JEREMY TAYLOR S CONTRIBUTIONS TO TRANSFORMATION MODEL

Size: px
Start display at page:

Download "JEREMY TAYLOR S CONTRIBUTIONS TO TRANSFORMATION MODEL"

Transcription

1 1 / 25 JEREMY TAYLOR S CONTRIBUTIONS TO TRANSFORMATION MODELS DEPT. OF STATISTICS, UNIV. WISCONSIN, MADISON BIOMEDICAL STATISTICAL MODELING. CELEBRATION OF JEREMY TAYLOR S OF 60TH BIRTHDAY. UNIVERSITY OF MICHIGAN, JUNE 9 10, 2017.? WHO HAS KNOWN JEREMY THE LONGEST?

2 2 / 25 BERKELEY STATISTICS SOCCER TEAM

3 3 / 25 BACKSTORY THE BOX-COX TRANSFORMATION MODEL h(y i ; λ) = Y λ i 1 λ λ = 1: LINEAR MODEL = Xi T β + σε i, 1 i n λ = 0: ACCELERATED FAILURE TIME MODEL λ = 1: RECIPROCAL LINEAR MODEL (Y=MPG) BOX-COX 1964 JRSS: AN ANALYSIS OF TRANSFORMATIONS λ R, ( ˆβ, ˆλ, ˆσ) = MLE

4 4 / 25 BACKSTORY BICKEL-DOKSUM 1981 JASA AN ANALYSIS OF TRANSFORMATIONS REVISITED THE COST OF ADDITIONAL PARAMETER λ. BOX-COX 1982 JASA AN ANALYSIS OF TRANSFORMATIONS REVISITED, REBUTTED ALSO LINDLEY 1983 JASA HINKLEY AND RUNGER 1984 JASA

5 5 / 25 BACKSTORY THE BCLHR ARGUMENT: IF WE THINK OF λ AS UNKNOWN, THEN β AND ˆβ WILL BE ON AN UNKNOWN SCALE. WE NEED TO THINK THAT λ IS KNOWN AND EQUAL TO ˆλ. THEN REPORT THAT THE ANALYSIS IS ON THE SCALE SELECTED THAT IS, BICKEL & DOKSUM ARE WRONG TO CONSIDER COST OF ESTIMATING λ.

6 6 / 25 BACKSTORY CONSEQUENCES FOR ME: ANNALS OF STATISTICS: JASA: COLLABORATOR: WISCONSIN FRIEND: ETC : BUT JEREMY: BRILLINGER: CHI-WING WONG:

7 7 / 25 BACKSTORY 1984: JASA ASKS BICKEL & DOKSUM TO COMMENT ON HINKLEY-RUNGER PAPER. DOKSUM 1984 JASA, p REBUTTAL REBUTTED (MEAN? FUNNY?) 1. WITH BCLHR WE NO LONGER NEED STUDENT t OR F DISTRIBUTIONS. BECAUSE σ IS ALSO A SCALE PARAMETER 2. BCLHR THINK THERE IS A FREE LUNCH (PRETENDING λ = ˆλ HAS NO COST) 3. BCLHR ARE THROWING THE BABY (EFFICIENCY) OUT WITH THE BATHWATER

8 8 / 25 BACKSTORY 4. BCLHR WOULD MAKE PEARSON RIGHT IN THE FISHER-PEARSON ARGUMENT. JUST ADD ON THE SCALE SELECTED, AND PEARSON WOULD APPEAR TO BE RIGHT. 5. WOULD A BIOMEDICAL SCIENTIST WANT A CONFIDENCE INTERVAL FOR β j ON THE SCALE SELECTED, OR GENERALLY VALID INTERVAL? 6. EXAMINING BENEFITS AND COSTS OF INTRODUCING MORE COMPLEX MODELS IS TO A LARGE EXTENT WHAT STATISTICIANS DO!

9 9 / 25 BACKSTORY CONSEQUENCES, REVISITED: LINDLEY: COX: BOX:

10 10 / 25 COX & REID 1987 JRSS: PARAMETER ORTHOGONALITY = NUISANCE PARAMETER ESTIMATION HAS NO ASYMPTOTIC COST. CONJECTURE: IF β /σ = O(n 1 2 ), THEN I (σ, β, λ) = σ σ 2 E(XX T ) M EFFICIENT SCORES ORTHOGONAL = NO ASYMPTOTIC COST

11 11 / 25 BRILLINGER (1983), STOKER (1986): AVERAGE DERIVATIVE APPROACH (ADE) MODEL: E(Y X ) = g(x T β) FOR SOME UNKNOWN g. DEFINITION: δ j = REGRESSION PARAMETER = E ( X j E(Y X ) ) IN BOX-COX MODEL j = β j β, p 2. THERE IS NO λ! ˆβ j HAS A λ-free INTERPRETATION AS AN ADE CHEN-LOCKHART-STEPHENS 2002 CANADIAN J. STATISTICS Y = g(x T β + σε), ( g/ X j )/( g/ ε) = β j /σ. THERE IS NO λ!

12 12 / 25 JEREMY S TRANSFORMATION PAPERS 1985 JASA. LOCATION. SKEW DISTRIBUTIONS X 1,..., X n i.i.d. G ROBUSTNESS STUDIES ASSUMED G SYMMETRIC BY USING BOX-COX TRANSFORMATION JEREMY EXTENDED USEFULNESS OF ROBUSTNESS STUDIES BY A FACTOR OF (λ R).

