John Burgess: Fixing Frege

Size: px
Start display at page:

Download "John Burgess: Fixing Frege"

Transcription

1 John Burgess: Fixing Frege Reviewed by: Timothy Bays The old part of the story is well known. Between 1875 and 1902, Gottlob Frege developed a new system of logic and tried use this system to provide a new foundation for mathematics. Unfortunately, in 1902 Russell discovered that Frege s system was inconsistent. As a result, Frege was forced to abandon his foundational project, and the mathematical community eventually turned their attention towards alternate sources of foundations: type theory, set theory, etc. The new part of the story starts in the early 1980s. At that point, several philosophers (independently) noticed that there is a relatively straightforward way of revising Frege s system so as to both avoid Russell s paradox and preserve an essentially Fregean approach to arithmetic. To understand this revised system, we need to start with two principles. First, there s Frege s own Basic Law V. Law V says that the extension of one concept is equal to the extension of another concept if and only if the same objects fall under the two concepts. More formally: F G [ Ext(F ) = Ext(G) x (F x Gx) ]. (V) Second, there s a principle which has come to be known as Hume s Principle (after a rather cryptic remark from the Treatise). Hume s Principle says that the number of F s is equal to the number of G s if and only if the objects falling under F can be put into a one-to-one correspondence with the objects falling under G. More formally: F G [ Num(F ) = Num(G) F G ], (HP) where F G symbolizes the existence of a one-to-one correspondence between the F s and the G s. What people noticed in the early 80s was that, although (V) is the principle which most directly gives rise to Russell s paradox, it plays only a modest role in Frege s own formulation of arithmetic. In particular, Frege uses (V) in giving an initial proof of (HP); but, once (HP) is on the table, (V) largely disappears from his discussion. This leads to an obvious idea: what if we simply dropped (V) from Frege s system and replaced it with (HP)? This would allow for an essentially Fregean derivation of arithmetic, and it would avoid the obvious derivation of Russell s paradox. Indeed, as several authors later proved, the resulting system is equa-consistent with ordinary second-order PA and so is about as safe as a second-order system can possibly be. 1 1 This is probably the right place for a little bit of bibliographical information. The basic fact that one can derive arithmetic from (HP) plus second order logic goes pretty far back. One can find the idea in (Geach, 1951), (Geach, 1955) and (Parsons, 1965). That being said, the idea that this derivation provides an adequate foundation for arithmetic seems to be original to Wright in his influential book Frege s Conception of Numbers as Objects, (Wright, 1983). At any rate, this is the book that really got the contemporary neo-logicist project off and running. Wright himself didn t prove the consistency of his new system, nor did he track the details of his new version of arithmetic through all the twists and turns of Frege s own texts. Consistency was proved (independently) in (Burgess, 1984), (Hodes, 1984) and (Hazen, 1985), and, some years later, Boolos and Heck provided detailed analyses of the ways Frege s own arguments can be reconstructed in Wright s new system system. See (Heck, 1993) and (Boolos and Heck, 1998). 1

2 This, then, is the key idea behind the contemporary resurgence of neo-logicism: to find modest modifications of Frege s logical system which will allow us to derive (much of) contemporary mathematics while avoiding the inconsistencies that plagued Frege s original system. John Burgess new book, Fixing Frege, provides a guided tour through the mathematical side of this project. It s aims are two-fold: 1.) to bring its readers up to speed on the technical work that s been done in the area and 2.) to highlight the different tradeoffs that we have to make as we juggle the various philosophical and mathematical goals of neo-logicism (e.g., maximizing the amount of mathematics our system can capture, preserving the philosophical advantages of Frege s original system, remaining faithful to Frege s own derivation of arithmetic, etc.). Structurally, the book splits into three long chapters. The first provides some background information. It starts by laying out the basic principles of higher-order logic and sketching the peculiarities of Frege s own system. It then shows how one can use this system to derive the Peano axioms from (HP). Next, it explains how we can use axiom (V) to derive Russell s Paradox, and it looks at Russell s own suggestions for avoiding this paradox. Finally it lays out a hierarchy of theories which can be used to measure the mathematical strength of different neo-logicist proposals. This last item probably deserves a brief explanation, since it s central to the overall organization of the book. Over the last years, logicians have developed a fairly precise way of comparing the mathematical strength of different theories (based, very roughly, on the idea that a theory A is stronger than a theory B if theory B can be interpreted in theory A). Burgess starts his presentation by clarifying the relevant notion(s) of interpretation. He then lays out a sequence of increasingly strong reference theories to which different neo-logicist proposals can be compared. The sequence starts with Robinson s Q, works up through the primitive recursive hierarchy and the reverse mathematics hierarchy, and ends with large cardinals and second-order versions of set theory. Given this, Burgess goal is to determine where/how the different neologicist proposals fit into this particular hierarchy. 2 Chapter two considers predicative modifications of Frege s system i.e., modifications which keep Frege s axiom (V) but which replace the standard second-order comprehension scheme with predicative forms of 2 Three comments about this are probably in order. First, there s no guarantee that every theory can be nicely located in relation to this hierarchy: it s easy enough to construct artificial examples of theories whose strength is incommensurable with one or more of the elements of the hierarchy. That being said, almost all natural theories do fit into the hierarcy, and this allows researchers to use the hierarchy as a scale for measuring the strength of different theories. In particular, all of the usual neo-logicist theories fit nicely into this scale. Second, because this scale is structured in terms of interpretability, it provides a rather direct measure of the ability of different theories to capture different kinds of mathematics. If a given theory can capture a certain kind of mathematics, then any stronger theory will also capture that mathematics. So, once we locate a particular neo-logicist theory on this scale, we get a good feel for how much mathematics that theory will enable us to reconstruct. Finally, the hierarchy just described allows for some pretty fine-grained comparisons of theories. This is something Burgess makes good use of. He s not, for instance, content with showing that (HP) and PA are equivalent in second order logic. He s after more fine-grained results like the following: Π 1 1 -Peano arithmetic is mutually interpretable with Π1 1-Frege arithmetic. This level of detail is part of what makes Burgess book so useful. 2

