Two-loop self-energy master integrals on shell

Size: px
Start display at page:

Download "Two-loop self-energy master integrals on shell"

Transcription

1 BI-TP 99/1 Two-loop self-energy master integrals on shell J. Fleischer 1, M. Yu. Kalmykov and A. V. Kotikov 3 Fakultät für Physik, Universität Bielefeld, D Bielefeld 1, Germany Abstract Analytic results for the complete set of two-loop self-energy master integrals on shell with one mass are calculated. Keywords: Feynman diagram, Pole mass. PACS numbers): 1.38.Bx 1 fleischer@physik.uni-bielefeld.de misha@physik.uni-bielefeld.de On leave of absence from BLTP, JINR, Dubna Moscow Region) Russia 3 kotikov@sunse.jinr.ru Particle Physics Lab., JINR, Dubna Moscow Region) Russia

2 For a wide class of low-energy observables the dominant and the next-to-leading effects originate entirely from the gauge boson propagators. These corrections are sensitive to heavy virtual particles due to quadratic divergences of the corresponding diagrams and due to non-decoupling of the heavy particles within the Higgs mechanism for the generation of masses. Only recently have the two-loop sub-leading corrections to the m W m Z interdependence of order OG F m t m Z ) been calculated in an expansion in terms of the large top mass [1]. Moreover, the two-loop Higgs boson mass dependence associated with the fermion loop to r has also become available [] 4. These results allow to reduce the theoretical uncertainties originating from higher order effects of the basic physical quantities [4]. To improve the accuracy of the calculations, corrections of order OG F m4 Z ) must be taken into account, which require in particular the calculation of two-loop selfenergy diagrams with only gauge bosons and massless particles. Keeping in mind this physical application, we present here analytical results for all two-loop on-shell self-energy master integrals with one mass. Another application of the given results is the calculation of the naive part of diagrams arising within the asymptotic expansion when the external momentum is on the mass shell of the particle with the large mass [5]. The aim of this letter is the analytical calculation of a full set of two-loop on-shell self-energy master integrals with one mass, Eqs.1)-6). The diagrams of this type are presented on Fig.1. It can be shown [6, 7], that the full set of master-integrals consists of the following ones: F11111, F00111, F10101, F10110, F01100, F00101, F10100, F00001, V1111, V1001, J111 see Fig.1) with all indices powers of propagators) equal to 1, and two integrals of the J011-type: with indices 111 and 11, respectively for the massless integrals see [8, 9]). The integration-by-parts method [9, 10] allows not only to reduce diagrams with higher indices to master-integrals, but also to calculate the master integrals themselves 5. The main idea for the latter step is the following: a diagram with the index i+1) on a massive line can be represented as the derivative of the same diagram with index i on that line w.r.t. its mass squared. This representation is used in certain equations obtained by the integration by part method, yielding a differential equation in general partial differential equations) for the initial diagram with the index i) whichcan be solved analytically. This approach [13, 14] - to construct the differential) relations between diagrams - is called the Differential Equation Method. For some particular cases where the number of the masses is small) these partial differential equations can be rewritten as ordinary differential equations 6. To obtain the finite part of two-loop physical results one needs to know the F-type integrals up to the finite part, the V- andj-type integrals up to the ε-part, and the one-loop integrals up to the ε -part. In the last years various methods have been suggested and many analytical results for one-, two- and three-loop self-energy diagrams with different values of masses and external momenta have been obtained. In particular, the ε-part of one-loop integrals is given in Ref.[16], the finite parts of two-loop self-energy diagrams with different internal masses and arbitrary external momentum are given in Refs.[1],[14], [17]-[4], the ε-part of two-loop tadpole and sunset-type integrals at threshold pseudothreshold) are calculated in Refs.[5]-[7]. Very efficient and elegant methods for numerical calculation of Feynman diagrams have been presented in Refs.[8],[9]. In 4 Recently the accuracy of these two results has been tested in [3]. 5 One of the first calculations of this type for the Standard Model and QED was performed in Refs.[11, 1]. 6 An example where no reduction to an ordinary differential equation was made, may be found in [15]. 1

3 many of these cases the authors have obtained one-dimensional integrals as well for arbitrary masses and momentum. We do not know, however, of attempts to reduce these integrals to generalized polylogarithms or other analytic expressions. We consider here the following master-integrals in Euclidean space-time with dimension N =4 ε: ONS{IJ }i, j, m) K 1 J{IJ K}i, j, k, m) K d N kp i) k, Im) P j) k p, J m), p = m d N k 1 d N k P i) k 1, Im)P j) k 1 k, J m) P k) k p, Km) p, = m V{IJ KL}i, j, k, l, m) K d N k 1 d N k P i) k p, Im) P j) k 1 k, J m)p k) k 1, Km) P l) k, Lm), p = m F{ABIJ K}a, b, i, j, k, m) m K d N k 1 d N k P a) k 1, Am) where K = P b) k, Bm)P i) k 1 p, Im) P j) k p, J m) P k) k 1 k, Km) p, = m Γ1 + ε) 4π) N m ) ε, Pl) k, m) 1 k + m ) l, the normalization factor 1/π) N for each loop is assumed, and A, B, I, J, K =0,1. The finite part of most of the F-type master-integrals can be obtained from results of Ref.[4] in the limit z 1. Nevertheless, to take this limit is not an easy task in general. We have used this approach to obtain the results for F10110 and F The finite part of F10101 is given in Refs.[17, 18], F00001 and F10100 are presented in Ref.[0]. These integrals we have verified by taking the above mentioned limit z 1ofresultsin Ref.[4]. F11111 is calculated in Ref.[3] and we have checked it numerically. Instead of the usually taken F01101 integral [17, 1] we consider J111 as master integral. We recall the results of all master integrals for completeness. The last unknown master integral then remains to be F This appears to be one of the most complicated integrals and below we present details of its calculation. The finite part of the integrals of V- and J-type can be found in Refs.[0]-[1]. The calculation of the ε eε ) parts of master integrals of this type have been performed by the differential equation method [13, 14]. The results for F-type master-integrals are follows: F{ABIJ K}1, 1, 1, 1, 1,m)=a 1 ζ3) + a π 3 S + a 3 iπζ) + Oε), 1) and the coefficients {a i } are given in Table I:

4 TABLE I F11111 F00111 F10101 F10110 F01100 F00101 F10100 F00001 a a a where [11, 17] S = 4 ) π 9 3 Cl = Here we used the m iε prescription. The results for the remaining master integrals are the following ones: V{IJ KL}1, 1, 1, 1,m)= 1 5 ε +1 ε π ) b 1 ζ) 4 π S + π { 65 ln 3 + ε 3 + b ζ) b 3 ζ3) 1 π π 63S + b 4 ζ) ln 3 + 9S 3 3 ) S ln π ln 3 1 π ln 3 b 5 π ζ) 1 Ls π } Oε ), ) where the coefficients {b i } are listen in Table II: TABLE II b 1 b b 3 b 4 b 5 V V J1111, 1, 1,m)= m ε +17 4ε + 59 { } ε 16 +8ζ) { } ) 1117 ε 5ζ) + 48ζ) ln 8ζ3) + Oε 3 ), 3) 3 1 4ε 1 J0111, 1,,m)= 1 ε)1 3ε) ε + π 3 3 ζ) { +ε 8 π 3 3 ζ) 6 π ln 3 + } ) 3 3 ζ3) + 7S + Oε ), 4) 3