13 13 / 25 TRANSFORMATION PAPERS 1985 JASA Z(λ) = X λ 1 λ = µ + σε, ε HAS A SYMMETRIC DISTRIBUTION F, VAR ε = 1. STRATEGY: 1) ESTIMATE λ BY SOLVING S ( Z(λ) ) = 0 WHERE S IS A MEASURE OF SYMMETRY. E.G. S(Z) = Z (r) + Z (n r+1) 2Z ( 1 2 n) (HINKLEY 75) 2) USE A ROBUST STATISTIC L BASED ON Z n (ˆλ),..., Z n (ˆλ)

14 14 / 25 3) TRANSFORM BACK TO X SCALE USING h 1 = ( (X λ 1)/λ ) 1 CALL ESTIMATE ˆM. THEN ˆM MEDIAN L(X ) EXAMPLE: L = Z, ( 1 ) ˆM = X ˆλ 1ˆλ n i, ˆλ 0 THEOREM. SUPPOSE ˆλ = (ΠX i ) 1 n, λ = 0 P λ, THEN ˆM P M WITH M = [ E G (X λ ) ] 1 λ, λ 0 exp [ E G {log(x )} ], λ = 0

15 15 / 25 COMPARISON OF 3 ESTIMATES 1) ˆM = INVERSE OF MEAN WITH λ ESTIMATED 2) ˆM 0 = INVERSE OF MEAN WITH λ = λ 0 =TRUE λ 3) SAMPLE MEDIAN OF Y S

16 16 / 25 CONCLUSIONS: 1) ˆM TYPICALLY MORE EFFICIENT THAN THE MEDIAN 2) USING BOX-COX ˆλ DOES NOT MAKE ESTIMATES MORE EFFICIENT 3) THE COST OF NOT KNOWING λ IS NOT SEVERE. IN SOME CASES, USING ˆλ INSTEAD OF λ 0 IS MORE EFFICIENT.

17 17 / BIOMETRIKA X 1,..., X n i.i.d. G Z i (λ) = h(x i, λ) = (X i 1) λ /λ = µ + σε i WHERE ε i F SYMMETRIC, VAR(ε i ) = 1 WHAT ARE THE BEST TRANSFORMATIONS TO SYMMETRY? WHAT ARE THE BEST ˆλ s. IF f = N(0, 1), THEN ˆλ BC = MLE IS BEST.

18 18 / 25 A GENERAL CLASS OF ˆλ S: ˆλ ψ SOLVES 1 { ψ [Zi (λ) n Z(λ)]/ˆσ ( Z(λ) )} = 0 WHERE ψ IS A MONOTONE ODD FUNCTION. THEOREM (a) n(ˆλ ψ λ) N ( 0, A ψ (λ) ) (b) A ψ (λ) IS MINIMIZED BY ψ 0 (t) = a ( f (x)/f (x) ) (x 2 1) + bx WHERE a, b ARE ARBITRARY CONSTANTS 0

19 19 / 25 WHEN F = N(0, 1), ψ(x) = x 3 IS OPTIMAL WHAT ABOUT F = HUBER LEAST FAVORABLE? JEREMY SUGGESTS ψ J (x) = x 3 x c = c sgn (x)(x 2 1) + x, x > c HUBERESQUE (NORMAL-DOUBLE EXPONENTIAL)

20 20 / 25 COMPARISONS: 1) ˆλ BC 2) ˆλ RBC : R = ROBUST = HUBERIZED L(ε) 3) ˆλ H (1): H = HINKLEY, Z (1) + Z (n) Z ( 1 2 n) = 0 4) ˆλ H (2): H = HINKLEY, MEAN MEDIAN = 0 5) ˆλ (3) : ψ(x) = x 3 6) ˆλ J : ψ = ψ J 7) ˆλ (2) : ψ(x) = sgn (x)x 2

21 21 / 25 ASYMPTOTIC AND MONTE CARLO CONCLUSIONS 1) ˆλ RBC WINNER IN MONTE CARLO 2) ˆλ BC PERFORMED WELL 3) ˆλ (3), ˆλ J and ˆλ (2) VERY SIMILAR, NOT GOOD IN MC. 4) ˆλ H (1) SO-SO 5) ˆλ (2) POOR

22 22 / JASA. THE MEAN OF Y, GIVEN X h(y ; λ) = X β + σε, ε N(0, 1) X IS A KNOWN DESIGN MATRIX h(y ; λ) = BOX-COX TRANSFORMATION GOAL: ESTIMATE E(Y X ), WHICH CAN BE INTERPRETED WHEN λ IS UNKNOWN. JEREMY COMPARES 2 ESTIMATES. SMALL θ and SMEARING

23 23 / 25 E(Y X ) IS A MESS. APPROXIMATION BASED ON SMALL θ λσ/ β E(Y X ) = g(λ, β, σ) FOR SOME g 1) Ŷ1 = Ê(Y X ) = g(ˆλ, ˆβ, ˆσ) = 1ST ESTIMATE 2ND ESTIMATE (SMEARING) Ŷ 2 = Ê(Y X ) = s(ˆλ, ˆβ, ˆσ, ε)d ˆFε, s h 1 WHERE ˆFε = EMPIRICAL OF ê i = h(y i ; ˆλ) X i ˆβ/ˆσ.