3 that scheme. 3 Burgess starts by showing that even the simplest theories of this form have the resources to interpret Robinson s Q, and he explains how we can get exponentiation by allowing two rounds of predicative concepts. He then shows that there are sharp bounds on this kind of iteration: no matter how many rounds of predicative concepts we allow, we won t get beyond the super-exponential level of the primitive recursive hierarchy. (Hence, the whole predicative approach won t get us beyond the very lowest levels of Burgess master scale.) Along the way, Burgess provides nice discussions of, e.g., the effects of adding a there are finitely many x quantifier to our language, the strength of predicative versions of (HP), and the prospects for Russell-style zig-zag theories. Chapter three turns to impredicative theories. The motivating result for this chapter is the theorem mentioned at the beginning of this review: second order logic plus (HP) is equivalent to second-order PA. After a brief discussion of this theorem and of some nice refinements due to Heck, Tennant, Bell and Linnebo Burgess turns to the question of whether this result can be extended to other parts of mathematics. That is, can we find principles which look somewhat like (HP) abstraction principles to use the technical jargon which will allow us to generate analysis, topology, set theory, etc. 4 Now, if we could simply add any old abstraction principles we wanted to our system in effect, treating abstraction itself as a logically primitive operation then there wouldn t be a problem here. Unfortunately, this isn t possible. Some abstraction principles are inconsistent (e.g., Frege s Law V!); there are pairs of abstraction principles which are individually consistent but jointly inconsistent; and there are consistent principles which are incompatible with (HP). Further, a result of Heck s shows that there s no way to tell whether a given abstraction principle or set of such principles is consistent. Hence, what we really need is a motivated way of determining which abstraction principles to add to our overall system. 5 Burgess himself examines two ways of determining this. First, he provides a nice overview of Kit Fine s general theory of abstraction a theory which attempts to give general conditions under which abstraction principles can be safely added to our logic. For those keeping track, Burgess shows that the nth-order general theory of abstraction is equivalent to (n + 1)st-order Peano arithmetic. Next, Burgess looks at a series of abstractionist approaches to set theory. The idea here is to find a modified version of (V) which will let us capture a lot of set theory, and to then define other mathematical objects within that set theory (so, we only 3 In the simplest case, for instance, we use the scheme: X x [ Xx φ(x) ] where φ contains no higher-order quantifiers. 4 A word on the terminology may be in order here. Abstraction principles get their name because because they introduce abstract objects by means of equivalence relations on concepts. So, for example, (HP) introduces numbers as abstracts for the equivalence relation being in on-to-one correspondence, and (V) introduces extensions as abstracts for the relation applying to the same objects. More generally, let be any equivalence relation on concepts. An abstraction principle for would have the form: F G [ Abst(F ) = Abst(G) F G ]. 5 This can be tricky even in the mathematical context, but it s a real problem in the philosophical context. Neo-logicist philosophers want to claim that some abstraction principles like (HP) are actually fundamental principles of logic. This means that they need a principled way of distinguishing good abstraction principles from bad ones. For mathematical purposes, of course, we can avoid this issue of principle by simply doing things piecemeal, adding new abstraction principles as we see fit and proving consistency any way we want. This seems less plausible as an approach to the foundations of mathematics. 3

4 need to defend the logical status of a small number of set-theoretic abstraction principles). Burgess ends his book with a nice discussion of the relationship between second-order logic and Fregean versions of set theory (and, more generally, of the role that second-order logic plays in the whole neo-logicist program). This, then, gives a picture of the contents of Burgess book. Let me close with three, somewhat moregeneral comments. First, I want to emphasize just how useful this book will be to people working in the area. The results Burgess is discussing were previously scattered across a wide literature, and much of this literature wasn t specifically focussed on neo-logicism. Further, some of the results were pure mathematical folklore (the experts all knew about the results, but neither the results or their proofs had ever appeared in print). So, simply by gathering all this material into one place, Burgess has done a tremendous service to the philosophical community. Second, Burgess mathematical exposition is superb. At the local level, individual proofs are extremely clearly presented, both in terms of their specific steps and in terms of their overall conceptual organization. At the more global level, Burgess does a good job of ensuring that the reader is aware of how particular proofs fit into the book s larger architectonic. This avoids the feeling of wading through long pages of unmotivated mathematical detail. It s also a distinct improvement on the journal literature, where considerations of space all-too-often lead authors to focus on the local details of their proofs at the expense of the larger (mathematical) picture. For those just coming to this literature or even those who simply want a wellorganized refresher course I can t imagine a better place to start than Burgess new book. Finally, I do have one caution about this book. Burgess project is very much a mathematical project. Although Burgess gestures at some of the philosophical issues raised by this mathematics, he doesn t explore such issues in any real depth. Hence, anyone wanting a purely philosophical introduction to contemporary neo-logicism is advised to start elsewhere, and anyone who needs a lot of philosophical motivation to get interested in technical material is advised to put Burgess book third or fourth on their list of things to read about neo-logicism. For such readers, Burgess book wouldn t make a very good beginning. 6 That being said, this caution isn t intended as a criticism. Burgess set out to explain the mathematical side of neo-logicism, and his book succeeds splendidly at this project. Those initially interested in this kind of mathematics will find Burgess book immediately and immensely rewarding. Other philosophers will discover those rewards in their own time. References Boolos, G. and Heck, R. (1998). Die Grundlagen der Arithmetik In Boolos, G., Logic, Logic, Logic, pages Harvard, Cambridge. Burgess, J. (1984). Review of (Wright, 1983). Philosophical Review, 93: Readers looking for a more purely philosophical introduction to the subject are advised to begin with Fraser McBride s nice survey in (McBride, 2003). They should then work through some of the papers in (Hale and Wright, 2001). 4

