object Detection Grammars Pedro F. Felzenszwalb and David McAllester February 11, 2010 1 Introduction We formulate a general grammar model motivated by the problem of object detection in computer vision.

More information

arxiv: v5 [cs.fl] 21 Feb 2012

arxiv: v5 [cs.fl] 21 Feb 2012 Streaming Tree Transducers Rajeev Alur and Loris D Antoni University of Pennsylvania February 23, 2012 arxiv:1104.2599v5 [cs.fl] 21 Feb 2012 Abstract Theory of tree transducers provides a foundation for

More information

Tree Adjoining Grammars

Tree Adjoining Grammars Tree Adjoining Grammars TAG: Parsing and formal properties Laura Kallmeyer & Benjamin Burkhardt HHU Düsseldorf WS 2017/2018 1 / 36 Outline 1 Parsing as deduction 2 CYK for TAG 3 Closure properties of TALs

More information

Learning Decision Trees

Learning Decision Trees Learning Decision Trees Machine Learning Spring 2018 1 This lecture: Learning Decision Trees 1. Representation: What are decision trees? 2. Algorithm: Learning decision trees The ID3 algorithm: A greedy

More information

Model Checking for Propositions CS477 Formal Software Dev Methods

Model Checking for Propositions CS477 Formal Software Dev Methods S477 Formal Software Dev Methods Elsa L Gunter 2112 S, UIU egunter@illinois.edu http://courses.engr.illinois.edu/cs477 Slides based in part on previous lectures by Mahesh Vishwanathan, and by Gul gha January

More information

CS60007 Algorithm Design and Analysis 2018 Assignment 1

CS60007 Algorithm Design and Analysis 2018 Assignment 1 CS60007 Algorithm Design and Analysis 2018 Assignment 1 Palash Dey and Swagato Sanyal Indian Institute of Technology, Kharagpur Please submit the solutions of the problems 6, 11, 12 and 13 (written in

More information

Non-context-Free Languages. CS215, Lecture 5 c

Non-context-Free Languages. CS215, Lecture 5 c Non-context-Free Languages CS215, Lecture 5 c 2007 1 The Pumping Lemma Theorem. (Pumping Lemma) Let be context-free. There exists a positive integer divided into five pieces, Proof for for each, and..

More information

Dynamic Programming on Trees. Example: Independent Set on T = (V, E) rooted at r V.

Dynamic Programming on Trees. Example: Independent Set on T = (V, E) rooted at r V. Dynamic Programming on Trees Example: Independent Set on T = (V, E) rooted at r V. For v V let T v denote the subtree rooted at v. Let f + (v) be the size of a maximum independent set for T v that contains

More information

Nonlinear Dimensionality Reduction. Jose A. Costa

Nonlinear Dimensionality Reduction. Jose A. Costa Nonlinear Dimensionality Reduction Jose A. Costa Mathematics of Information Seminar, Dec. Motivation Many useful of signals such as: Image databases; Gene expression microarrays; Internet traffic time

More information

Cardinality Networks: a Theoretical and Empirical Study

Cardinality Networks: a Theoretical and Empirical Study Constraints manuscript No. (will be inserted by the editor) Cardinality Networks: a Theoretical and Empirical Study Roberto Asín, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell Received:

More information

DATA MINING LECTURE 3. Frequent Itemsets Association Rules

DATA MINING LECTURE 3. Frequent Itemsets Association Rules DATA MINING LECTURE 3 Frequent Itemsets Association Rules This is how it all started Rakesh Agrawal, Tomasz Imielinski, Arun N. Swami: Mining Association Rules between Sets of Items in Large Databases.

More information

Kernels for small molecules

Kernels for small molecules Kernels for small molecules Günter Klambauer June 23, 2015 Contents 1 Citation and Reference 1 2 Graph kernels 2 2.1 Implementation............................ 2 2.2 The Spectrum Kernel........................

More information

Binary Decision Diagrams. Graphs. Boolean Functions

Binary Decision Diagrams. Graphs. Boolean Functions Binary Decision Diagrams Graphs Binary Decision Diagrams (BDDs) are a class of graphs that can be used as data structure for compactly representing boolean functions. BDDs were introduced by R. Bryant

More information

Theory of Computation

Theory of Computation Theory of Computation (Feodor F. Dragan) Department of Computer Science Kent State University Spring, 2018 Theory of Computation, Feodor F. Dragan, Kent State University 1 Before we go into details, what

More information

Search and Lookahead. Bernhard Nebel, Julien Hué, and Stefan Wölfl. June 4/6, 2012

Search and Lookahead. Bernhard Nebel, Julien Hué, and Stefan Wölfl. June 4/6, 2012 Search and Lookahead Bernhard Nebel, Julien Hué, and Stefan Wölfl Albert-Ludwigs-Universität Freiburg June 4/6, 2012 Search and Lookahead Enforcing consistency is one way of solving constraint networks:

More information

CONVOLUTION TREES AND PASCAL-T TRIANGLES. JOHN C. TURNER University of Waikato, Hamilton, New Zealand (Submitted December 1986) 1.