24 24 / 25 RESULTS: THE TWO METHODS HAVE SIMILAR GOOD PROPERTIES EXCEPT WHEN λ 0 AND σ IS LARGE WHEN λ 0 AND σ IS LARGE, THE SMALL θ ESTIMATE SUFFERS BIAS AND THE SMEARING ESTIMATE SUFFERS VARIANCE.

25 25 / 25 HAPPY BIRTHDAY JEREMY 60 YEARS YOUNG

A Note on Adaptive Box-Cox Transformation Parameter in Linear Regression

A Note on Adaptive Box-Cox Transformation Parameter in Linear Regression A Note on Adaptive Box-Cox Transformation Parameter in Linear Regression Mezbahur Rahman, Samah Al-thubaiti, Reid W Breitenfeldt, Jinzhu Jiang, Elliott B Light, Rebekka H Molenaar, Mohammad Shaha A Patwary

More information

Linear Methods for Prediction

Linear Methods for Prediction Chapter 5 Linear Methods for Prediction 5.1 Introduction We now revisit the classification problem and focus on linear methods. Since our prediction Ĝ(x) will always take values in the discrete set G we

More information

Likelihood inference in the presence of nuisance parameters

Likelihood inference in the presence of nuisance parameters Likelihood inference in the presence of nuisance parameters Nancy Reid, University of Toronto www.utstat.utoronto.ca/reid/research 1. Notation, Fisher information, orthogonal parameters 2. Likelihood inference

More information

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B

Problems. Suppose both models are fitted to the same data. Show that SS Res, A SS Res, B Simple Linear Regression 35 Problems 1 Consider a set of data (x i, y i ), i =1, 2,,n, and the following two regression models: y i = β 0 + β 1 x i + ε, (i =1, 2,,n), Model A y i = γ 0 + γ 1 x i + γ 2

More information

An Empirical Characteristic Function Approach to Selecting a Transformation to Normality

An Empirical Characteristic Function Approach to Selecting a Transformation to Normality Communications for Statistical Applications and Methods 014, Vol. 1, No. 3, 13 4 DOI: http://dx.doi.org/10.5351/csam.014.1.3.13 ISSN 87-7843 An Empirical Characteristic Function Approach to Selecting a

More information

Linear Methods for Prediction

Linear Methods for Prediction This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

UNIVERSITÄT POTSDAM Institut für Mathematik

UNIVERSITÄT POTSDAM Institut für Mathematik UNIVERSITÄT POTSDAM Institut für Mathematik Testing the Acceleration Function in Life Time Models Hannelore Liero Matthias Liero Mathematische Statistik und Wahrscheinlichkeitstheorie Universität Potsdam

More information

Stat 710: Mathematical Statistics Lecture 12

Stat 710: Mathematical Statistics Lecture 12 Stat 710: Mathematical Statistics Lecture 12 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 12 Feb 18, 2009 1 / 11 Lecture 12:

More information

δ -method and M-estimation

δ -method and M-estimation Econ 2110, fall 2016, Part IVb Asymptotic Theory: δ -method and M-estimation Maximilian Kasy Department of Economics, Harvard University 1 / 40 Example Suppose we estimate the average effect of class size

More information

Testing for a unit root in an ar(1) model using three and four moment approximations: symmetric distributions

Testing for a unit root in an ar(1) model using three and four moment approximations: symmetric distributions Hong Kong Baptist University HKBU Institutional Repository Department of Economics Journal Articles Department of Economics 1998 Testing for a unit root in an ar(1) model using three and four moment approximations:

More information

simple if it completely specifies the density of x

simple if it completely specifies the density of x 3. Hypothesis Testing Pure significance tests Data x = (x 1,..., x n ) from f(x, θ) Hypothesis H 0 : restricts f(x, θ) Are the data consistent with H 0? H 0 is called the null hypothesis simple if it completely

More information

Lecture 14 October 13

Lecture 14 October 13 STAT 383C: Statistical Modeling I Fall 2015 Lecture 14 October 13 Lecturer: Purnamrita Sarkar Scribe: Some one Disclaimer: These scribe notes have been slightly proofread and may have typos etc. Note:

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

Inference For High Dimensional M-estimates: Fixed Design Results

Inference For High Dimensional M-estimates: Fixed Design Results Inference For High Dimensional M-estimates: Fixed Design Results Lihua Lei, Peter Bickel and Noureddine El Karoui Department of Statistics, UC Berkeley Berkeley-Stanford Econometrics Jamboree, 2017 1/49

More information

A Resampling Method on Pivotal Estimating Functions

A Resampling Method on Pivotal Estimating Functions A Resampling Method on Pivotal Estimating Functions Kun Nie Biostat 277,Winter 2004 March 17, 2004 Outline Introduction A General Resampling Method Examples - Quantile Regression -Rank Regression -Simulation

More information

Modification and Improvement of Empirical Likelihood for Missing Response Problem

Modification and Improvement of Empirical Likelihood for Missing Response Problem UW Biostatistics Working Paper Series 12-30-2010 Modification and Improvement of Empirical Likelihood for Missing Response Problem Kwun Chuen Gary Chan University of Washington - Seattle Campus, kcgchan@u.washington.edu

More information

ASSESSING A VECTOR PARAMETER

ASSESSING A VECTOR PARAMETER SUMMARY ASSESSING A VECTOR PARAMETER By D.A.S. Fraser and N. Reid Department of Statistics, University of Toronto St. George Street, Toronto, Canada M5S 3G3 dfraser@utstat.toronto.edu Some key words. Ancillary;