5 Geach, P. (1951). Frege s Grundlagen. Philosophical Review, 60: Geach, P. (1955). Class and concept. Philosophical Review, 64: Hale, B. and Wright, C. (2001). The Reason s Proper Study. Oxford, Oxford. Hazen, A. (1985). Review of (Wright, 1983). Australasian Journal of Philosophy, 63: Heck, R. (1993). The development of arithmetic in Frege s Grundgeetze der Arithmetic. The Journal of Symbolic Logic, 58: Hodes, H. (1984). Logicism and the ontological commitments of arithmetic. The Journal of Philosophy, 81: McBride, F. (2003). Speaking with shadows: A study of neo-logicism. British Journal for the Philosophy of Science, 54: Parsons, C. (1965). Frege s theory of number. In Black, M., editor, Philosophy in America, pages Cornell, Ithaca. Wright, C. (1983). Frege s Conception of Numbers as Objects. Aberdeen University Press, Aberdeen. 5

The Nuisance Principle in Infinite Settings

The Nuisance Principle in Infinite Settings arxiv:1803.02475v1 [math.lo] 6 Mar 2018 The Nuisance Principle in Infinite Settings Sean C. Ebels-Duggan Submitted 1 July 2015 Disclaimer This is the pre-peer-reviewed version of the following article:

More information

The Foundations of Mathematics. Frege s Logicism

The Foundations of Mathematics. Frege s Logicism The Foundations of Mathematics Lecture One Frege s Logicism Rob Trueman rob.trueman@york.ac.uk University of York Preliminaries Frege s Logicism Preliminaries Mathematics versus Logic Hume s Principle

More information

PROOF-THEORETIC REDUCTION AS A PHILOSOPHER S TOOL

PROOF-THEORETIC REDUCTION AS A PHILOSOPHER S TOOL THOMAS HOFWEBER PROOF-THEORETIC REDUCTION AS A PHILOSOPHER S TOOL 1. PROOF-THEORETIC REDUCTION AND HILBERT S PROGRAM Hilbert s program in the philosophy of mathematics comes in two parts. One part is a

More information

(Im)predicativity and Fregean arithmetic

(Im)predicativity and Fregean arithmetic (Im)predicativity and Fregean arithmetic Fernando Ferreira Universidade de Lisboa Journées sur les Arithmétiques Faibles 33 University of Gothenburg June 16-18, 2014 Frege s alertness As far as I can see,

More information

Russell s logicism. Jeff Speaks. September 26, 2007

Russell s logicism. Jeff Speaks. September 26, 2007 Russell s logicism Jeff Speaks September 26, 2007 1 Russell s definition of number............................ 2 2 The idea of reducing one theory to another.................... 4 2.1 Axioms and theories.............................

More information

Williamson s Modal Logic as Metaphysics

Williamson s Modal Logic as Metaphysics Williamson s Modal Logic as Metaphysics Ted Sider Modality seminar 1. Methodology The title of this book may sound to some readers like Good as Evil, or perhaps Cabbages as Kings. If logic and metaphysics

More information

Introduction to Logic and Axiomatic Set Theory

Introduction to Logic and Axiomatic Set Theory Introduction to Logic and Axiomatic Set Theory 1 Introduction In mathematics, we seek absolute rigor in our arguments, and a solid foundation for all of the structures we consider. Here, we will see some

More information

Frege s Proofs of the Axioms of Arithmetic

Frege s Proofs of the Axioms of Arithmetic Frege s Proofs of the Axioms of Arithmetic Richard G. Heck, Jr. 1 The Dedekind-Peano Axioms for Arithmetic 1. N0 2. x(nx y.p xy) 3(a). x y z(nx P xy P xy y = z) 3(b). x y z(nx Ny P xz P yz x = y) 4. z(nz

More information

Abstraction and Identity

Abstraction and Identity Abstraction and Identity [forthcoming in Dialectica] Roy T. Cook & Philip A. Ebert November 25, 2004 1 Introduction Over the last 20 years there has been a resurrection of a position in the philosophy

More information

This is logically equivalent to the conjunction of the positive assertion Minimal Arithmetic and Representability

This is logically equivalent to the conjunction of the positive assertion Minimal Arithmetic and Representability 16.2. MINIMAL ARITHMETIC AND REPRESENTABILITY 207 If T is a consistent theory in the language of arithmetic, we say a set S is defined in T by D(x) if for all n, if n is in S, then D(n) is a theorem of

More information

Axiomatic set theory. Chapter Why axiomatic set theory?

Axiomatic set theory. Chapter Why axiomatic set theory? Chapter 1 Axiomatic set theory 1.1 Why axiomatic set theory? Essentially all mathematical theories deal with sets in one way or another. In most cases, however, the use of set theory is limited to its

More information

Philosophy of Mathematics Structuralism

Philosophy of Mathematics Structuralism Philosophy of Mathematics Structuralism Owen Griffiths oeg21@cam.ac.uk St John s College, Cambridge 17/11/15 Neo-Fregeanism Last week, we considered recent attempts to revive Fregean logicism. Analytic

More information

Sortals and Criteria of Identity

Sortals and Criteria of Identity Sortals and Criteria of Identity BRIAN EPSTEIN Analysis 72, No. 3 (2012), 474-478. In a recent article, Harold Noonan argues that application conditions and criteria of identity are not distinct from one

More information

The paradox of knowability, the knower, and the believer

The paradox of knowability, the knower, and the believer The paradox of knowability, the knower, and the believer Last time, when discussing the surprise exam paradox, we discussed the possibility that some claims could be true, but not knowable by certain individuals

More information

Philosophy 5340 Epistemology. Topic 3: Analysis, Analytically Basic Concepts, Direct Acquaintance, and Theoretical Terms. Part 2: Theoretical Terms

Philosophy 5340 Epistemology. Topic 3: Analysis, Analytically Basic Concepts, Direct Acquaintance, and Theoretical Terms. Part 2: Theoretical Terms Philosophy 5340 Epistemology Topic 3: Analysis, Analytically Basic Concepts, Direct Acquaintance, and Theoretical Terms Part 2: Theoretical Terms 1. What Apparatus Is Available for Carrying out Analyses?