5 J0111, 1, 1,m)= m 4 15ε 1 1 ε)1 3ε) 3ε) ε + 3 π 3 { 45 π +ε 9 π ln } { S + ε 1 ζ) S 867 π 3 3 ) + 07 π ln S ln 3 7 π ln 3 1 π ζ) 81 Ls π } ) +Oε 3 ), 5) ONS111, 1,m)= 1 [ 1 1 ε ε π { } π +ε 3 3 ln 3 9S +ε 9S ln 3 1 π ln 3 6 Ls ) π π ] ζ) Oε3 ), 6) where [31] Ls 3 π 3 ) = ) to our knowledge Ls π 3 3 has appeared for the first time in the calculation of the ε-part of two-loop tadpole integrals in Ref.[5] 7 ). The expansion of J1111,1,1,m) up to ε 4 terms is given in Ref.[30]. The above results were checked numerically. Padé approximants were calculated from the small momentum Taylor expansion of the diagrams [3]. The Taylor coefficients were obtained by means of the package [33] with the master integrals taken from [19]. In this manner high precision numerical results for the on-shell values of most of the diagrams were obtained [34]. Further we made use of the idea of Broadhurst [35] to apply the FORTRAN program PSLQ [36] to express the obtained numerical values in terms of a basis of irrational numbers, which were predicted by our analytical calculation, i.e. the differential equation method. Let us point out that the numbers we obtain are related to polylogarithms at the sixth root of unity and hence are in the same class of transcendentals obtained by Broadhurst [35] in his investigation of three-loop diagrams which correspond to a closure of the twoloop topologies considered here. To demonstrate our method of calculation we present in what follows some details for the F00111 integral. The basis of our approach is the differential equation method, i.e. we write a differential equation for F00111, the inhomogeneous term of which is expressed in terms of some simpler integrals. Before turning to the final step, we discuss first of all these latter integrals. All calculations are performed off shell and only at the end we take the on-shell limit. The following extra notations are needed: a) tadpoles: T 1 i, m) d N kp i) k, m) = Γi N ) ) m N i, 4π) N Γi) 7 The definition is: Ls 3 x) = x 0 ln sin θ dθ. 4

6 T i, j, k, m) d N k 1 d N k P i) k 1,m)P j) k,m)p k) k 1 k,m), b) loops with one massive line: Li, j, m) d N kp i) k, 0)P j) k p, m), c) sunset diagrams with two massive lines: Jk, i, j, m) d N k 1 d N k P k) k p, 0)P i) k 1,m)P j) k 1 k,m), 7) d) two-loop diagrams with four propagators: V 1 i, j, k, l, m) V i, j, k, l, m) d N k 1 d N k P i) k p, m)p j) k 1 k, 0)P k) k 1,m)P l) k,0), d N k 1 d N k P i) k p, 0)P j) k 1 k,m)p k) k 1,m)P l) k,m), e) two-loop diagrams with five propagators: Fa, b, i, j, k, m) d N k 1 d N k P a) k 1, 0)P b) k, 0) P i) k 1 p, m)p j) k p, m)p k) k 1 k,m). 1. One-loop diagrams with one massive line. Because it is ultraviolet finite, the integral with shifted indices, L1,,m), is more suitable for analytic calculations than the usual master integral with all indices equal to one. The recurrence relations L1, 1,m) N 3) = m L1,,m) p +m )L, 1,m), L1, 1,m) N 3) = T 1,m) p +m )L1,,m), 8) allow to express the needed integrals in terms of the diagram L1,,m), which can be written as: L1,,m) = K 1 1 ds p 0 1 s) ε 1 + as) 1+ε) = K [ ] [ log 1 + a) ε log 1 + a)+li p a) +ε 3 log3 1 + a) + log 1 + a)li a)+s 1, a) Li 3 a)] ) + Oε 3 ), where a = p /m a = -1 corresponds to the on-shell case). To obtain this result we used the representation see e.g. [4, 37]) 5

7 1 0 ds d N kp i) k, m 1 )P j) Γi + j N/) k p, m )= 4π) N Γi)Γj) 1 i+j N/) P p, m 1 s i+1 N/) 1 s) j+1 N/) s + m ). 9) 1 s. The sunset diagram with two massive lines. The set of master-integrals of this type consists of two integrals, e.g. J0111,1,1,m) and J0111,1,,m). To avoid ultraviolet singularities, however, we choose again integrals with shifted indices: J1,,,m)andJ1, 1, 3,m). Appropriate recurrence relations connecting these integrals need to be derived see also Refs.[6, 38]). Applying the integration by parts relation with the massless line as distinctive one 8,weget J1, 1,,m) N ) = d N k 1 d N k P 1) k p, 0)P ) k 1,m)P ) k 1 k,m) k k 1 ) µ k p) µ = d N k 1 d N k P 1) k p, 0)P ) k 1,m)P ) k 1 k,m) k k µ p) µ, 10) where for the last step the symmetry of the integral is taken into account. Expanding the scalar product k,k p)=k +p k ) p,wehave J1, 1,,m) N ) = 1 p T 1,m) J1,,,m) + 1 d N k 1 d N k P 1) k p, 0)P ) k 1,m)P ) k 1 k,m) k. 11) Applying now the integration-by-parts relation with the massive line with index as distinctive one, we obtain J1, 1,,m)N 6) = 4m J1, 1, 3,m) m J1,,,m) d N k 1 d N k P 1) k p, 0)P ) k 1,m)P ) k 1 k,m) k. 1) Combining Eq.11) and Eq.1) we get the final relation: J1, 1,,m)1 3ε) =T 1,m) p +m )J1,,,m) 4m J1, 1, 3,m). 13) The second recurrence relation, J1, 1, 1,m)1 ε) 1 3 ) [ ] ε = ε p 5ε) m J1, 1,,m) m 4 J1,,,m) m p +m )J1, 1, 3,m), 14) 8 In the integration-by-parts procedure one line is considered distinctive, i.e. its propagator contains nothing but the momentum k µ which is used for the partial integration see, e.g. the discussion in Ref.[4]). 6

8 can be obtained by applying the operator / p µ ) to the sunset integral J1, 1, 1,m), where the replacement k k +p is performed in 7). Further use is made of the relation / pµ ) P i) p, m) =4ii+1 N/)P i+1) p, m) 4ii +1)m P i+) p, m), and the dimension property of the integral see e.g. in Ref.[39]): p ) p + m Ji, j, k, m) =N i j k)ji, j, k, m). m is taken into account. The third recurrence relation, which we need, has the following form: J, 1, 1,m)=J1, 1,,m) m J1, 1, 3,m). 15) ε Eq.15) is obtained in a similar manner as Eq.14): the operator / p µ ) is applied to the sunset J1, 1, 1,m) integral with the initial distribution of momenta 7), and to the same diagram with the replacement k k + p. Their difference yields the recurrence relation 15). We would like to note that Eq.15) shows that the sunset diagram J1, 1, 3,m) should be known up to terms of order ε. After tedious calculation using representation 9), we obtain J1,,,m)= K 1 log y +ε[ p log3 y ζ) log y +log1 y)log y + log y 3Li y)+li y) ) 3ζ3) 1Li 3 y) 6Li 3 y)] ) + Oε ), [ { ) J1, 1, 3,m)= K 1 1 m 1 ε) ε + r y log y + ε logylog 1 + y) 3 1 y) } { + ε ζ) 6Li y) Li y) 8Li 3 y) 4Li 3 y) 11ζ3) ζ) log [ ] +4 Li y)+3li y) 6S 1, y ) 8S 1, y) + 4S 1, y) y 1 + y) 3 1 y) log 1 + y) 3 1 y) ) + log y log 1 y)log y1 y) ) log3 y + 3 ) ) log y log y y }] log 1 + y) 1 + y) 6 1 y) 4 [ { 3a +4 ε log y ε 1Li 3 y) + 4Li 3 y)+6ζ3) a + log y ζ) 4Li y) 6Li y) ) }]) log ylog 1 y) log 3 y + Oε 3 ), ) where r =4+a)/a and y =r 1)/r + 1). Putting a = 1, we get 7