More information

On the Theoretical Foundations of Mathematical Statistics. RA Fisher

On the Theoretical Foundations of Mathematical Statistics. RA Fisher On the Theoretical Foundations of Mathematical Statistics RA Fisher presented by Blair Christian 10 February 2003 1 Ronald Aylmer Fisher 1890-1962 (Born in England, Died in Australia) 1911- helped found

More information

Hypothesis Testing Based on the Maximum of Two Statistics from Weighted and Unweighted Estimating Equations

Hypothesis Testing Based on the Maximum of Two Statistics from Weighted and Unweighted Estimating Equations Hypothesis Testing Based on the Maximum of Two Statistics from Weighted and Unweighted Estimating Equations Takeshi Emura and Hisayuki Tsukuma Abstract For testing the regression parameter in multivariate

More information

Max. Likelihood Estimation. Outline. Econometrics II. Ricardo Mora. Notes. Notes

Max. Likelihood Estimation. Outline. Econometrics II. Ricardo Mora. Notes. Notes Maximum Likelihood Estimation Econometrics II Department of Economics Universidad Carlos III de Madrid Máster Universitario en Desarrollo y Crecimiento Económico Outline 1 3 4 General Approaches to Parameter

More information

Post-exam 2 practice questions 18.05, Spring 2014

Post-exam 2 practice questions 18.05, Spring 2014 Post-exam 2 practice questions 18.05, Spring 2014 Note: This is a set of practice problems for the material that came after exam 2. In preparing for the final you should use the previous review materials,

More information

An Efficient Estimation Method for Longitudinal Surveys with Monotone Missing Data

An Efficient Estimation Method for Longitudinal Surveys with Monotone Missing Data An Efficient Estimation Method for Longitudinal Surveys with Monotone Missing Data Jae-Kwang Kim 1 Iowa State University June 28, 2012 1 Joint work with Dr. Ming Zhou (when he was a PhD student at ISU)

More information

Multivariate Regression

Multivariate Regression Multivariate Regression The so-called supervised learning problem is the following: we want to approximate the random variable Y with an appropriate function of the random variables X 1,..., X p with the

More information

Regression diagnostics

Regression diagnostics Regression diagnostics Kerby Shedden Department of Statistics, University of Michigan November 5, 018 1 / 6 Motivation When working with a linear model with design matrix X, the conventional linear model

More information

Economics 583: Econometric Theory I A Primer on Asymptotics

Economics 583: Econometric Theory I A Primer on Asymptotics Economics 583: Econometric Theory I A Primer on Asymptotics Eric Zivot January 14, 2013 The two main concepts in asymptotic theory that we will use are Consistency Asymptotic Normality Intuition consistency:

More information

Efficient Semiparametric Estimators via Modified Profile Likelihood in Frailty & Accelerated-Failure Models

Efficient Semiparametric Estimators via Modified Profile Likelihood in Frailty & Accelerated-Failure Models NIH Talk, September 03 Efficient Semiparametric Estimators via Modified Profile Likelihood in Frailty & Accelerated-Failure Models Eric Slud, Math Dept, Univ of Maryland Ongoing joint project with Ilia

More information

AN EMPIRICAL LIKELIHOOD RATIO TEST FOR NORMALITY

AN EMPIRICAL LIKELIHOOD RATIO TEST FOR NORMALITY Econometrics Working Paper EWP0401 ISSN 1485-6441 Department of Economics AN EMPIRICAL LIKELIHOOD RATIO TEST FOR NORMALITY Lauren Bin Dong & David E. A. Giles Department of Economics, University of Victoria

More information

AGEC 661 Note Eleven Ximing Wu. Exponential regression model: m (x, θ) = exp (xθ) for y 0

AGEC 661 Note Eleven Ximing Wu. Exponential regression model: m (x, θ) = exp (xθ) for y 0 AGEC 661 ote Eleven Ximing Wu M-estimator So far we ve focused on linear models, where the estimators have a closed form solution. If the population model is nonlinear, the estimators often do not have

More information

Likelihood Inference in the Presence of Nuisance Parameters

Likelihood Inference in the Presence of Nuisance Parameters PHYSTAT2003, SLAC, September 8-11, 2003 1 Likelihood Inference in the Presence of Nuance Parameters N. Reid, D.A.S. Fraser Department of Stattics, University of Toronto, Toronto Canada M5S 3G3 We describe

More information

Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling

Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling Fractional Hot Deck Imputation for Robust Inference Under Item Nonresponse in Survey Sampling Jae-Kwang Kim 1 Iowa State University June 26, 2013 1 Joint work with Shu Yang Introduction 1 Introduction

More information

Predicting a Future Median Life through a Power Transformation

Predicting a Future Median Life through a Power Transformation Predicting a Future Median Life through a Power Transformation ZHENLIN YANG 1 Department of Statistics and Applied Probability, National University of Singapore, 3 Science Drive 2, Singapore 117543 Abstract.