More information

Generality, Extensibility, and Paradox

Generality, Extensibility, and Paradox Generality, Extensibility, and Paradox James Studd Oxford Aristotelian Society 28th November 2016 Outline I. Absolute generality an introduction II. The Dummettian argument a coherent case for relativism?

More information

Proof Theory and Subsystems of Second-Order Arithmetic

Proof Theory and Subsystems of Second-Order Arithmetic Proof Theory and Subsystems of Second-Order Arithmetic 1. Background and Motivation Why use proof theory to study theories of arithmetic? 2. Conservation Results Showing that if a theory T 1 proves ϕ,

More information

What are the recursion theoretic properties of a set of axioms? Understanding a paper by William Craig Armando B. Matos

What are the recursion theoretic properties of a set of axioms? Understanding a paper by William Craig Armando B. Matos What are the recursion theoretic properties of a set of axioms? Understanding a paper by William Craig Armando B. Matos armandobcm@yahoo.com February 5, 2014 Abstract This note is for personal use. It

More information

Seminar 7: The Logic of Principia Mathematica

Seminar 7: The Logic of Principia Mathematica Seminar 7: The Logic of Principia Mathematica Volume 1 of Principia Mathematica, in which Russell and Whitehead set out their reduction of arithmetic to logic was published in 1910. Although the reduction

More information

MODAL LOGIC WITH SUBJUNCTIVE MARKERS: A NEW PERSPECTIVE ON RIGID DESIGNATION

MODAL LOGIC WITH SUBJUNCTIVE MARKERS: A NEW PERSPECTIVE ON RIGID DESIGNATION MODAL LOGIC WITH SUBJUNCTIVE MARKERS: A NEW PERSPECTIVE ON RIGID DESIGNATION Helge Rückert Department of Philosophy University of Saarbrücken, Germany Abstract: According to Kripke

More information

CM10196 Topic 2: Sets, Predicates, Boolean algebras

CM10196 Topic 2: Sets, Predicates, Boolean algebras CM10196 Topic 2: Sets, Predicates, oolean algebras Guy McCusker 1W2.1 Sets Most of the things mathematicians talk about are built out of sets. The idea of a set is a simple one: a set is just a collection

More information

KRIPKE S THEORY OF TRUTH 1. INTRODUCTION

KRIPKE S THEORY OF TRUTH 1. INTRODUCTION KRIPKE S THEORY OF TRUTH RICHARD G HECK, JR 1. INTRODUCTION The purpose of this note is to give a simple, easily accessible proof of the existence of the minimal fixed point, and of various maximal fixed

More information

Mathematical Descriptions

Mathematical Descriptions Bernard Linsky and Edward N. Zalta 2 Mathematical Descriptions Bernard Linsky Department of Philosophy University of Alberta bernard.linsky@ualberta.ca and Edward N. Zalta Center for the Study of Language

More information

INTRODUCTION TO LOGIC 8 Identity and Definite Descriptions

INTRODUCTION TO LOGIC 8 Identity and Definite Descriptions 8.1 Qualitative and Numerical Identity INTRODUCTION TO LOGIC 8 Identity and Definite Descriptions Volker Halbach Keith and Volker have the same car. Keith and Volker have identical cars. Keith and Volker

More information

What happens to the value of the expression x + y every time we execute this loop? while x>0 do ( y := y+z ; x := x:= x z )

What happens to the value of the expression x + y every time we execute this loop? while x>0 do ( y := y+z ; x := x:= x z ) Starter Questions Feel free to discuss these with your neighbour: Consider two states s 1 and s 2 such that s 1, x := x + 1 s 2 If predicate P (x = y + 1) is true for s 2 then what does that tell us about

More information

The λ-calculus and Curry s Paradox Drew McDermott , revised

The λ-calculus and Curry s Paradox Drew McDermott , revised The λ-calculus and Curry s Paradox Drew McDermott drew.mcdermott@yale.edu 2015-09-23, revised 2015-10-24 The λ-calculus was invented by Alonzo Church, building on earlier work by Gottlob Frege and Moses

More information

Arithmetic and Incompleteness. Will Gunther. Goals. Coding with Naturals. Logic and Incompleteness. Will Gunther. February 6, 2013

Arithmetic and Incompleteness. Will Gunther. Goals. Coding with Naturals. Logic and Incompleteness. Will Gunther. February 6, 2013 Logic February 6, 2013 Logic 1 2 3 Logic About Talk Logic Things talk Will approach from angle of computation. Will not assume very much knowledge. Will prove Gödel s Incompleteness Theorem. Will not talk

More information

Gödel s Incompleteness Theorems

Gödel s Incompleteness Theorems Seminar Report Gödel s Incompleteness Theorems Ahmet Aspir Mark Nardi 28.02.2018 Supervisor: Dr. Georg Moser Abstract Gödel s incompleteness theorems are very fundamental for mathematics and computational

More information

An Introduction to Gödel s Theorems

An Introduction to Gödel s Theorems An Introduction to Gödel s Theorems In 1931, the young Kurt Gödel published his First Incompleteness Theorem, which tells us that, for any sufficiently rich theory of arithmetic, there are some arithmetical

More information

Proof Techniques (Review of Math 271)

Proof Techniques (Review of Math 271) Chapter 2 Proof Techniques (Review of Math 271) 2.1 Overview This chapter reviews proof techniques that were probably introduced in Math 271 and that may also have been used in a different way in Phil

More information

INCOMPLETENESS I by Harvey M. Friedman Distinguished University Professor Mathematics, Philosophy, Computer Science Ohio State University Invitation

INCOMPLETENESS I by Harvey M. Friedman Distinguished University Professor Mathematics, Philosophy, Computer Science Ohio State University Invitation INCOMPLETENESS I by Harvey M. Friedman Distinguished University Professor Mathematics, Philosophy, Computer Science Ohio State University Invitation to Mathematics Series Department of Mathematics Ohio

More information

Commentary on Guarini

Commentary on Guarini University of Windsor Scholarship at UWindsor OSSA Conference Archive OSSA 5 May 14th, 9:00 AM - May 17th, 5:00 PM Commentary on Guarini Andrew Bailey Follow this and additional works at: http://scholar.uwindsor.ca/ossaarchive