9 J0111,,,m)= ) ζ) εζ3) + Oε ), 16) 3m and 1 1 J0111, 1, 3,m)= 1 ε)m ε π { + ε 3 π ln 3 ζ) } S { ) π ζ3) +ε 3 7Ls π ζ) 9 π ln } ) S ln 3 + Oε 3 ). 17) Note that the integrals J0111,1,3,m) and J0111,,,m) are much simpler than the master integrals 4) and 5). 3. The F00111 diagram. The diagram F00111 demands special consideration. The investigations are similar to those done in [4]. Applying the integration-by-parts relation three times to one of the triangles in F1, 1, 1, 1, 1,m) every time with different distinctive line) and using the identity F1, 1,, 1, 1,m)+F1, 1, 1, 1,,m)= d F1, 1, 1, 1, 1,m), dm we obtain the differential equation: [ N 4)p 4 +p m +3m 4 ) m p 4 +p m +m 4 ) d ] F1, 1, 1, 1, 1,m)=f, 18) dm where the inhomogeneous term f contains only diagrams of V i, J and L-type: L1, ) f =p 4 m)[ 4,m)+L, 1,m) L1, 1,m) ] V 1, 1, 1, 1,m) V, 1, 1, 1,m) +3m p + m )V 1,, 1, 1,m) m p m )V 1 1,, 1, 1,m). 19) Expressing all L s in terms of L1,,m) see 8)) and using the recurrence relations for V- type integrals obtained via integration by parts, we derive a new, simpler representation for the inhomogeneous term f: f = p m [ ) 1 4ε 1 ε) 1 ε T 1,m) p 3 8ε)+m 1 4ε) T 1,m)L1,,m) 1 ε) ] +p + m )J1,,,m)+4m J1, 1, 3,m)+m V 1 1, 1,, 1,m) +6m [ 1+p m ) d ] m V dm 1, 1,, 1,m), 0) where for the V-type diagrams the following differential equations hold: 8

10 [ N 4)p + m ) m m p + m ) d ] V dm 1 1, 1,, 1,m) [ ] =m J1,,,m)+p m ) T 1 3,m)L1, 1,m) J1, 1, 3,m), 1) [ N 6)p +3N 4)m m p + m ) d ] V dm 1, 1,, 1,m) = p J1,,,m)+3m T 1,,,m), ) and see e.g. Eq.5.5) in Ref.[19]) T 1,,,m)= K m 3S +Oε). We integrate Eqs.18), 1), ) with the boundary condition that all diagrams tend to zero as m. Finally for the on-shell case we obtain 1 F001111, 1, 1, 1, 1,m)=8 0 { 3 1 x dx x4 x) arctan x 4 x ) π x 1 arctan ln 1 x + x )}. 6 3 This integral is evaluated numerically with a precision of 40 decimals. Then the program PSLQ see above) is applied with 15 basis elements occurring in 1) to 6) with the result given in Table I. Acknowledgments We are grateful to A. Davydychev, D. Kreimer and O. Veretin for useful discussions and careful reading of the manuscript and to O. Veretin for his help in numerical calculation. Two of us J.F. and M.K.) are very indebted to O. V. Tarasov for useful comments. M.K. and A.K. s research has been supported by the DFG project FL41/4-1 and in part by RFBR # References [1] G. Degrassi, P. Gambino and A. Vicini, Phys. Lett. B ) 19; G. Degrassi, P. Gambino and A. Sirlin, Phys. Lett. B ) 188. [] S. Bauberger and G. Weiglein, Phys. Lett. B ) 333. [3] P. Gambino, A. Sirlin and G. Weiglein, JHEP ) 05. [4] F. Jegerlehner, Z. Phys. C ) 45; M. Consoli, W. Hollik and F. Jegerlehner, Phys. Lett. B ) 167; G. Degrassi, S. Fanchiotti and A. Sirlin, Nucl. Phys. B ) 49; G. Degrassi and A. Sirlin, Nucl. Phys. B ) 34; F. Halzen and B. A. Kniehl, Nucl. Phys. B ) 567; G.Degrassi,P.Gambino,M.PasseraandA.Sirlin,Phys.Lett.B ) 09. 9

11 [5] V. A. Smirnov, Phys. Lett. B ) 05; A. Czarnecki and V. A. Smirnov, Phys. Lett. B ) 11; L.V. Avdeev and M. Yu. Kalmykov, Nucl. Phys. B ) 419. [6] O V. Tarasov, Nucl. Phys. B ) 455. [7] J. Fleischer and M. Yu. Kalmykov, in preparation. [8] A. A. Vladimirov, Theor. Math. Phys ) 417. [9] F. V. Tkachov, Phys. Lett. B ) 65; K. G. Chetyrkin and F. V. Tkachov, Nucl. Phys. B ) 159. [10] A. N. Vassiliev, Y. M. Pis mak and Y. P. Honkonen, Theor. Math. Phys ) 465. [11] J. van der Bij and M. Veltman, Nucl. Phys. B ) 05; F. Hoogeveen, Nucl. Phys. B ) 19; J. van der Bij and F. Hoogeveen, Nucl. Phys. B ) 477. [1] N. Gray, D. J. Broadhurst, W. Grafe and K. Schilcher, Z. Phys. C ) 673; D. J. Broadhurst, N. Gray and K. Schilcher, Z. Phys. C ) 111; D. J. Broadhurst, Z. Phys. C ) 599. [13] A. V. Kotikov, Phys. Lett. B ) 158; B ) 314; Phys. Lett. B ) 13; B ) 409E); JHEP ) 001. [14] A. V. Kotikov, Mod. Phys. Lett. A ) 677. [15] C. Ford, I. Jack and D. R. T. Jones, Nucl. Phys. B ) 373; B ) 551E). [16] U. Nierste, D. Müller and M. Böhm, Z. Phys. C ) 605; A. I. Davydychev and N. I. Ussyukina, Phys. Lett. B ) 159; F. A. Berends, A. I. Davydychev and V. A. Smirnov, Nucl. Phys. B ) 59; A. I. Davydychev and R. Delbourgo, J. Math. Phys ) 499; J. Fleischer, F. Jegerlehner, O. V. Tarasov and O. L. Veretin, Nucl. Phys. B ) 671. [17] D. J. Broadhurst, Z. Phys.C ) 115. [18] D. J. Broadhurst, J. Fleischer and O. V. Tarasov, Z. Phys. C ) 87. [19] A. I. Davydychev and J. B. Tausk, Nucl. Phys. B ) 13. [0] A. Djouadi, Nuovo Cim. A ) 357; P. N. Maher, L. Durand and K.Riesselmann, Phys. Rev. D ) 1061; D ) 553E); R. Scharf and J. B. Tausk, Nucl. Phys. B )

