Chapter 4. Basic Set Theory. 4.1 The Language of Set Theory

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter 4. Basic Set Theory. 4.1 The Language of Set Theory"

Transcription

1 Chapter 4 Basic Set Theory There are two good reasons for studying set theory. First, it s a indispensable tool for both logic and mathematics, and even for other fields including computer science, linguistics, and so on. But there is also a second reason it s philosophically interesting. For many, the philosophy of mathematics is really just the philosophy of set theory. This is probably a mistaken view, but it is not wholly implausible, since there seems to be counterparts in set theory for all mathematical objects (i.e., numbers are sets, functions are sets, integrals and derivatives are sets, and so on). In any case, familiarity with set theory is essential. 4.1 The Language of Set Theory There are two basic notions, set and member. Strictly speaking these must remain undefined, since otherwise we would end up giving definitions that are either circular or lead to an infinite regress. Nevertheless, we can step outside of the theory and give what Frege called an explication of the concepts. Things such as a flock of birds or a pack of wolves are sets. The individual birds and wolves are members of the sets. Examples such as these help us to get a grip on set and member. But beware. A pack of wolves has a location, whereas a set does not. Sets are abstract entities that exist outside of spacetime. They have no mass, or charge, or shape, or any other physical property. Sometimes it s useful to distinguish a set of bricks that make up a wall from the physical collection of those bricks that make up the wall. The former is located no where and won t harm you, while the latter can give you 27

2 CHAPTER 4. BASIC SET THEORY 28 a nasty bump if you run into it. We will use the symbol for the membership relation, and use A, B, C,..., {},a,b,c,... for both sets and their members. Curley brackets are a common way to specify sets. Thus, {a, b} is the set with the two members a and b. We will define many more important set-theoretical concepts as we move along. Though it is convenient to use upper case letters for sets and lower case for members, sets can be members of other sets; so A B,B a, and a b are perfectly legitimate. We will also use the standard symbols from logic, such as,,,, and so on. We adopt the same formation rules as before, with the following additions. When A is a set and a is a member of it, then the following are wffs: a A, {a} = A, and so on. Exercise 11 Which of the following are wffs? (Don t worry about which are true.) 1. a b 2. A a 3. a {b, c} 4. {b, c} a 5. x X(x X) 6. a/ A (this means (a A)) 7. A 8. a B b A 9. {a, b} = x(x {b, a}) HINTS & ANSWERS 1. yes 2. yes (don t be misled by the letters, A could be a member and a aset) 3. yes

3 CHAPTER 4. BASIC SET THEORY yes 5. yes (we ll let quantifiers range over set variables such as X) 6. yes 7. no (here A is a set, not a sentence) 8. yes 9. no (the left side is a set, the right side is a sentence) 4.2 Axioms Axiom 1 (Extensionality): Two sets are identical, if and only if they have the same members. Symbolically: A B x((x A x B) A = B)) This axiom implies the following: a {a}, {a, b} = {b, a} (order is irrelevant), {a} = {a, a, a, a, a} (there is just one yhing is in the set; repeating it is merely redundant), b 6= a b/ {a}, anda 6= {a} 6= {{a}} 6= {{{a}}} (each of these is a different entity). Axiom 2 (Empty set): There is a set which has no members. A x x/ A (It is usually called the empty set, or the null set, and is denoted φ.) Each of the following is equal to the empty set: φ = the set of humans over 10 feet tall = the set of unicorns = the set of even prime numbers that are greater than 2. You shouldn t think of these as different sets that happen to be empty. There is really only one empty set (and these are different ways of describing it). Theorem 1 The empty set is unique. Proof. Suppose that φ 1 and φ 2 are both empty sets. Because an empty set has no members, it follows that x φ 1 x φ 2. Given the axiom of extensionality, it follows that φ 1 = φ 2. Axiom 3 (Pairing): For any a and b, there is a set which has both of them and nothing else as members. a b A x(x A x = a x = b)