More information

INTRODUCTION TO LOGIC 8 Identity and Definite Descriptions

INTRODUCTION TO LOGIC 8 Identity and Definite Descriptions INTRODUCTION TO LOGIC 8 Identity and Definite Descriptions Volker Halbach The analysis of the beginning would thus yield the notion of the unity of being and not-being or, in a more reflected form, the

More information

Proving Completeness for Nested Sequent Calculi 1

Proving Completeness for Nested Sequent Calculi 1 Proving Completeness for Nested Sequent Calculi 1 Melvin Fitting abstract. Proving the completeness of classical propositional logic by using maximal consistent sets is perhaps the most common method there

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Concepts Paul Dawkins Table of Contents Preface... Basic Concepts... 1 Introduction... 1 Definitions... Direction Fields... 8 Final Thoughts...19 007 Paul Dawkins i http://tutorial.math.lamar.edu/terms.aspx

More information

Review: Stephen G. Simpson (1999) Subsystems of Second-Order Arithmetic (Springer)

Review: Stephen G. Simpson (1999) Subsystems of Second-Order Arithmetic (Springer) Review: Stephen G. Simpson (1999) Subsystems of Second-Order Arithmetic (Springer) Jeffrey Ketland, February 4, 2000 During the nineteenth century, and up until around 1939, many major mathematicians were

More information

Restricted truth predicates in first-order logic

Restricted truth predicates in first-order logic Restricted truth predicates in first-order logic Thomas Bolander 1 Introduction It is well-known that there exist consistent first-order theories that become inconsistent when we add Tarski s schema T.

More information

Lecture 14 Rosser s Theorem, the length of proofs, Robinson s Arithmetic, and Church s theorem. Michael Beeson

Lecture 14 Rosser s Theorem, the length of proofs, Robinson s Arithmetic, and Church s theorem. Michael Beeson Lecture 14 Rosser s Theorem, the length of proofs, Robinson s Arithmetic, and Church s theorem Michael Beeson The hypotheses needed to prove incompleteness The question immediate arises whether the incompleteness

More information

Truthmaker Maximalism defended again. Eduardo Barrio and Gonzalo Rodriguez-Pereyra

Truthmaker Maximalism defended again. Eduardo Barrio and Gonzalo Rodriguez-Pereyra 1 Truthmaker Maximalism defended again 1 Eduardo Barrio and Gonzalo Rodriguez-Pereyra 1. Truthmaker Maximalism is the thesis that every truth has a truthmaker. Milne (2005) attempts to refute it using

More information

On Rosser sentences and proof predicates. Rasmus Blanck

On Rosser sentences and proof predicates. Rasmus Blanck On Rosser sentences and proof predicates Rasmus Blanck Department of Philosophy University of Göteborg 2006 On Rosser sentences and proof predicates Rasmus Blanck 25th August 2006 Abstract It is a well

More information

A BRIEF INTRODUCTION TO ZFC. Contents. 1. Motivation and Russel s Paradox

A BRIEF INTRODUCTION TO ZFC. Contents. 1. Motivation and Russel s Paradox A BRIEF INTRODUCTION TO ZFC CHRISTOPHER WILSON Abstract. We present a basic axiomatic development of Zermelo-Fraenkel and Choice set theory, commonly abbreviated ZFC. This paper is aimed in particular

More information

Motivation. CS389L: Automated Logical Reasoning. Lecture 10: Overview of First-Order Theories. Signature and Axioms of First-Order Theory

Motivation. CS389L: Automated Logical Reasoning. Lecture 10: Overview of First-Order Theories. Signature and Axioms of First-Order Theory Motivation CS389L: Automated Logical Reasoning Lecture 10: Overview of First-Order Theories Işıl Dillig Last few lectures: Full first-order logic In FOL, functions/predicates are uninterpreted (i.e., structure

More information

Ontology on Shaky Grounds

Ontology on Shaky Grounds 1 Ontology on Shaky Grounds Jean-Pierre Marquis Département de Philosophie Université de Montréal C.P. 6128, succ. Centre-ville Montréal, P.Q. Canada H3C 3J7 Jean-Pierre.Marquis@umontreal.ca In Realistic

More information

PEANO AXIOMS FOR THE NATURAL NUMBERS AND PROOFS BY INDUCTION. The Peano axioms

PEANO AXIOMS FOR THE NATURAL NUMBERS AND PROOFS BY INDUCTION. The Peano axioms PEANO AXIOMS FOR THE NATURAL NUMBERS AND PROOFS BY INDUCTION The Peano axioms The following are the axioms for the natural numbers N. You might think of N as the set of integers {0, 1, 2,...}, but it turns

More information

CHALLENGES TO PREDICATIVE FOUNDATIONS OF ARITHMETIC by Solomon Feferman 1 and Geoffrey Hellman

CHALLENGES TO PREDICATIVE FOUNDATIONS OF ARITHMETIC by Solomon Feferman 1 and Geoffrey Hellman CHALLENGES TO PREDICATIVE FOUNDATIONS OF ARITHMETIC by Solomon Feferman 1 and Geoffrey Hellman Introduction. This is a sequel to our article Predicative foundations of arithmetic (1995), referred to in

More information

= 5 2 and = 13 2 and = (1) = 10 2 and = 15 2 and = 25 2

= 5 2 and = 13 2 and = (1) = 10 2 and = 15 2 and = 25 2 BEGINNING ALGEBRAIC NUMBER THEORY Fermat s Last Theorem is one of the most famous problems in mathematics. Its origin can be traced back to the work of the Greek mathematician Diophantus (third century

More information

Proseminar on Semantic Theory Fall 2013 Ling 720 Propositional Logic: Syntax and Natural Deduction 1

Proseminar on Semantic Theory Fall 2013 Ling 720 Propositional Logic: Syntax and Natural Deduction 1 Propositional Logic: Syntax and Natural Deduction 1 The Plot That Will Unfold I want to provide some key historical and intellectual context to the model theoretic approach to natural language semantics,