More information

Stat 451 Lecture Notes Monte Carlo Integration

Stat 451 Lecture Notes Monte Carlo Integration Stat 451 Lecture Notes 06 12 Monte Carlo Integration Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapter 6 in Givens & Hoeting, Chapter 23 in Lange, and Chapters 3 4 in Robert & Casella 2 Updated:

More information

This model of the conditional expectation is linear in the parameters. A more practical and relaxed attitude towards linear regression is to say that

This model of the conditional expectation is linear in the parameters. A more practical and relaxed attitude towards linear regression is to say that Linear Regression For (X, Y ) a pair of random variables with values in R p R we assume that E(Y X) = β 0 + with β R p+1. p X j β j = (1, X T )β j=1 This model of the conditional expectation is linear

More information

Closed-Form Estimators for the Gamma Distribution Derived from Likelihood Equations

Closed-Form Estimators for the Gamma Distribution Derived from Likelihood Equations The American Statistician ISSN: 3-135 (Print) 1537-2731 (Online) Journal homepage: http://www.tandfonline.com/loi/utas2 Closed-Form Estimators for the Gamma Distribution Derived from Likelihood Equations

More information

Model Selection and Geometry

Model Selection and Geometry Model Selection and Geometry Pascal Massart Université Paris-Sud, Orsay Leipzig, February Purpose of the talk! Concentration of measure plays a fundamental role in the theory of model selection! Model

More information

Statistics II. Management Degree Management Statistics IIDegree. Statistics II. 2 nd Sem. 2013/2014. Management Degree. Simple Linear Regression

Statistics II. Management Degree Management Statistics IIDegree. Statistics II. 2 nd Sem. 2013/2014. Management Degree. Simple Linear Regression Model 1 2 Ordinary Least Squares 3 4 Non-linearities 5 of the coefficients and their to the model We saw that econometrics studies E (Y x). More generally, we shall study regression analysis. : The regression

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

A Significance Test for the Lasso

A Significance Test for the Lasso A Significance Test for the Lasso Lockhart R, Taylor J, Tibshirani R, and Tibshirani R Ashley Petersen May 14, 2013 1 Last time Problem: Many clinical covariates which are important to a certain medical

More information

Bootstrap. Director of Center for Astrostatistics. G. Jogesh Babu. Penn State University babu.

Bootstrap. Director of Center for Astrostatistics. G. Jogesh Babu. Penn State University  babu. Bootstrap G. Jogesh Babu Penn State University http://www.stat.psu.edu/ babu Director of Center for Astrostatistics http://astrostatistics.psu.edu Outline 1 Motivation 2 Simple statistical problem 3 Resampling

More information

Bias-corrected Estimators of Scalar Skew Normal

Bias-corrected Estimators of Scalar Skew Normal Bias-corrected Estimators of Scalar Skew Normal Guoyi Zhang and Rong Liu Abstract One problem of skew normal model is the difficulty in estimating the shape parameter, for which the maximum likelihood

More information

Week 9 The Central Limit Theorem and Estimation Concepts

Week 9 The Central Limit Theorem and Estimation Concepts Week 9 and Estimation Concepts Week 9 and Estimation Concepts Week 9 Objectives 1 The Law of Large Numbers and the concept of consistency of averages are introduced. The condition of existence of the population

More information

TECHNICAL REPORT # 59 MAY Interim sample size recalculation for linear and logistic regression models: a comprehensive Monte-Carlo study

TECHNICAL REPORT # 59 MAY Interim sample size recalculation for linear and logistic regression models: a comprehensive Monte-Carlo study TECHNICAL REPORT # 59 MAY 2013 Interim sample size recalculation for linear and logistic regression models: a comprehensive Monte-Carlo study Sergey Tarima, Peng He, Tao Wang, Aniko Szabo Division of Biostatistics,

More information

Better Bootstrap Confidence Intervals

Better Bootstrap Confidence Intervals by Bradley Efron University of Washington, Department of Statistics April 12, 2012 An example Suppose we wish to make inference on some parameter θ T (F ) (e.g. θ = E F X ), based on data We might suppose

More information

Simulation. Alberto Ceselli MSc in Computer Science Univ. of Milan. Part 4 - Statistical Analysis of Simulated Data

Simulation. Alberto Ceselli MSc in Computer Science Univ. of Milan. Part 4 - Statistical Analysis of Simulated Data Simulation Alberto Ceselli MSc in Computer Science Univ. of Milan Part 4 - Statistical Analysis of Simulated Data A. Ceselli Simulation P.4 Analysis of Sim. data 1 / 15 Statistical analysis of simulated

More information

Inference based on robust estimators Part 2

Inference based on robust estimators Part 2 Inference based on robust estimators Part 2 Matias Salibian-Barrera 1 Department of Statistics University of British Columbia ECARES - Dec 2007 Matias Salibian-Barrera (UBC) Robust inference (2) ECARES

More information

Nonparametric Modal Regression

Nonparametric Modal Regression Nonparametric Modal Regression Summary In this article, we propose a new nonparametric modal regression model, which aims to estimate the mode of the conditional density of Y given predictors X. The nonparametric

More information

TESTING FOR NORMALITY IN THE LINEAR REGRESSION MODEL: AN EMPIRICAL LIKELIHOOD RATIO TEST

TESTING FOR NORMALITY IN THE LINEAR REGRESSION MODEL: AN EMPIRICAL LIKELIHOOD RATIO TEST Econometrics Working Paper EWP0402 ISSN 1485-6441 Department of Economics TESTING FOR NORMALITY IN THE LINEAR REGRESSION MODEL: AN EMPIRICAL LIKELIHOOD RATIO TEST Lauren Bin Dong & David E. A. Giles Department