12 [1] F. A. Berends, M. Buza, M. Böhm and R. Scharf, Z. Phys.C ) 7; F. A. Berends and J. B. Tausk, Nucl. Phys. B ) 456; S. Bauberger, F. A. Berends, M. Böhm and M. Buza, Nucl. Phys. B ) 383. [] A. Ghinculov and J. J. van der Bij, Nucl. Phys. B ) 30; F. A. Berends, A. I. Davydychev, V. A. Smirnov and J. B. Tausk, Nucl. Phys. B ) 536; A. Ghinculov and Y. -P. Yao, Nucl. Phys. B ) 385; A. T. Suzuki and A. G. M. Schmidt, Eur. Phys. J. C ) 175. [3] V. Borodulin and G. Jikia, Phys. Lett. B ) 434. [4] J. Fleischer, A. V. Kotikov and O. L. Veretin, Nucl. Phys. B ) 343. [5] A. I. Davydychev and J. B. Tausk, Phys. Rev. D ) [6] F. A. Berends, A. I. Davydychev and N. I. Ussyukina, Phys. Lett. B ) 95. [7] A. I. Davydychev and A. G. Grozin, Phys. Rev. D ) [8] D. Kreimer, Phys. Lett. B ), 77; ibid B 9 199), 341; A. Czarnecki, U. Kilian and D. Kreimer, Nucl. Phys. B ) 59; S. Bauberger, and M. Böhm, Nucl. Phys. B ) 5. [9]S.Groote,J.G.Körner and A. A. Pivovarov, Phys. Lett. B ) 69; Nucl. Phys. B ) 515. [30] D. J. Broadhurst, Z. Phys. C ) 599. [31] L. Lewin, Polylogarithms and associated functions North-Holland, Amsterdam, 1981). [3] J. Fleischer and O. V. Tarasov, Z. Phys. C ) 413; O. V. Tarasov, Nucl. Phys. B ) 397. [33] L. V. Avdeev, J. Fleischer, M. Yu. Kalmykov and M. N. Tentyukov, Nucl. Inst. Meth. A ) 343; Comp. Phys. Commun ) 155. [34] J. Fleischer, Int. J. Mod. Phys. C ) 495; J. Fleischer, V. A. Smirnov and O. V. Tarasov, Z. Phys. C ) 379; J. Fleischer et al., Eur. Phys. J. C 1998) 747; J. Fleischer, M. Yu. Kalmykov and O. L. Veretin, Phys. Lett. B ) 141. [35] D. J. Broadhurst, Eur. Phys. J. C ) 311. [36] H. R. P. Ferguson, D. H. Bailey and S. Arno, NASA-Ames Technical Report, NAS ; D. H. Bailey and D. J. Broadhurst, math.na/

13 [37] J. Fleischer, A. V. Kotikov and O. L. Veretin, Phys. Lett. B ) 163. [38] A. I. Davydychev and V. A. Smirnov, hep-ph/990338, to appear in Nucl. Phys. B. [39] M. Gaffo, H. Czyz, S. Laporta and E. Remiddi, Nuovo Cim. A )

14 F F01111 F11110 F00111 F10101 F10110 F01101 F01100 F00101 F10100 F00110 F00100 F00001 F00000 V1111 V0111 V1011 V1110 V1010 V0110 V1001 V0011 V0010 V1000 V0001 V0000 J111 J011 J001 J000 Figure 1: The full set of two-loop self-energies diagrams with one mass. Bold and thin lines correspond to the mass and massless propagators, respectively. 13

Single mass scale diagrams: construction of a basis for the ε-expansion.

Single mass scale diagrams: construction of a basis for the ε-expansion. BI-TP 99/4 Single mass scale diagrams: construction of a basis for the ε-expansion. J. Fleischer a 1, M. Yu. Kalmykov a,b 2 a b Fakultät für Physik, Universität Bielefeld, D-615 Bielefeld, Germany BLTP,

More information

INP MSU 96-34/441 hep-ph/ October 1996 Some techniques for calculating two-loop diagrams 1 Andrei I. Davydychev Institute for Nuclear Physics,

INP MSU 96-34/441 hep-ph/ October 1996 Some techniques for calculating two-loop diagrams 1 Andrei I. Davydychev Institute for Nuclear Physics, INP MSU 96-34/441 hep-ph/9610510 October 1996 Some techniques for calculating two-loop diagrams 1 Andrei I. Davydychev Institute for Nuclear Physics, Moscow State University, 119899 Moscow, Russia Abstract

More information

arxiv: v1 [hep-ph] 30 Dec 2015

arxiv: v1 [hep-ph] 30 Dec 2015 June 3, 8 Derivation of functional equations for Feynman integrals from algebraic relations arxiv:5.94v [hep-ph] 3 Dec 5 O.V. Tarasov II. Institut für Theoretische Physik, Universität Hamburg, Luruper

More information

Hypergeometric representation of the two-loop equal mass sunrise diagram

Hypergeometric representation of the two-loop equal mass sunrise diagram Physics Letters B 68 6 95 wwwelseviercom/locate/physletb Hypergeometric representation of the two-loop equal mass sunrise diagram OV Tarasov Deutsches Elektronen-Synchrotron DESY Platanenallee 6 D-578

More information

A magic connection between massive and massless diagrams. Department of Physics, University of Bergen, Allegaten 55, N-5007 Bergen, Norway

A magic connection between massive and massless diagrams. Department of Physics, University of Bergen, Allegaten 55, N-5007 Bergen, Norway University of Bergen, Department of Physics Scientific/Technical Report No.995-7 ISSN 8-696 MZ-TH{95-4 hep-ph/9544 April 995 A magic connection between massive and massless diagrams A.I. Davydychev a;

More information

arxiv:hep-ph/ v1 28 Mar 2006

arxiv:hep-ph/ v1 28 Mar 2006 DESY-06-0 SFB/CPP-06- Hypergeometric representation of the two-loop equal mass sunrise diagram arxiv:hep-ph/0607v 8 Mar 006 O.V. Tarasov Deutsches Elektronen - Synchrotron DESY Platanenallee 6, D-578 Zeuthen,

More information

Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses

Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses Asymptotic Expansions of Feynman Integrals on the Mass Shell in Momenta and Masses arxiv:hep-ph/9708423v 2 Aug 997 V.A. Smirnov Nuclear Physics Institute of Moscow State University Moscow 9899, Russia

More information

arxiv: v2 [hep-ph] 4 Jun 2018

arxiv: v2 [hep-ph] 4 Jun 2018 Prepared for submission to JHEP Evaluating elliptic master integrals at special kinematic values: using differential equations and their solutions via expansions near singular points arxiv:1805.00227v2

More information

Evaluating double and triple (?) boxes

Evaluating double and triple (?) boxes Evaluating double and triple (?) boxes V.A. Smirnov a hep-ph/0209295 September 2002 a Nuclear Physics Institute of Moscow State University, Moscow 9992, Russia A brief review of recent results on analytical

More information

arxiv:hep-ph/ v1 18 Nov 1996

arxiv:hep-ph/ v1 18 Nov 1996 TTP96-55 1 MPI/PhT/96-122 hep-ph/9611354 November 1996 arxiv:hep-ph/9611354v1 18 Nov 1996 AUTOMATIC COMPUTATION OF THREE-LOOP TWO-POINT FUNCTIONS IN LARGE MOMENTUM EXPANSION K.G. Chetyrkin a,b, R. Harlander

More information

Calculation of fermionic two-loop contributions to muon decay

Calculation of fermionic two-loop contributions to muon decay CERN TH/000 07 DESY 00 101 KA TP 15 000 Calculation of fermionic two-loop contributions to muon decay A. Freitas a, S. Heinemeyer a, W. Hollik b, W. Walter b,g.weiglein c a Deutsches Elektronen-Synchrotron

More information

Evaluating multiloop Feynman integrals by Mellin-Barnes representation

Evaluating multiloop Feynman integrals by Mellin-Barnes representation April 7, 004 Loops&Legs 04 Evaluating multiloop Feynman integrals by Mellin-Barnes representation V.A. Smirnov Nuclear Physics Institute of Moscow State University Mellin-Barnes representation as a tool

More information

A numerical test of differential equations for one- and two-loop sunrise diagrams using configuration space techniques

A numerical test of differential equations for one- and two-loop sunrise diagrams using configuration space techniques Eur. Phys. J. C 7:85 DOI.4/epjc/s5--85-z Special Article - Tools for Experiment and Theory A numerical test of differential equations for one- and two-loop sunrise diagrams using configuration space techniques