More information

6.825 Techniques in Artificial Intelligence. Logic Miscellanea. Completeness and Incompleteness Equality Paramodulation

6.825 Techniques in Artificial Intelligence. Logic Miscellanea. Completeness and Incompleteness Equality Paramodulation 6.825 Techniques in Artificial Intelligence Logic Miscellanea Completeness and Incompleteness Equality Paramodulation Lecture 9 1 Logic is a huge subject. It includes esoteric mathematical and philosophical

More information

The Philosophy of Physics. Special Relativity and Minkowski Spacetime

The Philosophy of Physics. Special Relativity and Minkowski Spacetime The Philosophy of Physics Lecture Five Special Relativity and Minkowski Spacetime Rob Trueman rob.trueman@york.ac.uk University of York Special Relativity a quick refresher Special Relativity and Minkowski

More information

UC Berkeley, Philosophy 142, Spring 2016 John MacFarlane Philosophy 142

UC Berkeley, Philosophy 142, Spring 2016 John MacFarlane Philosophy 142 Plural Quantifiers UC Berkeley, Philosophy 142, Spring 2016 John MacFarlane Philosophy 142 1 Expressive limitations of first-order logic First-order logic uses only quantifiers that bind variables in name

More information

Algebra. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Algebra. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This document was written and copyrighted by Paul Dawkins. Use of this document and its online version is governed by the Terms and Conditions of Use located at. The online version of this document is

More information

Argumentation and rules with exceptions

Argumentation and rules with exceptions Argumentation and rules with exceptions Bart VERHEIJ Artificial Intelligence, University of Groningen Abstract. Models of argumentation often take a given set of rules or conditionals as a starting point.

More information

Conditional probabilities and graphical models

Conditional probabilities and graphical models Conditional probabilities and graphical models Thomas Mailund Bioinformatics Research Centre (BiRC), Aarhus University Probability theory allows us to describe uncertainty in the processes we model within

More information

GÖDEL S COMPLETENESS AND INCOMPLETENESS THEOREMS. Contents 1. Introduction Gödel s Completeness Theorem

GÖDEL S COMPLETENESS AND INCOMPLETENESS THEOREMS. Contents 1. Introduction Gödel s Completeness Theorem GÖDEL S COMPLETENESS AND INCOMPLETENESS THEOREMS BEN CHAIKEN Abstract. This paper will discuss the completeness and incompleteness theorems of Kurt Gödel. These theorems have a profound impact on the philosophical

More information

CONSERVATION by Harvey M. Friedman September 24, 1999

CONSERVATION by Harvey M. Friedman September 24, 1999 CONSERVATION by Harvey M. Friedman September 24, 1999 John Burgess has specifically asked about whether one give a finitistic model theoretic proof of certain conservative extension results discussed in

More information

Gödel s Incompleteness Theorems by Sally Cockburn (2016)

Gödel s Incompleteness Theorems by Sally Cockburn (2016) Gödel s Incompleteness Theorems by Sally Cockburn (2016) 1 Gödel Numbering We begin with Peano s axioms for the arithmetic of the natural numbers (ie number theory): (1) Zero is a natural number (2) Every

More information

Arithmetical Hierarchy

Arithmetical Hierarchy Arithmetical Hierarchy 1 The Turing Jump Klaus Sutner Carnegie Mellon University Arithmetical Hierarchy 60-arith-hier 2017/12/15 23:18 Definability Formal Systems Recall: Oracles 3 The Use Principle 4

More information

Sequence convergence, the weak T-axioms, and first countability

Sequence convergence, the weak T-axioms, and first countability Sequence convergence, the weak T-axioms, and first countability 1 Motivation Up to now we have been mentioning the notion of sequence convergence without actually defining it. So in this section we will

More information

TRUTH-THEORIES FOR FRAGMENTS OF PA

TRUTH-THEORIES FOR FRAGMENTS OF PA TRUTH-THEORIES FOR FRAGMENTS OF PA RICHARD G. HECK, JR. The discussion here follows Petr Hájek and Pavel Pudlák, Metamathematics of First-order Arithmetic (Berlin: Springer-Verlag, 1993). See especially

More information

For True Conditionalizers Weisberg s Paradox is a False Alarm

For True Conditionalizers Weisberg s Paradox is a False Alarm For True Conditionalizers Weisberg s Paradox is a False Alarm Franz Huber Department of Philosophy University of Toronto franz.huber@utoronto.ca http://huber.blogs.chass.utoronto.ca/ July 7, 2014; final

More information

For True Conditionalizers Weisberg s Paradox is a False Alarm

For True Conditionalizers Weisberg s Paradox is a False Alarm For True Conditionalizers Weisberg s Paradox is a False Alarm Franz Huber Abstract: Weisberg (2009) introduces a phenomenon he terms perceptual undermining He argues that it poses a problem for Jeffrey

More information

Making Sense. Tom Carter. tom/sfi-csss. April 2, 2009

Making Sense. Tom Carter.   tom/sfi-csss. April 2, 2009 Making Sense Tom Carter http://astarte.csustan.edu/ tom/sfi-csss April 2, 2009 1 Making Sense Introduction / theme / structure 3 Language and meaning 6 Language and meaning (ex)............... 7 Theories,

More information

Quantifier variance without collapse

Quantifier variance without collapse Quantifier variance without collapse Hans Halvorson June 5, 2016 1 Introduction In the land of metaphysics, there is a debate raging about the thesis of quantifier variance. As one metaphysician puts it,

More information

Frege-numbers + Begriffsschrift revisited

Frege-numbers + Begriffsschrift revisited History of logic: from Frege to Gödel 26th September 2017 Grundlagen der Arithmetik: some philosophical issues Introduction: Grundlagen der Arithmetik: some philosophical issues Introduction: "In this

More information

Quadratic Equations Part I

Quadratic Equations Part I Quadratic Equations Part I Before proceeding with this section we should note that the topic of solving quadratic equations will be covered in two sections. This is done for the benefit of those viewing