4 CHAPTER 4. BASIC SET THEORY 30 Given that Bob exists and the proposition P exists, then there exists a set containing both of them, {Bob, P}. We can use the axiom again. given that Bob exists and the set {Bob, P} exists, then there exists a set {Bob, {Bob, P}}. Obviously, we can build up all sorts of new sets in this way. Axiom 4 (Union): For any sets A and B, there is a set C whose members are exactly the members of A and B. A B C x (x C x A x B) For example, if A = {a, b, c} and B = {1, 2}, thenthereisasetc, such that C = {a, b, c, 1, 2}. Notation 1 {x : P (x)} means the set of all x such that the condition P(x) holds. (For example, {x : x is red} is the set of all red things; {y : y Z y>27} is the set of all integers that are greater than 27.) Axiom 5 (Comprehension (also know as specification, separation, and aussonderung)): Let U be any set. Then the members of U that satisfy a condition P determine a set. A(A = {x : x U P (x)} If we start with the class members as the set U, andletf mean is a woman and P mean is a philosophy student, then {x : x U Fx Px} is the set of women philosophy students in the class. Exercise 12 Let A = {1, 2, 3,...},B = {x : x is a prime number},c = {a, b, c,..., z},d = x : x is an even number},e = x : x is an odd number}. 1. What is the result of applying the Union Axion to E and D? 2. What is the result of applying the Pairing Axiom to E and D? 3. What is {x : x A x<8}? 4. What is {x : x B x C}? 5. What is {x : x D x E}? ANSWERS: 1. E D = A

5 CHAPTER 4. BASIC SET THEORY {E,D} 3. {1, 2, 3, 4, 5, 6, 7} 4. {a, b, c,..., z, 2, 3, 5, 7, 11, 13,...} 5. A 4.3 Russell s Paradox Let s take a moment to look at Russell s paradox. The axiom of comprehension has the slightly odd form that it does have in order to get around this problem. The current axiom is due to Zermelo, who proposed it to block a number of paradoxes that had arisen in set theory in its early days (in the late 19th and early 20th century). A very natural and intuitive principle of reasoning that was widely used is this: Every condition determines a set. If the condition (or property) is being red then there is a set of red things, and if the condition is being a prime number, then there is a set of prime numbers, and so on. The principle seems completely self-evident. Unfortunately, it leads to a contradiction. (Set theory with this principle is often called naive set theory. ) Notice that some sets seem to be members of themselves and others not. The set of apples, for instance, is not an apple, so it is not a member of itself. On the other hand, the set of abstract entities is an abstract entity, so it would be a member of itself. So far, so good. There is nothing problematic about the conditions being an apple or being an abstract entity. But now consider the condition of being not a member of itself. The set of apples seems to satisfy this condition while the set of abstract entities does not. Let s form the set which corresponds to the condition (that is, the set of all things that are not members of themselves), and call it R. R = {x : x/ x} It looks like a legitimate set. The set of apples will be in R, butthesetof abstract entities will not. Now let s ask the question: Is it true or false that R R? The answer must be either Yes or No. Let s assume Yes: But if R R, thenr {x : x/ x}, and so must satisfy the condition x/ x, so R/ R. Now let s assume No. But if R/ R, thenr does satisfy the condition x/ x, so it must be a

6 CHAPTER 4. BASIC SET THEORY 32 member after all; hence R R. Either assumption leads to its opposite, so we have an outright contraction, R R R/ R. There have been a number of reactions to Russell s paradox. Zermelo s modification of the axiom of comprehension is the most popular. The key idea is that the defining condition is limited to the background set; it is not allowed to apply to everything. After almost 100 years, no one has been able to derive a contradiction. Exercise 13 Try to derive Russell s paradox using the axioms given so far as a way to convincing yourself that Zermelo s modification is plausible. Prior to Zermelo s axiomatization (in 1908), there was thought to be a universal set, that is, a set that contained everything. (Naturally, it would have to contain itself, as well.) This is no longer believed to be the case. The reasoning behind Russell s paradox is used to prove there is no universal set. Theorem 2 There is no universe. That is, U x x U. Proof. Suppose there is a universal set U that contains all sets. Define asetr as follows: R = {x : x U x/ x}. Since U contains everything, R U. By the same reasoning as that involved in Russell s paradox, we have R R R/ R. Since this is a contradiction, we blame the premiss that lead to the absurdity, namely, the assumption that U exists. Thus, there is no such set U. 4.4 Some Key Concepts Using the concepts, axioms, and notation developed so far, we can now define a number of very central concepts. Definition 9 (Union): A B = {x : x A x B} For example, {a, b} {1, 2, 3} = {a, b, 1, 2, 3} Definition 10 (Intersection): A B = {x : x A x B} For example, {a, b} {b, c, 2} = {b} Definition 11 (Subset): A B ( x x A x B) For example, {a, b} {a, b, c}; notice two special cases, A A, φ A