More information

Large momentum expansion of two-loop self-energy diagrams with arbitrary masses

Large momentum expansion of two-loop self-energy diagrams with arbitrary masses INLO-PUB 5/93 arxiv:hep-ph/93737v 3 Jul 993 Large momentum expansion of two-loop self-energy diagrams with arbitrary masses A. I. Davydychev (a, V. A. Smirnov (b and J. B. Tausk (a (a Instituut Lorentz,

More information

TVID: Three-loop Vacuum Integrals from Dispersion relations

TVID: Three-loop Vacuum Integrals from Dispersion relations TVID: Three-loop Vacuum Integrals from Dispersion relations Stefan Bauberger, Ayres Freitas Hochschule für Philosophie, Philosophische Fakultät S.J., Kaulbachstr. 3, 80539 München, Germany Pittsburgh Particle-physics

More information

arxiv: v2 [hep-ph] 18 Nov 2009

arxiv: v2 [hep-ph] 18 Nov 2009 Space-time dimensionality D as complex variable: calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D. arxiv:0911.05v [hep-ph] 18 Nov 009 R.N. Lee

More information

The propagator seagull: general evaluation of a two loop diagram

The propagator seagull: general evaluation of a two loop diagram Prepared for submission to JHEP arxiv:1809.05040v [hep-th] 11 Oct 018 The propagator seagull: general evaluation of a two loop diagram Barak Kol and Ruth Shir The Racah Institute of Physics, The Hebrew

More information

arxiv:hep-ph/ v1 4 Feb 1998

arxiv:hep-ph/ v1 4 Feb 1998 Methods to calculate scalar twoloo vertex diagrams J. FLEISCHER Fakultät für Physik, Universität Bielefeld D3365 Bielefeld, Germany Email: fleischer@hysik.unibielefeld.de. M. TENTYUKOV Joint Institute

More information

One-Mass Two-Loop Master Integrals for Mixed

One-Mass Two-Loop Master Integrals for Mixed One-Mass Two-Loop Master Integrals for Mixed α s -Electroweak Drell-Yan Production work ongoing with Andreas von Manteuffel The PRISMA Cluster of Excellence and Institute of Physics Johannes Gutenberg

More information

Reduction of Feynman integrals to master integrals

Reduction of Feynman integrals to master integrals Reduction of Feynman integrals to master integrals A.V. Smirnov Scientific Research Computing Center of Moscow State University A.V. Smirnov ACAT 2007 p.1 Reduction problem for Feynman integrals A review

More information

Analytical expressions of 3 and 4-loop sunrise Feynman integrals and 4-dimensional lattice integrals

Analytical expressions of 3 and 4-loop sunrise Feynman integrals and 4-dimensional lattice integrals 3 September 8 Analytical expressions of 3 and 4-loop sunrise Feynman integrals and 4-dimensional lattice integrals arxiv:83.7v3 [hep-ph] Mar 8 S. Laporta Museo Storico della Fisica e Centro Studi e Ricerche

More information

Functions associated to scattering amplitudes. Stefan Weinzierl

Functions associated to scattering amplitudes. Stefan Weinzierl Functions associated to scattering amplitudes Stefan Weinzierl Institut für Physik, Universität Mainz I: Periodic functions and periods II: III: Differential equations The two-loop sun-rise diagramm in

More information

arxiv:hep-ph/ v1 21 Jan 1998

arxiv:hep-ph/ v1 21 Jan 1998 TARCER - A Mathematica program for the reduction of two-loop propagator integrals R. Mertig arxiv:hep-ph/980383v Jan 998 Abstract Mertig Research & Consulting, Kruislaan 49, NL-098 VA Amsterdam, The Netherlands

More information

Triangle diagrams in the Standard Model

Triangle diagrams in the Standard Model Triangle diagrams in the Standard Model A. I. Davydychev and M. N. Dubinin Institute for Nuclear Physics, Moscow State University, 119899 Moscow, USSR Abstract Method of massive loop Feynman diagrams evaluation

More information

arxiv:hep-ph/ v1 8 Oct 1999

arxiv:hep-ph/ v1 8 Oct 1999 arxiv:hep-ph/991083v1 8 Oct 1999 Precise Calculations for the Neutral Higgs-Boson Masses in the SM a S. Heinemeyer 1, W. Hollik and G. Weiglein 3 1 DESY Theorie, Notkestr. 85, D 603 Hamburg, Germany Institut

More information

arxiv: v1 [hep-ph] 22 Sep 2016

arxiv: v1 [hep-ph] 22 Sep 2016 TTP16-037 arxiv:1609.06786v1 [hep-ph] 22 Sep 2016 Five-loop massive tadpoles Thomas Luthe Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology, Karlsruhe, Germany E-mail: thomas.luthe@kit.edu

More information

Two loop O N f s 2 corrections to the decay width of the Higgs boson to two massive fermions

Two loop O N f s 2 corrections to the decay width of the Higgs boson to two massive fermions PHYSICAL REVIEW D VOLUME 53, NUMBER 9 1 MAY 1996 Two loop O N f s corrections to the decay width of the Higgs boson to two massive fermions K Melnikov Institut für Physik, THEP, Johannes Gutenberg Universität,

More information

Functional equations for Feynman integrals

Functional equations for Feynman integrals Functional equations for Feynman integrals O.V. Tarasov JINR, Dubna, Russia October 9, 016, Hayama, Japan O.V. Tarasov (JINR) Functional equations for Feynman integrals 1 / 34 Contents 1 Functional equations

More information

Calculations for future precision physics at high energies

Calculations for future precision physics at high energies Calculations for future precision physics at high energies F. JEGERLEHNER DESY Zeuthen Humboldt-Universität zu Berlin Report on work in Collaboration with M. Kalmykov Seminar, Sep 8, 2004, JINR, Dubna

More information

arxiv:hep-lat/ v1 30 Sep 2005

arxiv:hep-lat/ v1 30 Sep 2005 September 2005 Applying Gröbner Bases to Solve Reduction Problems for Feynman Integrals arxiv:hep-lat/0509187v1 30 Sep 2005 A.V. Smirnov 1 Mechanical and Mathematical Department and Scientific Research

More information

The 4-loop quark mass anomalous dimension and the invariant quark mass.

The 4-loop quark mass anomalous dimension and the invariant quark mass. arxiv:hep-ph/9703284v1 10 Mar 1997 UM-TH-97-03 NIKHEF-97-012 The 4-loop quark mass anomalous dimension and the invariant quark mass. J.A.M. Vermaseren a, S.A. Larin b, T. van Ritbergen c a NIKHEF, P.O.

More information

arxiv:hep-ph/ v6 17 Apr 2007

arxiv:hep-ph/ v6 17 Apr 2007 auge dependence of on-shell and pole mass renormalization prescriptions Yong hou Beijing University of Posts and Telecommunications, school of science P.O. Box 123, Beijing 100876, China arxiv:hep-ph/0508227v6

More information

NNLO antenna subtraction with two hadronic initial states

NNLO antenna subtraction with two hadronic initial states NNLO antenna subtraction with two hadronic initial states Institut für Theoretische Physik, Universität Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland E-mail: radja@physik.uzh.ch Aude Gehrmann-De

More information

Exploring the function space of Feynman integrals. Stefan Weinzierl

Exploring the function space of Feynman integrals. Stefan Weinzierl Exploring the function space of Feynman integrals Stefan Weinzierl Institut für Physik, Universität Mainz Mathematics intro: Physics intro: Part I: Part II: Periodic functions and periods Precision calculations

More information

Two-loop Remainder Functions in N = 4 SYM

Two-loop Remainder Functions in N = 4 SYM Two-loop Remainder Functions in N = 4 SYM Claude Duhr Institut für theoretische Physik, ETH Zürich, Wolfgang-Paulistr. 27, CH-8093, Switzerland E-mail: duhrc@itp.phys.ethz.ch 1 Introduction Over the last