More information

Volker Halbach. This paper has appeared in Analysis 66 (2006), , the misprint of (N2) has been corrected in vol. 67, 268

Volker Halbach. This paper has appeared in Analysis 66 (2006), , the misprint of (N2) has been corrected in vol. 67, 268 This paper has appeared in Analysis 66 (2006), 276-280, the misprint of (N2) has been corrected in vol. 67, 268 HOW NOT TO STATE THE T-SENTENCES Volker Halbach 1 On many accounts of truth the T-sentences

More information

Chapter 2: Introduction to Propositional Logic

Chapter 2: Introduction to Propositional Logic Chapter 2: Introduction to Propositional Logic PART ONE: History and Motivation Origins: Stoic school of philosophy (3rd century B.C.), with the most eminent representative was Chryssipus. Modern Origins:

More information

Proseminar on Semantic Theory Fall 2010 Ling 720 The Basics of Plurals: Part 1 1 The Meaning of Plural NPs and the Nature of Predication Over Plurals

Proseminar on Semantic Theory Fall 2010 Ling 720 The Basics of Plurals: Part 1 1 The Meaning of Plural NPs and the Nature of Predication Over Plurals The Basics of Plurals: Part 1 1 The Meaning of Plural NPs and the Nature of Predication Over Plurals 1. Introductory Questions and Guesses (1) Blindingly Obvious Fact about Natural Language There is number

More information

Kaplan s Paradox and Epistemically Possible Worlds

Kaplan s Paradox and Epistemically Possible Worlds Kaplan s Paradox and Epistemically Possible Worlds 1. Epistemically possible worlds David Chalmers Metaphysically possible worlds: S is metaphysically possible iff S is true in some metaphysically possible

More information

Critical Notice: Bas van Fraassen, Scientific Representation: Paradoxes of Perspective Oxford University Press, 2008, xiv pages

Critical Notice: Bas van Fraassen, Scientific Representation: Paradoxes of Perspective Oxford University Press, 2008, xiv pages Critical Notice: Bas van Fraassen, Scientific Representation: Paradoxes of Perspective Oxford University Press, 2008, xiv + 408 pages by Bradley Monton June 24, 2009 It probably goes without saying that

More information

CHAPTER 2 INTRODUCTION TO CLASSICAL PROPOSITIONAL LOGIC

CHAPTER 2 INTRODUCTION TO CLASSICAL PROPOSITIONAL LOGIC CHAPTER 2 INTRODUCTION TO CLASSICAL PROPOSITIONAL LOGIC 1 Motivation and History The origins of the classical propositional logic, classical propositional calculus, as it was, and still often is called,

More information

Victoria Gitman and Thomas Johnstone. New York City College of Technology, CUNY

Victoria Gitman and Thomas Johnstone. New York City College of Technology, CUNY Gödel s Proof Victoria Gitman and Thomas Johnstone New York City College of Technology, CUNY vgitman@nylogic.org http://websupport1.citytech.cuny.edu/faculty/vgitman tjohnstone@citytech.cuny.edu March

More information

Examples: P: it is not the case that P. P Q: P or Q P Q: P implies Q (if P then Q) Typical formula:

Examples: P: it is not the case that P. P Q: P or Q P Q: P implies Q (if P then Q) Typical formula: Logic: The Big Picture Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about time (and

More information

Propositions as Types

Propositions as Types Propositions as Types Martin Pfeifhofer & Felix Schett May 25, 2016 Contents 1 Introduction 2 2 Content 3 2.1 Getting Started............................ 3 2.2 Effective Computability And The Various Definitions.......

More information

Introduction to Algorithms

Introduction to Algorithms Lecture 1 Introduction to Algorithms 1.1 Overview The purpose of this lecture is to give a brief overview of the topic of Algorithms and the kind of thinking it involves: why we focus on the subjects that

More information

Class 15: Hilbert and Gödel

Class 15: Hilbert and Gödel Philosophy 405: Knowledge, Truth and Mathematics Spring 2008 M, W: 1-2:15pm Hamilton College Russell Marcus rmarcus1@hamilton.edu I. Hilbert s programme Class 15: Hilbert and Gödel We have seen four different

More information

Chapter 4. Basic Set Theory. 4.1 The Language of Set Theory

Chapter 4. Basic Set Theory. 4.1 The Language of Set Theory Chapter 4 Basic Set Theory There are two good reasons for studying set theory. First, it s a indispensable tool for both logic and mathematics, and even for other fields including computer science, linguistics,

More information

What is model theory?

What is model theory? What is Model Theory? Michael Lieberman Kalamazoo College Math Department Colloquium October 16, 2013 Model theory is an area of mathematical logic that seeks to use the tools of logic to solve concrete

More information

Confounding Causality Principles: comment on Rédei and san Pedro s Distinguishing Causality Principles

Confounding Causality Principles: comment on Rédei and san Pedro s Distinguishing Causality Principles Confounding Causality Principles: comment on Rédei and san Pedro s Distinguishing Causality Principles arxiv:1210.1463v1 [quant-ph] 4 Oct 2012 Joe Henson February 10, 2019 Abstract Rédei and san Pedro

More information

Discrete Structures Proofwriting Checklist

Discrete Structures Proofwriting Checklist CS103 Winter 2019 Discrete Structures Proofwriting Checklist Cynthia Lee Keith Schwarz Now that we re transitioning to writing proofs about discrete structures like binary relations, functions, and graphs,

More information

First-Degree Entailment

First-Degree Entailment March 5, 2013 Relevance Logics Relevance logics are non-classical logics that try to avoid the paradoxes of material and strict implication: p (q p) p (p q) (p q) (q r) (p p) q p (q q) p (q q) Counterintuitive?

More information

Frege s Recipe. February 23, 2016

Frege s Recipe. February 23, 2016 This is the peer-reviewed version of the following article: Cook RT & Ebert PA (2016) Frege's Recipe, Journal of Philosophy, 113 (7), pp. 309-345, which has been published in final form at https://doi.org/10.5840/jphil2016113721.