7 CHAPTER 4. BASIC SET THEORY 33 Definition 12 (Proper subset)a B (A B A 6= B) Definition 13 (Difference): A B = {x : x A x/ B} For example, {a, b} {b, c} = {a} Definition 14 (Complement): A 0 = {x : x U x/ A} For example, if U is the set of natural numbers and A is the set of even numbers, then A 0 is the set of odd numbers. Exercise 14 Let U = {1, 2, 3, 4, 5} be the background set and let A = {1, 2}, B = {2, 3}, and C = {3, 4, 5}. What are each of the following? 1. A 0 2. B 0 3. A B 4. A 0 B 0 5. C 0 A 6. U A 7. A U 8. A φ 9. B φ 10. U φ A (A B) B φ Answers: (1) A 0 = {3, 4, 5} = C, (4)A 0 B 0 = {1, 3, 4, 5}, (11)φ 0 = U, (14) B φ = B

8 CHAPTER 4. BASIC SET THEORY More Axioms Axiom 6 (Power Set): For any set A, there is a set whose members are exactly the subsets of A. (The power set of A is usually denoted A.). A B x (x B x A) (Here B is the powerset A) For example, if A = {a, b} then A = {A, φ, {a}, {b}}; and if B = {1, 2, 3}, then B = {B,φ, {1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3}}. Note the special case, φ = {φ}. Notice the pattern. If a set has n members, then its power set has 2 n members. This is why it s called the power set. Exercise 15 (1) What is the powerst of {Bob,Alice}? (2) How many members in the powerset of the alphabet {a, b, c,..., z}? Axiom 7 (Infinity): There is a set with infinitely many members. Sincewehaven tyet defined infinite, the axiom does not really make sense yet. Later we will define it, but for now an intuitive understanding will do. So far I have stated nine axioms. There are more, but we won t be needing them. So I ll only mention some of them: There is the axiom of choice, the axiom of replacement, the axiom of regularity. These are pretty much standard and are in common use by logicians and mathematicians. There are still others, for example, so-called large cardinal axioms, that are quite controversial. These are not part of regular mathematics (at least not yet), but rather are the subject of ongoing research. Now we shall develop some of the key concepts. 4.6 The Algebra of Sets We will now develop the notions of intersection, subset, and so on. This basic part of set theory is known as the algebra of sets. Theorem 3 (Commutative law): A B = B A Proof. x A B x A x B Def x B x A tautology x B A Def

9 CHAPTER 4. BASIC SET THEORY 35 A B = B A Ax. of Extensionality This is a typical proof in the algebra of sets. Notice how it works. We need to show that two sets are identical, which we do by showing that they have exactly the same members. The crucial step in the proof is to use a fact from elementary logic, namely that P Q is equivalent to Q P. A proof does not have to be laid out exactly as above. You may be a bit more or less formal. The crucial point is to include the relevant information in a way that is as clear to the reader as possible. You might find something like this better: Proof. Let us assume that an arbitrary x is a member of the set A B. By the definition of union, this means that x is a member of A or is a member of B. Clearly, this is the same as saying that x is a member of B or x is a member of A. Again, by the definition of union, this means that x is a member of B A. The equality of these two sets follows from the Axiom of Extensionality. Pick the style of writing up proof that you like best. Proofs must be correct. After that make it as easy on your reader as you can. Theorem 4 (Associative laws): Theorem 5 (Distributive laws) Theorem 6 (DeMorgan s laws) A (B C) = (A B) C A (B C) = (A B) C A (B C) = (A B) (A C) A (B C) = (A B) (C B) (A B) 0 = A 0 B 0 (A B) 0 = A 0 B 0

10 CHAPTER 4. BASIC SET THEORY 36 Proof. (of the first) x (A B) 0 x/ A B (x A B) Def / (x A x B) Def x/ A x/ B tautology, Def / x A 0 x B 0 Def 0 x A 0 B 0 Def (A B) 0 = A 0 B 0 Axiom of Extensionality Noticeonceagainthatthekeystepisatransformationinlogic. Inthis proof it is the step from (P Q) to P Q. It is no accident that this equivalence is called De Morgan s in logic as well as in set theory. Theorem 7 A φ = A and A φ = φ Proof. (of the first) x A φ x A x φ Def x A (since x/ φ) A φ = A Axiom of Extensionality Theorem 8 A 00 = A Hint: P P Theorem 9 A B A C B C Proof. A B (x A x B) Def (x A x C x B x C) tautology (x A C x B C) Def A C B C Def Theorem 10 A B A C B C