More information

arxiv:hep-ph/ v2 2 Feb 1998

arxiv:hep-ph/ v2 2 Feb 1998 BI-TP 97/53, hep-ph/9711487 to appear in 15 March 1998 issue of Phys. Rev. D (Rapid Comm.) Improvement of the method of diagonal Padé approximants for perturbative series in gauge theories arxiv:hep-ph/9711487v2

More information

SM predictions for electroweak precision observables

SM predictions for electroweak precision observables SM predictions for electroweak precision observables A. Freitas University of Pittsburgh Workshop on Physics at the CEPC, 10-12 August 2015 1. Introduction 2. Electroweak precision observables 3. Current

More information

arxiv: v2 [hep-th] 8 Aug 2016

arxiv: v2 [hep-th] 8 Aug 2016 Prepared for submission to JHEP Bubble diagram through the Symmetries of Feynman Integrals method arxiv:1606.09257v2 [hep-th] 8 Aug 2016 Barak Kol Racah Institute of Physics, Hebrew University, Jerusalem

More information

Simplified differential equations approach for the calculation of multi-loop integrals

Simplified differential equations approach for the calculation of multi-loop integrals Simplified differential equations approach for the calculation of multi-loop integrals Chris Wever (N.C.S.R. Demokritos) 1 C. Papadopoulos [arxiv: 1401.6057 [hep-ph]] C. Papadopoulos, D. Tommasini, C.

More information

arxiv: v3 [hep-th] 17 Sep 2018

arxiv: v3 [hep-th] 17 Sep 2018 Prepared for submission to JHEP Bubble diagram through the Symmetries of Feynman Integrals method arxiv:1606.0957v3 [hep-th] 17 Sep 018 Barak Kol Racah Institute of Physics, Hebrew University, Jerusalem

More information

Generalizations of polylogarithms for Feynman integrals

Generalizations of polylogarithms for Feynman integrals Journal of Physics: Conference Series PAPER OPEN ACCESS Generalizations of polylogarithms for Feynman integrals To cite this article: Christian Bogner 6 J. Phys.: Conf. Ser. 76 67 View the article online

More information

FIRE4, LiteRed and accompanying tools to solve integration by parts relations

FIRE4, LiteRed and accompanying tools to solve integration by parts relations Prepared for submission to JHEP HU-EP-13/04 HU-Mathematik:05-2013 FIRE4, LiteRed and accompanying tools to solve integration by parts relations Alexander V. Smirnov a Vladimir A. Smirnov b,c a Scientific

More information

CP-violating Loop Effects in the Higgs Sector of the MSSM

CP-violating Loop Effects in the Higgs Sector of the MSSM CP-violating Loop Effects in the Higgs Sector of the MSSM T. Hahn 1, S. Heinemeyer 2, W. Hollik 1, H. Rzehak 3, G. Weiglein 4 and K.E. Williams 4 1- Max-Planck-Institut für Physik, Föhringer Ring 6, D

More information

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1

Reduction to Master Integrals. V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction to Master Integrals IBP (integration by parts) V.A. Smirnov Atrani, September 30 October 05, 2013 p.1 Reduction

More information

PUZZLING b QUARK DECAYS: HOW TO ACCOUNT FOR THE CHARM MASS

PUZZLING b QUARK DECAYS: HOW TO ACCOUNT FOR THE CHARM MASS Vol. 36 005 ACTA PHYSICA POLONICA B No 11 PUZZLING b QUARK DECAYS: HOW TO ACCOUNT FOR THE CHARM MASS Andrzej Czarnecki, Alexey Pak, Maciej Ślusarczyk Department of Physics, University of Alberta Edmonton,

More information

Feynman Integral Calculus

Feynman Integral Calculus Feynman Integral Calculus Vladimir A. Smirnov Feynman Integral Calculus ABC Vladimir A. Smirnov Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics Moscow 119992, Russia E-mail: smirnov@theory.sinp.msu.ru

More information

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases. Lorenzo Tancredi TTP, KIT - Karlsruhe Bologna, 18 Novembre 2014 Based on collaboration with Thomas Gehrmann,

More information

arxiv:hep-th/ v1 21 Dec 2006

arxiv:hep-th/ v1 21 Dec 2006 Preprint typeset in JHEP style - HYPER VERSION hep-th/64 BU-HEPP-6- arxiv:hep-th/64v Dec 6 All order ε-expansion of Gauss hypergeometric functions with integer and half/integer values of parameters M.

More information

Numerical Evaluation of Loop Integrals

Numerical Evaluation of Loop Integrals Numerical Evaluation of Loop Integrals Institut für Theoretische Physik Universität Zürich Tsukuba, April 22 nd 2006 In collaboration with Babis Anastasiou Rationale (Why do we need complicated loop amplitudes?)

More information

Two-loop Heavy Fermion Corrections to Bhabha Scattering

Two-loop Heavy Fermion Corrections to Bhabha Scattering Two-loop Heavy Fermion Corrections to Bhabha Scattering S. Actis 1, M. Czakon 2, J. Gluza 3 and T. Riemann 1 1 Deutsches Elektronen-Synchrotron DESY Platanenallee 6, D 15738 Zeuthen, Germany 2 Institut

More information

arxiv:hep-ph/ v3 16 Jan 2008

arxiv:hep-ph/ v3 16 Jan 2008 Alberta Thy 11-06 Large mass expansion in two-loop QCD corrections of paracharmonium decay K. Hasegawa and Alexey Pak Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1, Canada (Dated:

More information

arxiv: v2 [hep-ph] 20 Jul 2014

arxiv: v2 [hep-ph] 20 Jul 2014 arxiv:407.67v [hep-ph] 0 Jul 04 Mass-corrections to double-higgs production & TopoID Jonathan Grigo and Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT) E-mail: jonathan.grigo@kit.edu,

More information

arxiv: v1 [cond-mat.stat-mech] 22 Sep 2013

arxiv: v1 [cond-mat.stat-mech] 22 Sep 2013 arxiv:39.562v [cond-mat.stat-mech] 22 Sep 23 Five-loop numerical evaluation of critical exponents of the ϕ 4 theory L.Ts. Adzhemyan, M.V. Kompaniets Department of Theoretical Physics, St. Petersburg State

More information

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z

Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z Two-loop massive fermionic operator matrix elements and intial state QED corrections to e + e γ /Z J. Blümlein, a ab and W. van Neerven c a DESY, Zeuthen, Platanenalle 6, D-173 Zeuthen, Germany. b Departamento

More information

Bare Higgs mass and potential at ultraviolet cutoff

Bare Higgs mass and potential at ultraviolet cutoff Bare Higgs mass and potential at ultraviolet cutoff Yuta Hamada and Hikaru Kawai Department of Physics, Kyoto University, Kyoto 606-850, Japan Kin-ya Oda Department of Physics, Osaka University, Osaka

More information

PHYS 611, SPR 12: HOMEWORK NO. 4 Solution Guide

PHYS 611, SPR 12: HOMEWORK NO. 4 Solution Guide PHYS 611 SPR 12: HOMEWORK NO. 4 Solution Guide 1. In φ 3 4 theory compute the renormalized mass m R as a function of the physical mass m P to order g 2 in MS scheme and for an off-shell momentum subtraction

More information

hep-ph/ Sep 1998

hep-ph/ Sep 1998 Some Aspects of Trace Anomaly Martin Schnabl Nuclear Centre, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, C-8000 Praha 8, Czech Republic July 998 hep-ph/9809534 25 Sep 998