More information

Arithmetical Hierarchy

Arithmetical Hierarchy Arithmetical Hierarchy Klaus Sutner Carnegie Mellon University 60-arith-hier 2017/12/15 23:18 1 The Turing Jump Arithmetical Hierarchy Definability Formal Systems Recall: Oracles 3 We can attach an orcale

More information

In Defense of Jeffrey Conditionalization

In Defense of Jeffrey Conditionalization In Defense of Jeffrey Conditionalization Franz Huber Department of Philosophy University of Toronto Please do not cite! December 31, 2013 Contents 1 Introduction 2 2 Weisberg s Paradox 3 3 Jeffrey Conditionalization

More information

CSCI3390-Lecture 6: An Undecidable Problem

CSCI3390-Lecture 6: An Undecidable Problem CSCI3390-Lecture 6: An Undecidable Problem September 21, 2018 1 Summary The language L T M recognized by the universal Turing machine is not decidable. Thus there is no algorithm that determines, yes or

More information

Truth, Subderivations and the Liar. Why Should I Care about the Liar Sentence? Uses of the Truth Concept - (i) Disquotation.

Truth, Subderivations and the Liar. Why Should I Care about the Liar Sentence? Uses of the Truth Concept - (i) Disquotation. Outline 1 2 3 4 5 1 / 41 2 / 41 The Liar Sentence Let L be the sentence: This sentence is false This sentence causes trouble If it is true, then it is false So it can t be true Thus, it is false If it

More information

cis32-ai lecture # 18 mon-3-apr-2006

cis32-ai lecture # 18 mon-3-apr-2006 cis32-ai lecture # 18 mon-3-apr-2006 today s topics: propositional logic cis32-spring2006-sklar-lec18 1 Introduction Weak (search-based) problem-solving does not scale to real problems. To succeed, problem

More information

Does Frege have too many thoughts? A Cantorian problem revisited

Does Frege have too many thoughts? A Cantorian problem revisited does frege have too many thoughts? 45 standard probabilistic practice of saying that E provides evidence for H just in case P(H E) > P(H).) Whether one s resulting credence in the theory of quantum mechanics

More information

Preference, Choice and Utility

Preference, Choice and Utility Preference, Choice and Utility Eric Pacuit January 2, 205 Relations Suppose that X is a non-empty set. The set X X is the cross-product of X with itself. That is, it is the set of all pairs of elements

More information

ON THE FAITHFUL INTERPRETATION OF PURE WAVE MECHANICS

ON THE FAITHFUL INTERPRETATION OF PURE WAVE MECHANICS ON THE FAITHFUL INTERPRETATION OF PURE WAVE MECHANICS JEFFREY A. BARRETT In the long version of his Ph.D. thesis, Hugh Everett III developed pure wave mechanics as a way of solving the quantum measurement

More information

Counterfactuals and comparative similarity

Counterfactuals and comparative similarity Counterfactuals and comparative similarity Jeremy Goodman Draft of February 23, 2015 Abstract An analysis of counterfactuals in terms of the comparative similarity of possible worlds is widely attributed

More information

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2:

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: 03 17 08 3 All about lines 3.1 The Rectangular Coordinate System Know how to plot points in the rectangular coordinate system. Know the

More information

Frege: Logical objects by abstraction and their criteria of identity. Matthias Schirn (University of Munich, Munich Center of Mathematical Philosophy)

Frege: Logical objects by abstraction and their criteria of identity. Matthias Schirn (University of Munich, Munich Center of Mathematical Philosophy) 1 Frege: Logical objects by abstraction and their criteria of identity Matthias Schirn (University of Munich, Munich Center of Mathematical Philosophy) Abstraction à la Frege A schema for a Fregean abstraction

More information

Undecidable propositions with Diophantine form arisen from. every axiom and every theorem in Peano Arithmetic. T. Mei

Undecidable propositions with Diophantine form arisen from. every axiom and every theorem in Peano Arithmetic. T. Mei Undecidable propositions with Diophantine form arisen from every axiom and every theorem in Peano Arithmetic T. Mei (Department of Journal, Central China Normal University, Wuhan, Hubei PRO, People s Republic

More information

3 The Semantics of the Propositional Calculus

3 The Semantics of the Propositional Calculus 3 The Semantics of the Propositional Calculus 1. Interpretations Formulas of the propositional calculus express statement forms. In chapter two, we gave informal descriptions of the meanings of the logical

More information

Number Systems III MA1S1. Tristan McLoughlin. December 4, 2013

Number Systems III MA1S1. Tristan McLoughlin. December 4, 2013 Number Systems III MA1S1 Tristan McLoughlin December 4, 2013 http://en.wikipedia.org/wiki/binary numeral system http://accu.org/index.php/articles/1558 http://www.binaryconvert.com http://en.wikipedia.org/wiki/ascii

More information

Why write proofs? Why not just test and repeat enough examples to confirm a theory?

Why write proofs? Why not just test and repeat enough examples to confirm a theory? P R E F A C E T O T H E S T U D E N T Welcome to the study of mathematical reasoning. The authors know that many students approach this material with some apprehension and uncertainty. Some students feel

More information

Study skills for mathematicians

Study skills for mathematicians PART I Study skills for mathematicians CHAPTER 1 Sets and functions Everything starts somewhere, although many physicists disagree. Terry Pratchett, Hogfather, 1996 To think like a mathematician requires

More information

8. TRANSFORMING TOOL #1 (the Addition Property of Equality)

8. TRANSFORMING TOOL #1 (the Addition Property of Equality) 8 TRANSFORMING TOOL #1 (the Addition Property of Equality) sentences that look different, but always have the same truth values What can you DO to a sentence that will make it LOOK different, but not change

More information

Universalism Entails Extensionalism

Universalism Entails Extensionalism Universalism Entails Extensionalism Achille C. Varzi Department of Philosophy, Columbia University, New York [Final version published in Analysis, 69 (2009), 599 604] 1. Universalism (also known as Conjunctivism,

More information