More information

Likelihood Inference in the Presence of Nuisance Parameters

Likelihood Inference in the Presence of Nuisance Parameters Likelihood Inference in the Presence of Nuance Parameters N Reid, DAS Fraser Department of Stattics, University of Toronto, Toronto Canada M5S 3G3 We describe some recent approaches to likelihood based

More information

Monte Carlo conditioning on a sufficient statistic

Monte Carlo conditioning on a sufficient statistic Seminar, UC Davis, 24 April 2008 p. 1/22 Monte Carlo conditioning on a sufficient statistic Bo Henry Lindqvist Norwegian University of Science and Technology, Trondheim Joint work with Gunnar Taraldsen,

More information

Statistics - Lecture One. Outline. Charlotte Wickham 1. Basic ideas about estimation

Statistics - Lecture One. Outline. Charlotte Wickham  1. Basic ideas about estimation Statistics - Lecture One Charlotte Wickham wickham@stat.berkeley.edu http://www.stat.berkeley.edu/~wickham/ Outline 1. Basic ideas about estimation 2. Method of Moments 3. Maximum Likelihood 4. Confidence

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2009 Prof. Gesine Reinert Our standard situation is that we have data x = x 1, x 2,..., x n, which we view as realisations of random

More information

Application of Parametric Homogeneity of Variances Tests under Violation of Classical Assumption

Application of Parametric Homogeneity of Variances Tests under Violation of Classical Assumption Application of Parametric Homogeneity of Variances Tests under Violation of Classical Assumption Alisa A. Gorbunova and Boris Yu. Lemeshko Novosibirsk State Technical University Department of Applied Mathematics,

More information

Non-parametric Inference and Resampling

Non-parametric Inference and Resampling Non-parametric Inference and Resampling Exercises by David Wozabal (Last update 3. Juni 2013) 1 Basic Facts about Rank and Order Statistics 1.1 10 students were asked about the amount of time they spend

More information

Discussion of the paper Inference for Semiparametric Models: Some Questions and an Answer by Bickel and Kwon

Discussion of the paper Inference for Semiparametric Models: Some Questions and an Answer by Bickel and Kwon Discussion of the paper Inference for Semiparametric Models: Some Questions and an Answer by Bickel and Kwon Jianqing Fan Department of Statistics Chinese University of Hong Kong AND Department of Statistics

More information

The loss function and estimating equations

The loss function and estimating equations Chapter 6 he loss function and estimating equations 6 Loss functions Up until now our main focus has been on parameter estimating via the maximum likelihood However, the negative maximum likelihood is

More information

Efficiency of Profile/Partial Likelihood in the Cox Model

Efficiency of Profile/Partial Likelihood in the Cox Model Efficiency of Profile/Partial Likelihood in the Cox Model Yuichi Hirose School of Mathematics, Statistics and Operations Research, Victoria University of Wellington, New Zealand Summary. This paper shows

More information

Regression Models - Introduction

Regression Models - Introduction Regression Models - Introduction In regression models there are two types of variables that are studied: A dependent variable, Y, also called response variable. It is modeled as random. An independent

More information

Applied Econometrics (QEM)

Applied Econometrics (QEM) Applied Econometrics (QEM) The Simple Linear Regression Model based on Prinicples of Econometrics Jakub Mućk Department of Quantitative Economics Jakub Mućk Applied Econometrics (QEM) Meeting #2 The Simple

More information

Session 3 The proportional odds model and the Mann-Whitney test

Session 3 The proportional odds model and the Mann-Whitney test Session 3 The proportional odds model and the Mann-Whitney test 3.1 A unified approach to inference 3.2 Analysis via dichotomisation 3.3 Proportional odds 3.4 Relationship with the Mann-Whitney test Session

More information

Robustness to Parametric Assumptions in Missing Data Models

Robustness to Parametric Assumptions in Missing Data Models Robustness to Parametric Assumptions in Missing Data Models Bryan Graham NYU Keisuke Hirano University of Arizona April 2011 Motivation Motivation We consider the classic missing data problem. In practice

More information

Estimation for generalized half logistic distribution based on records

Estimation for generalized half logistic distribution based on records Journal of the Korean Data & Information Science Society 202, 236, 249 257 http://dx.doi.org/0.7465/jkdi.202.23.6.249 한국데이터정보과학회지 Estimation for generalized half logistic distribution based on records

More information

Lecture 15. Hypothesis testing in the linear model

Lecture 15. Hypothesis testing in the linear model 14. Lecture 15. Hypothesis testing in the linear model Lecture 15. Hypothesis testing in the linear model 1 (1 1) Preliminary lemma 15. Hypothesis testing in the linear model 15.1. Preliminary lemma Lemma

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 05 Full points may be obtained for correct answers to eight questions Each numbered question (which may have several parts) is worth

More information

Introduction to Self-normalized Limit Theory

Introduction to Self-normalized Limit Theory Introduction to Self-normalized Limit Theory Qi-Man Shao The Chinese University of Hong Kong E-mail: qmshao@cuhk.edu.hk Outline What is the self-normalization? Why? Classical limit theorems Self-normalized

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Output Analysis for Monte-Carlo Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com Output Analysis

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 15: Examples of hypothesis tests (v5) Ramesh Johari ramesh.johari@stanford.edu 1 / 32 The recipe 2 / 32 The hypothesis testing recipe In this lecture we repeatedly apply the