CONVOLUTION TREES AND PASCAL-T TRIANGLES. JOHN C. TURNER University of Waikato, Hamilton, New Zealand (Submitted December 1986) 1. JOHN C. TURNER University of Waikato, Hamilton, New Zealand (Submitted December 986). INTRODUCTION Pascal (6-66) made extensive use of the famous arithmetical triangle which now bears his name. He wrote

More information

Autumn Coping with NP-completeness (Conclusion) Introduction to Data Compression

Autumn Coping with NP-completeness (Conclusion) Introduction to Data Compression Autumn Coping with NP-completeness (Conclusion) Introduction to Data Compression Kirkpatrick (984) Analogy from thermodynamics. The best crystals are found by annealing. First heat up the material to let

More information

3 Greedy Algorithms. 3.1 An activity-selection problem

3 Greedy Algorithms. 3.1 An activity-selection problem 3 Greedy Algorithms [BB chapter 6] with different examples or [Par chapter 2.3] with different examples or [CLR2 chapter 16] with different approach to greedy algorithms 3.1 An activity-selection problem

More information

Parikh s theorem. Håkan Lindqvist

Parikh s theorem. Håkan Lindqvist Parikh s theorem Håkan Lindqvist Abstract This chapter will discuss Parikh s theorem and provide a proof for it. The proof is done by induction over a set of derivation trees, and using the Parikh mappings

More information

Partial cubes: structures, characterizations, and constructions

Partial cubes: structures, characterizations, and constructions Partial cubes: structures, characterizations, and constructions Sergei Ovchinnikov San Francisco State University, Mathematics Department, 1600 Holloway Ave., San Francisco, CA 94132 Abstract Partial cubes

More information

Fast Kernels for String and Tree Matching

Fast Kernels for String and Tree Matching Fast Kernels for String and Tree Matching S. V. N. Vishwanathan Dept. of Comp. Sci. & Automation Indian Institute of Science Bangalore, 560012, India vishy@csa.iisc.ernet.in Alexander J. Smola Machine

More information

NP-completeness. Chapter 34. Sergey Bereg

NP-completeness. Chapter 34. Sergey Bereg NP-completeness Chapter 34 Sergey Bereg Oct 2017 Examples Some problems admit polynomial time algorithms, i.e. O(n k ) running time where n is the input size. We will study a class of NP-complete problems

More information

Logic and Computation

Logic and Computation Logic and Computation CS245 Dr. Borzoo Bonakdarpour University of Waterloo (Fall 2012) Computability and Decidability Logic and Computation p. 1/29 Agenda Programs as Formulas Cantor s Diagonalization

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Reading: Ben-Hur & Weston, A User s Guide to Support Vector Machines (linked from class web page) Notation Assume a binary classification problem. Instances are represented by vector

More information

d(ν) = max{n N : ν dmn p n } N. p d(ν) (ν) = ρ.

d(ν) = max{n N : ν dmn p n } N. p d(ν) (ν) = ρ. 1. Trees; context free grammars. 1.1. Trees. Definition 1.1. By a tree we mean an ordered triple T = (N, ρ, p) (i) N is a finite set; (ii) ρ N ; (iii) p : N {ρ} N ; (iv) if n N + and ν dmn p n then p n

More information

Advanced Techniques for Mining Structured Data: Process Mining

Advanced Techniques for Mining Structured Data: Process Mining Advanced Techniques for Mining Structured Data: Process Mining Frequent Pattern Discovery /Event Forecasting Dr A. Appice Scuola di Dottorato in Informatica e Matematica XXXII Problem definition 1. Given

More information

Binary Search Trees. Motivation

Binary Search Trees. Motivation Binary Search Trees Motivation Searching for a particular record in an unordered list takes O(n), too slow for large lists (databases) If the list is ordered, can use an array implementation and use binary

More information

Space-Efficient Construction Algorithm for Circular Suffix Tree

Space-Efficient Construction Algorithm for Circular Suffix Tree Space-Efficient Construction Algorithm for Circular Suffix Tree Wing-Kai Hon, Tsung-Han Ku, Rahul Shah and Sharma Thankachan CPM2013 1 Outline Preliminaries and Motivation Circular Suffix Tree Our Indexes

More information

Phylogenetic Networks, Trees, and Clusters

Phylogenetic Networks, Trees, and Clusters Phylogenetic Networks, Trees, and Clusters Luay Nakhleh 1 and Li-San Wang 2 1 Department of Computer Science Rice University Houston, TX 77005, USA nakhleh@cs.rice.edu 2 Department of Biology University

More information

FP-growth and PrefixSpan

FP-growth and PrefixSpan FP-growth and PrefixSpan n Challenges of Frequent Pattern Mining n Improving Apriori n Fp-growth n Fp-tree n Mining frequent patterns with FP-tree n PrefixSpan Challenges of Frequent Pattern Mining n Challenges

More information

Propositional and Predicate Logic - IV

Propositional and Predicate Logic - IV Propositional and Predicate Logic - IV Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - IV ZS 2015/2016 1 / 19 Tableau method (from the previous lecture)

More information

Pairing Transitive Closure and Reduction to Efficiently Reason about Partially Ordered Events

Pairing Transitive Closure and Reduction to Efficiently Reason about Partially Ordered Events Pairing Transitive Closure and Reduction to Efficiently Reason about Partially Ordered Events Massimo Franceschet Angelo Montanari Dipartimento di Matematica e Informatica, Università di Udine Via delle

More information

Theoretical Computer Science

Theoretical Computer Science Theoretical Computer Science Zdeněk Sawa Department of Computer Science, FEI, Technical University of Ostrava 17. listopadu 15, Ostrava-Poruba 708 33 Czech republic September 22, 2017 Z. Sawa (TU Ostrava)

More information