11 CHAPTER 4. BASIC SET THEORY 37 Theorem 11 A B B 0 A 0 Theorem 12 φ A Hint: P Q is true if P is false. Theorem 13 A A = φ and A φ = A Proof. (of the first) x A A x A x/ A Def x φ (equivalent to a contradiction) A A = φ Axiom of Extensionality Exercise 16 Prove each of the theorems above that were not proven. 4.7 Counter-Examples Theorems, of course, are true for any set whatsoever. A sentence which is not a theorem will have counter-examples, that is, example sets which make the sentence false. Of course, there might be other sets which make it true, in which case the sentence is satisfiable. When faced with a sentence that might be a theorem, try to prove it. If you can t, then try to find a counter-example. For example, we might wonder if A B = A B. To show that it is not atheoremweleta = {a},b = {b}. Then A B = {a} {b} = {a, b}. But A B = {a} {b} = φ 6= A B. So, A and B defined this way provide a counter-example to the alleged theorem. Exercise 17 Prove or give a counter-example to each of the following. 1. A B = B A 2. A 0 B 0 = B 0 A 0 3. A B = B 0 A 4. A B 6= φ A 6= φ 5. A B 6= φ A 6= φ

12 CHAPTER 4. BASIC SET THEORY A C B C A B C 7. (B A) A = A 8. (A B) A = φ 9. (A (B C) =(A B) (A B) 10. (A B B A) A = B Hints and Answers: (4) Counter-example: Let B = {a} and A = φ, then A B = {a} 6= φ, (5) Proof. Suppose A B 6= φ, then x x A B; thus, x A x B. Therefore, A is not empty, ie, A 6= φ. 4.8 Further Reading Enderton, Elements of Set Theory Potter, Set Theory and Its Philosophy Halmos, Naive Set Theory (Thisisagoodshortbook; butitis not naive in the technical sense.)

Russell s logicism. Jeff Speaks. September 26, 2007

Russell s logicism. Jeff Speaks. September 26, 2007 Russell s logicism Jeff Speaks September 26, 2007 1 Russell s definition of number............................ 2 2 The idea of reducing one theory to another.................... 4 2.1 Axioms and theories.............................

More information

This section will take the very naive point of view that a set is a collection of objects, the collection being regarded as a single object.

This section will take the very naive point of view that a set is a collection of objects, the collection being regarded as a single object. 1.10. BASICS CONCEPTS OF SET THEORY 193 1.10 Basics Concepts of Set Theory Having learned some fundamental notions of logic, it is now a good place before proceeding to more interesting things, such as

More information

Tutorial on Axiomatic Set Theory. Javier R. Movellan

Tutorial on Axiomatic Set Theory. Javier R. Movellan Tutorial on Axiomatic Set Theory Javier R. Movellan Intuitively we think of sets as collections of elements. The crucial part of this intuitive concept is that we are willing to treat sets as entities

More information

Chapter 1. Logic and Proof

Chapter 1. Logic and Proof Chapter 1. Logic and Proof 1.1 Remark: A little over 100 years ago, it was found that some mathematical proofs contained paradoxes, and these paradoxes could be used to prove statements that were known

More information

We introduce one more operation on sets, perhaps the most important

We introduce one more operation on sets, perhaps the most important 11. The power set Please accept my resignation. I don t want to belong to any club that will accept me as a member. Groucho Marx We introduce one more operation on sets, perhaps the most important one:

More information

Math 144 Summer 2012 (UCR) Pro-Notes June 24, / 15

Math 144 Summer 2012 (UCR) Pro-Notes June 24, / 15 Before we start, I want to point out that these notes are not checked for typos. There are prbally many typeos in them and if you find any, please let me know as it s extremely difficult to find them all

More information

CS 173: Discrete Structures. Eric Shaffer Office Hour: Wed. 1-2, 2215 SC

CS 173: Discrete Structures. Eric Shaffer Office Hour: Wed. 1-2, 2215 SC CS 173: Discrete Structures Eric Shaffer Office Hour: Wed. 1-2, 2215 SC shaffer1@illinois.edu Agenda Sets (sections 2.1, 2.2) 2 Set Theory Sets you should know: Notation you should know: 3 Set Theory -

More information

HOW TO CREATE A PROOF. Writing proofs is typically not a straightforward, algorithmic process such as calculating

HOW TO CREATE A PROOF. Writing proofs is typically not a straightforward, algorithmic process such as calculating HOW TO CREATE A PROOF ALLAN YASHINSKI Abstract We discuss how to structure a proof based on the statement being proved Writing proofs is typically not a straightforward, algorithmic process such as calculating

More information

Direct Proof and Counterexample I:Introduction. Copyright Cengage Learning. All rights reserved.