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

BTRY 4090: Spring 2009 Theory of Statistics

BTRY 4090: Spring 2009 Theory of Statistics BTRY 4090: Spring 2009 Theory of Statistics Guozhang Wang September 25, 2010 1 Review of Probability We begin with a real example of using probability to solve computationally intensive (or infeasible)

More information

Interval Estimation for the Ratio and Difference of Two Lognormal Means

Interval Estimation for the Ratio and Difference of Two Lognormal Means UW Biostatistics Working Paper Series 12-7-2005 Interval Estimation for the Ratio and Difference of Two Lognormal Means Yea-Hung Chen University of Washington, yeahung@u.washington.edu Xiao-Hua Zhou University

More information

The Slow Convergence of OLS Estimators of α, β and Portfolio. β and Portfolio Weights under Long Memory Stochastic Volatility

The Slow Convergence of OLS Estimators of α, β and Portfolio. β and Portfolio Weights under Long Memory Stochastic Volatility The Slow Convergence of OLS Estimators of α, β and Portfolio Weights under Long Memory Stochastic Volatility New York University Stern School of Business June 21, 2018 Introduction Bivariate long memory

More information

On robust and efficient estimation of the center of. Symmetry.

On robust and efficient estimation of the center of. Symmetry. On robust and efficient estimation of the center of symmetry Howard D. Bondell Department of Statistics, North Carolina State University Raleigh, NC 27695-8203, U.S.A (email: bondell@stat.ncsu.edu) Abstract

More information

S6880 #13. Variance Reduction Methods

S6880 #13. Variance Reduction Methods S6880 #13 Variance Reduction Methods 1 Variance Reduction Methods Variance Reduction Methods 2 Importance Sampling Importance Sampling 3 Control Variates Control Variates Cauchy Example Revisited 4 Antithetic

More information

CONVERTING OBSERVED LIKELIHOOD FUNCTIONS TO TAIL PROBABILITIES. D.A.S. Fraser Mathematics Department York University North York, Ontario M3J 1P3

CONVERTING OBSERVED LIKELIHOOD FUNCTIONS TO TAIL PROBABILITIES. D.A.S. Fraser Mathematics Department York University North York, Ontario M3J 1P3 CONVERTING OBSERVED LIKELIHOOD FUNCTIONS TO TAIL PROBABILITIES D.A.S. Fraser Mathematics Department York University North York, Ontario M3J 1P3 N. Reid Department of Statistics University of Toronto Toronto,

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Ch 2: Simple Linear Regression

Ch 2: Simple Linear Regression Ch 2: Simple Linear Regression 1. Simple Linear Regression Model A simple regression model with a single regressor x is y = β 0 + β 1 x + ɛ, where we assume that the error ɛ is independent random component

More information

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown.

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown. Weighting We have seen that if E(Y) = Xβ and V (Y) = σ 2 G, where G is known, the model can be rewritten as a linear model. This is known as generalized least squares or, if G is diagonal, with trace(g)

More information

Supporting Information for Estimating restricted mean. treatment effects with stacked survival models

Supporting Information for Estimating restricted mean. treatment effects with stacked survival models Supporting Information for Estimating restricted mean treatment effects with stacked survival models Andrew Wey, David Vock, John Connett, and Kyle Rudser Section 1 presents several extensions to the simulation

More information

INTERVAL ESTIMATION AND HYPOTHESES TESTING

INTERVAL ESTIMATION AND HYPOTHESES TESTING INTERVAL ESTIMATION AND HYPOTHESES TESTING 1. IDEA An interval rather than a point estimate is often of interest. Confidence intervals are thus important in empirical work. To construct interval estimates,

More information

Approximate Median Regression via the Box-Cox Transformation

Approximate Median Regression via the Box-Cox Transformation Approximate Median Regression via the Box-Cox Transformation Garrett M. Fitzmaurice,StuartR.Lipsitz, and Michael Parzen Median regression is used increasingly in many different areas of applications. The

More information

Semester 2 Final Exam Study Guide

Semester 2 Final Exam Study Guide Unit 4 Identify the following for each function: domain, range, x-intercept, y-intercept, and asymptote. Then graph the function. f(x) = log 2 x 2. f(x) = log(x). f(x) = log 2 (x 1) Identify the following

More information

Confidence Intervals in Ridge Regression using Jackknife and Bootstrap Methods

Confidence Intervals in Ridge Regression using Jackknife and Bootstrap Methods Chapter 4 Confidence Intervals in Ridge Regression using Jackknife and Bootstrap Methods 4.1 Introduction It is now explicable that ridge regression estimator (here we take ordinary ridge estimator (ORE)

More information

AFT Models and Empirical Likelihood

AFT Models and Empirical Likelihood AFT Models and Empirical Likelihood Mai Zhou Department of Statistics, University of Kentucky Collaborators: Gang Li (UCLA); A. Bathke; M. Kim (Kentucky) Accelerated Failure Time (AFT) models: Y = log(t

More information

Section 4.6 Simple Linear Regression

Section 4.6 Simple Linear Regression Section 4.6 Simple Linear Regression Objectives ˆ Basic philosophy of SLR and the regression assumptions ˆ Point & interval estimation of the model parameters, and how to make predictions ˆ Point and interval

More information

Bootstrap & Confidence/Prediction intervals

Bootstrap & Confidence/Prediction intervals Bootstrap & Confidence/Prediction intervals Olivier Roustant Mines Saint-Étienne 2017/11 Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 1 / 9 Framework Consider a model with