More information

Vacuum Energy and Effective Potentials

Vacuum Energy and Effective Potentials Vacuum Energy and Effective Potentials Quantum field theories have badly divergent vacuum energies. In perturbation theory, the leading term is the net zero-point energy E zeropoint = particle species

More information

arxiv: v2 [hep-ph] 2 Apr 2019

arxiv: v2 [hep-ph] 2 Apr 2019 MITP/19-023 arxiv:1904.00382v2 [hep-ph] 2 Apr 2019 Two-loop master integrals for the mixed QCD-electroweak corrections for H b b through a Ht t-coupling Ekta Chaubey and Stefan Weinzierl PRISMA Cluster

More information

G. 't HOOFT and M. VELTMAN Institute for Theoretical Physics*, University of Utrecht, Netherlands

G. 't HOOFT and M. VELTMAN Institute for Theoretical Physics*, University of Utrecht, Netherlands Nuclear Physics B153 (1979) 365-401 North-Holland Publishing Company SCALAR ONE-LOOP INTEGRALS G. 't HOOFT and M. VELTMAN Institute for Theoretical Physics*, University of Utrecht, Netherlands Received

More information

Forcer: a FORM program for 4-loop massless propagators

Forcer: a FORM program for 4-loop massless propagators Forcer: a FORM program for 4-loop massless propagators, a B. Ruijl ab and J.A.M. Vermaseren a a Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands b Leiden Centre of Data Science,

More information

Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams

Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams Journal of Computational and Applied Mathematics 115 (2000) 93 99 www.elsevier.nl/locate/cam Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams Luis

More information

arxiv: v2 [hep-th] 7 Jul 2016

arxiv: v2 [hep-th] 7 Jul 2016 Integration-by-parts reductions from unitarity cuts and algebraic geometry arxiv:1606.09447v [hep-th] 7 Jul 016 Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland E-mail: Kasper.Larsen@phys.ethz.ch

More information

Computing of Charged Current DIS at three loops

Computing of Charged Current DIS at three loops Computing of Charged Current DIS at three loops Mikhail Rogal Mikhail.Rogal@desy.de DESY, Zeuthen, Germany ACAT 2007, Amsterdam, Netherlands, April 23-28, 2007 Computing of Charged CurrentDIS at three

More information

From Tensor Integral to IBP

From Tensor Integral to IBP From Tensor Integral to IBP Mohammad Assadsolimani, in collaboration with P. Kant, B. Tausk and P. Uwer 11. Sep. 2012 Mohammad Assadsolimani From Tensor Integral to IBP 1 Contents Motivation NNLO Tensor

More information

Two-loop light fermion contribution to Higgs production and decays

Two-loop light fermion contribution to Higgs production and decays Physics Letters B 595 24) 432 441 www.elsevier.com/locate/physletb Two-loop light fermion contribution to Higgs production and decays U. Aglietti a, R. Bonciani b,1, G. Degrassi c, A. Vicini d a Dipartimento

More information

gg! hh in the high energy limit

gg! hh in the high energy limit gg! hh in the high energy limit Go Mishima Karlsruhe Institute of Technology (KIT), TTP in collaboration with Matthias Steinhauser, Joshua Davies, David Wellmann work in progress gg! hh : previous works

More information

arxiv: v2 [hep-th] 22 Feb 2016

arxiv: v2 [hep-th] 22 Feb 2016 The method of uniqueness and the optical conductivity of graphene: new application of a powerful technique for multi-loop calculations S. Teber 1,2 and A. V. Kotikov 3 1 Sorbonne Universités, UPMC Univ

More information

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method Matteo Becchetti Supervisor Roberto Bonciani University of Rome La Sapienza 24/01/2017 1 The subject of

More information

XV Mexican Workshop on Particles and Fields

XV Mexican Workshop on Particles and Fields XV Mexican Workshop on Particles and Fields Constructing Scalar-Photon Three Point Vertex in Massless Quenched Scalar QED Dra. Yajaira Concha Sánchez, Michoacana University, México 2-6 November 2015 Mazatlán,

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with G. Heinrich Based on arxiv:124.4152 [hep-ph] HP 8 :Workshop on High Precision for Hard Processes,

More information

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s

PoS(DIS2017)295. Hadronic Higgs boson decay at order α 4 s and α 5 s Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT) 7618 Karlsruhe, Germany E-mail: joshua.davies@kit.edu Matthias Steinhauser Institut für Theoretische Teilchenphysik, Karlsruhe

More information

General amplitude of the n vertex one-loop process in a strong magnetic field

General amplitude of the n vertex one-loop process in a strong magnetic field Yaroslavl State University Preprint YARU-HE-0/09 hep-ph/01009 arxiv:hep-ph/01009v 1 Mar 003 General amplitude of the n vertex one-loop process in a strong magnetic field A. V. Kuznetsov, N. V. Mikheev,

More information

REDUCTION OF FEYNMAN GRAPH AMPLITUDES TO A MINIMAL SET OF BASIC INTEGRALS

REDUCTION OF FEYNMAN GRAPH AMPLITUDES TO A MINIMAL SET OF BASIC INTEGRALS REDUCTION OF FEYNMAN GRAPH AMPLITUDES TO A MINIMAL SET OF BASIC INTEGRALS O.V.Tarasov DESY Zeuthen, Platanenallee 6, D 5738 Zeuthen, Germany E-mail: tarasov@ifh.de (Received December 7, 998) An algorithm

More information

LIMIT ON MASS DIFFERENCES IN THE WEINBERG MODEL. M. VELTMAN Institute for Theoretical Physics, University of Utrecht, Netherlands

LIMIT ON MASS DIFFERENCES IN THE WEINBERG MODEL. M. VELTMAN Institute for Theoretical Physics, University of Utrecht, Netherlands Nuclear Physics B123 (1977) 89-99 North-Holland Publishing Company LIMIT ON MASS DIFFERENCES IN THE WEINBERG MODEL M. VELTMAN Institute for Theoretical Physics, University of Utrecht, Netherlands Received

More information

One-Loop N Gluon Amplitudes with Maximal Helicity Violation via Collinear Limits

One-Loop N Gluon Amplitudes with Maximal Helicity Violation via Collinear Limits SLAC PUB 6409 UCLA/TEP/93/51 hep-ph/9312333 December, 1993 (T) One-Loop N Gluon Amplitudes with Maximal Helicity Violation via Collinear Limits Zvi Bern and Gordon Chalmers Department of Physics University

More information

Multiloop QCD: 33 years of continuous development

Multiloop QCD: 33 years of continuous development B 1 / 35 Multiloop QCD: 33 years of continuous development (on example of R(s) and inclusive Z decay hadrons) Konstantin Chetyrkin KIT, Karlsruhe & INR, Moscow SFB TR9 Computational Theoretical Particle

More information

Comments on two papers by Kapusta and Wong

Comments on two papers by Kapusta and Wong Comments on two papers by Kapusta and Wong P. Aurenche (1),R.Baier (2),T.Becherrawy (3), Y. Gabellini (5), F. Gelis (4), T. Grandou (5), M. Le Bellac (5),B.Pire (6),D.Schiff (7), H. Zaraket (1) September

More information

MHV Diagrams and Tree Amplitudes of Gluons

MHV Diagrams and Tree Amplitudes of Gluons Institute for Advanced Study, Princeton, NJ 08540 U.S.A. E-mail: cachazo@ias.edu Institute for Advanced Study, Princeton, NJ 08540 U.S.A. E-mail: cachazo@ias.edu Recently, a new perturbation expansion

More information

Numerical Evaluation of Multi-loop Integrals

Numerical Evaluation of Multi-loop Integrals Numerical Evaluation of Multi-loop Integrals Sophia Borowka MPI for Physics, Munich In collaboration with: J. Carter and G. Heinrich Based on arxiv:124.4152 [hep-ph] http://secdec.hepforge.org DESY-HU