More information

Empirical likelihood ratio with arbitrarily censored/truncated data by EM algorithm

Empirical likelihood ratio with arbitrarily censored/truncated data by EM algorithm Empirical likelihood ratio with arbitrarily censored/truncated data by EM algorithm Mai Zhou 1 University of Kentucky, Lexington, KY 40506 USA Summary. Empirical likelihood ratio method (Thomas and Grunkmier

More information

Rank tests for short memory stationarity

Rank tests for short memory stationarity Rank tests for short memory stationarity Pranab K. Sen jointly with Matteo M. Pelagatti University of North Carolina at Chapel Hill Università degli Studi di Milano-Bicocca 50th Anniversary of the Department

More information

Approximate Inference for the Multinomial Logit Model

Approximate Inference for the Multinomial Logit Model Approximate Inference for the Multinomial Logit Model M.Rekkas Abstract Higher order asymptotic theory is used to derive p-values that achieve superior accuracy compared to the p-values obtained from traditional

More information

Statement: With my signature I confirm that the solutions are the product of my own work. Name: Signature:.

Statement: With my signature I confirm that the solutions are the product of my own work. Name: Signature:. MATHEMATICAL STATISTICS Homework assignment Instructions Please turn in the homework with this cover page. You do not need to edit the solutions. Just make sure the handwriting is legible. You may discuss

More information

COMPARISON OF THE ESTIMATORS OF THE LOCATION AND SCALE PARAMETERS UNDER THE MIXTURE AND OUTLIER MODELS VIA SIMULATION

COMPARISON OF THE ESTIMATORS OF THE LOCATION AND SCALE PARAMETERS UNDER THE MIXTURE AND OUTLIER MODELS VIA SIMULATION (REFEREED RESEARCH) COMPARISON OF THE ESTIMATORS OF THE LOCATION AND SCALE PARAMETERS UNDER THE MIXTURE AND OUTLIER MODELS VIA SIMULATION Hakan S. Sazak 1, *, Hülya Yılmaz 2 1 Ege University, Department

More information

The Nonparametric Bootstrap

The Nonparametric Bootstrap The Nonparametric Bootstrap The nonparametric bootstrap may involve inferences about a parameter, but we use a nonparametric procedure in approximating the parametric distribution using the ECDF. We use

More information

Quantitative Empirical Methods Exam

Quantitative Empirical Methods Exam Quantitative Empirical Methods Exam Yale Department of Political Science, August 2016 You have seven hours to complete the exam. This exam consists of three parts. Back up your assertions with mathematics

More information

EXAMINERS REPORT & SOLUTIONS STATISTICS 1 (MATH 11400) May-June 2009

EXAMINERS REPORT & SOLUTIONS STATISTICS 1 (MATH 11400) May-June 2009 EAMINERS REPORT & SOLUTIONS STATISTICS (MATH 400) May-June 2009 Examiners Report A. Most plots were well done. Some candidates muddled hinges and quartiles and gave the wrong one. Generally candidates

More information

Integrated likelihoods in models with stratum nuisance parameters

Integrated likelihoods in models with stratum nuisance parameters Riccardo De Bin, Nicola Sartori, Thomas A. Severini Integrated likelihoods in models with stratum nuisance parameters Technical Report Number 157, 2014 Department of Statistics University of Munich http://www.stat.uni-muenchen.de

More information

Joint work with Nottingham colleagues Simon Preston and Michail Tsagris.

Joint work with Nottingham colleagues Simon Preston and Michail Tsagris. /pgf/stepx/.initial=1cm, /pgf/stepy/.initial=1cm, /pgf/step/.code=1/pgf/stepx/.expanded=- 10.95415pt,/pgf/stepy/.expanded=- 10.95415pt, /pgf/step/.value required /pgf/images/width/.estore in= /pgf/images/height/.estore

More information

Outline of GLMs. Definitions

Outline of GLMs. Definitions Outline of GLMs Definitions This is a short outline of GLM details, adapted from the book Nonparametric Regression and Generalized Linear Models, by Green and Silverman. The responses Y i have density

More information

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata

Testing Hypothesis. Maura Mezzetti. Department of Economics and Finance Università Tor Vergata Maura Department of Economics and Finance Università Tor Vergata Hypothesis Testing Outline It is a mistake to confound strangeness with mystery Sherlock Holmes A Study in Scarlet Outline 1 The Power Function

More information

Approximating models. Nancy Reid, University of Toronto. Oxford, February 6.

Approximating models. Nancy Reid, University of Toronto. Oxford, February 6. Approximating models Nancy Reid, University of Toronto Oxford, February 6 www.utstat.utoronto.reid/research 1 1. Context Likelihood based inference model f(y; θ), log likelihood function l(θ; y) y = (y

More information

A Discussion of the Bayesian Approach

A Discussion of the Bayesian Approach A Discussion of the Bayesian Approach Reference: Chapter 10 of Theoretical Statistics, Cox and Hinkley, 1974 and Sujit Ghosh s lecture notes David Madigan Statistics The subject of statistics concerns

More information

Chapter 1 Likelihood-Based Inference and Finite-Sample Corrections: A Brief Overview

Chapter 1 Likelihood-Based Inference and Finite-Sample Corrections: A Brief Overview Chapter 1 Likelihood-Based Inference and Finite-Sample Corrections: A Brief Overview Abstract This chapter introduces the likelihood function and estimation by maximum likelihood. Some important properties

More information