More information

+ µ 2 ) H (m 2 H 2

+ µ 2 ) H (m 2 H 2 I. THE HIGGS POTENTIAL AND THE LIGHT HIGGS BOSON In the previous chapter, it was demonstrated that a negative mass squared in the Higgs potential is generated radiatively for a large range of boundary

More information

Five-loop massive tadpoles

Five-loop massive tadpoles Five-loop massive tadpoles York Schröder (Univ del Bío-Bío, Chillán, Chile) recent work with Thomas Luthe and earlier work with: J. Möller, C. Studerus Radcor, UCLA, Jun 0 Motivation pressure of hot QCD

More information

I. INTRODUCTION In a recent paper [1] we managed to derive closed forms for ladder corrections to selfenergy graphs (rainbows) and vertices, in the co

I. INTRODUCTION In a recent paper [1] we managed to derive closed forms for ladder corrections to selfenergy graphs (rainbows) and vertices, in the co Dimensional renormalization in 3 theory: ladders and rainbows R. Delbourgo and D. Elliott University of Tasmania, GPO Box 252-21, Hobart, Tasmania 7001, Australia D.S. McAnally University of Queensland,

More information

NNLO antenna subtraction with one hadronic initial state

NNLO antenna subtraction with one hadronic initial state antenna subtraction with one hadronic initial state Alejandro Daleo, Aude Gehrmann-De Ridder Institute for Theoretical Physics, ETH Zürich E-mail: adaleo@phys.ethz.ch, gehra@phys.ethz.ch Thomas Gehrmann,

More information

K. Melnikov 1. Institut fur Physik, THEP, Johannes Gutenberg Universitat, Abstract

K. Melnikov 1. Institut fur Physik, THEP, Johannes Gutenberg Universitat, Abstract MZ-TH-95-0 November 995 Two loopo(n f s )corrections to the decay width of the Higgs boson to two massive fermions. K. Melnikov Institut fur Physik, THEP, Johannes Gutenberg Universitat, Staudinger Weg

More information

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1

Two-loop QCD Corrections to the Heavy Quark Form Factors p.1 Two-loop QCD Corrections to the Heavy Quark Form Factors Thomas Gehrmann Universität Zürich UNIVERSITAS TURICENSIS MDCCC XXXIII Snowmass Linear Collider Worksho005 Two-loop QCD Corrections to the Heavy

More information

arxiv: v2 [hep-ph] 12 Jul 2017

arxiv: v2 [hep-ph] 12 Jul 2017 MaPhy-AvH/7-5 MITP/7-38 arxiv:75.895v [hep-ph] Jul 7 Analytic continuation and numerical evaluation of the kite integral and the equal mass sunrise integral Christian Bogner a, Armin Schweitzer a and Stefan

More information

Colour octet potential to three loops

Colour octet potential to three loops SFB/CPP-13-54 TTP13-8 Colour octet potential to three loops Chihaya Anzai a), Mario Prausa a), Alexander V. Smirnov b), Vladimir A. Smirnov c), Matthias Steinhauser a) a) Institut für Theoretische Teilchenphysik,

More information

Scalar One-Loop Integrals using the Negative-Dimension Approach

Scalar One-Loop Integrals using the Negative-Dimension Approach DTP/99/80 hep-ph/9907494 Scalar One-Loop Integrals using the Negative-Dimension Approach arxiv:hep-ph/9907494v 6 Jul 999 C. Anastasiou, E. W. N. Glover and C. Oleari Department of Physics, University of

More information

Towards improved predictions for electroweak vector boson pair production at the LHC

Towards improved predictions for electroweak vector boson pair production at the LHC Towards improved predictions for electroweak vector boson pair production at the LHC Kirill Melnikov TTP KIT Based on collaboration with M. Dowling, F. Caola, J. Henn, A. Smirnov, V. Smirnov Outline 1)

More information

Some variations of the reduction of one-loop Feynman tensor integrals

Some variations of the reduction of one-loop Feynman tensor integrals Introduction Recursions Simplifying recursions Numbers: D 111 Summary Backup: 6- and -pt numbers 1 / 6 Some variations of the reduction of one-loop Feynman tensor integrals Tord Riemann DESY, Zeuthen in

More information

Towards One-Loop MHV Techniques

Towards One-Loop MHV Techniques Towards One-Loop MHV Techniques Carola F. Berger Snowmass - August 22, 2005 Carola F. Berger, SLAC Snowmass - August 22, 2005 Towards One-Loop MHV Techniques Carola F. Berger Snowmass - August 22, 2005

More information

arxiv:hep-th/ v1 26 Oct 1995

arxiv:hep-th/ v1 26 Oct 1995 CAUSAL PROPAGATORS FOR ALGEBRAIC GAUGES arxiv:hep-th/95096v 6 Oct 995 B.M.Pimentel, A.T.Suzuki, and J.L.Tomazelli # Instituto de Física Teórica Universidade Estadual Paulista Rua Pamplona, 45 0405-900

More information

arxiv:hep-ph/ v1 10 Oct 1995

arxiv:hep-ph/ v1 10 Oct 1995 UCL-IPT-95-16 Symmetry breaking induced by top quark loops from a model without scalar mass. arxiv:hep-ph/9510266v1 10 Oct 1995 T. Hambye Institut de Physique Théorique UCL B-1348 Louvain-la-Neuve, Belgium.

More information

THE PROPERTY OF MAXIMAL TRANSCENDENTALITY IN THE N =4SYM A. V. Kotikov

THE PROPERTY OF MAXIMAL TRANSCENDENTALITY IN THE N =4SYM A. V. Kotikov ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 200.. 4.. 6 THE PROPERTY OF MAXIMAL TRANSCENDENTALITY IN THE N =4SYM A. V. Kotikov Joint Institute for Nuclear Research, Dubna We show results for the versal anomalous dimension γ j of

More information

Heating up QGP: towards charm quark chemical equilibration

Heating up QGP: towards charm quark chemical equilibration Heating up QGP: towards charm quark chemical equilibration Mikko Laine (University of Bern, Switzerland) 1 What is it? 2 Melting / recombination: Leptonic annihilation: q q l + l Chemical equilibration:

More information

arxiv:hep-ph/ v2 10 Jul 2006

arxiv:hep-ph/ v2 10 Jul 2006 TTP05-08 SFB/CPP-05-6 Calculation of Massless Feynman Integrals using Harmonic Sums arxiv:hep-ph/050574v2 0 Jul 2006 Abstract Stefan Bekavac Institut für Theoretische Teilchenphysik, Universität Karlsruhe

More information

Multiloop integrals in dimensional regularization made simple

Multiloop integrals in dimensional regularization made simple Multiloop integrals in dimensional regularization made simple Johannes M. Henn Institute for Advanced Study based on PRL 110 (2013) [arxiv:1304.1806], JHEP 1307 (2013) 128 [arxiv:1306.2799] with A. V.

More information

arxiv: v1 [hep-th] 22 Dec 2017

arxiv: v1 [hep-th] 22 Dec 2017 arxiv:1712.08541v1 [hep-th] 22 Dec 2017 DESY 17-225, DO-TH 17/37 Special functions, transcendentals and their numerics arxiv:yymmdd.xxxxx Jakob Ablinger a, Johannes Blümlein b, Mark Round a,b, and Carsten

More information

Regularization Physics 230A, Spring 2007, Hitoshi Murayama

Regularization Physics 230A, Spring 2007, Hitoshi Murayama Regularization Physics 3A, Spring 7, Hitoshi Murayama Introduction In quantum field theories, we encounter many apparent divergences. Of course all physical quantities are finite, and therefore divergences

More information