Direct Proof and Counterexample I:Introduction. Copyright Cengage Learning. All rights reserved. Direct Proof and Counterexample I:Introduction Copyright Cengage Learning. All rights reserved. Goal Importance of proof Building up logic thinking and reasoning reading/using definition interpreting statement:

More information

Set Theory. CSE 215, Foundations of Computer Science Stony Brook University

Set Theory. CSE 215, Foundations of Computer Science Stony Brook University Set Theory CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 Set theory Abstract set theory is one of the foundations of mathematical thought Most mathematical

More information

(2) Generalize De Morgan s laws for n sets and prove the laws by induction. 1

(2) Generalize De Morgan s laws for n sets and prove the laws by induction. 1 ARS DIGITA UNIVERSITY MONTH 2: DISCRETE MATHEMATICS PROFESSOR SHAI SIMONSON PROBLEM SET 2 SOLUTIONS SET, FUNCTIONS, BIG-O, RATES OF GROWTH (1) Prove by formal logic: (a) The complement of the union of

More information

2. Two binary operations (addition, denoted + and multiplication, denoted

2. Two binary operations (addition, denoted + and multiplication, denoted Chapter 2 The Structure of R The purpose of this chapter is to explain to the reader why the set of real numbers is so special. By the end of this chapter, the reader should understand the difference between

More information

3 The language of proof

3 The language of proof 3 The language of proof After working through this section, you should be able to: (a) understand what is asserted by various types of mathematical statements, in particular implications and equivalences;

More information

Mathematical Preliminaries. Sipser pages 1-28

Mathematical Preliminaries. Sipser pages 1-28 Mathematical Preliminaries Sipser pages 1-28 Mathematical Preliminaries This course is about the fundamental capabilities and limitations of computers. It has 3 parts 1. Automata Models of computation

More information

Supplementary Material for MTH 299 Online Edition

Supplementary Material for MTH 299 Online Edition Supplementary Material for MTH 299 Online Edition Abstract This document contains supplementary material, such as definitions, explanations, examples, etc., to complement that of the text, How to Think

More information

Boolean Algebras. Chapter 2

Boolean Algebras. Chapter 2 Chapter 2 Boolean Algebras Let X be an arbitrary set and let P(X) be the class of all subsets of X (the power set of X). Three natural set-theoretic operations on P(X) are the binary operations of union

More information

Mathmatics 239 solutions to Homework for Chapter 2

Mathmatics 239 solutions to Homework for Chapter 2 Mathmatics 239 solutions to Homework for Chapter 2 Old version of 8.5 My compact disc player has space for 5 CDs; there are five trays numbered 1 through 5 into which I load the CDs. I own 100 CDs. a)

More information

12. INFINITE ABELIAN GROUPS

12. INFINITE ABELIAN GROUPS 12. INFINITE ABELIAN GROUPS 12.1. Examples of Infinite Abelian Groups Many of the groups which arise in various parts of mathematics are abelian. That is, they satisfy the commutative law: xy = yx. If

More information

Nondeterministic finite automata

Nondeterministic finite automata Lecture 3 Nondeterministic finite automata This lecture is focused on the nondeterministic finite automata (NFA) model and its relationship to the DFA model. Nondeterminism is an important concept in the

More information

CHAPTER 10. Gentzen Style Proof Systems for Classical Logic

CHAPTER 10. Gentzen Style Proof Systems for Classical Logic CHAPTER 10 Gentzen Style Proof Systems for Classical Logic Hilbert style systems are easy to define and admit a simple proof of the Completeness Theorem but they are difficult to use. By humans, not mentioning

More information

Real Analysis: Part I. William G. Faris

Real Analysis: Part I. William G. Faris Real Analysis: Part I William G. Faris February 2, 2004 ii Contents 1 Mathematical proof 1 1.1 Logical language........................... 1 1.2 Free and bound variables...................... 3 1.3 Proofs

More information

CS2742 midterm test 2 study sheet. Boolean circuits: Predicate logic:

CS2742 midterm test 2 study sheet. Boolean circuits: Predicate logic: x NOT ~x x y AND x /\ y x y OR x \/ y Figure 1: Types of gates in a digital circuit. CS2742 midterm test 2 study sheet Boolean circuits: Boolean circuits is a generalization of Boolean formulas in which

More information

Math 13, Spring 2013, Lecture B: Midterm

Math 13, Spring 2013, Lecture B: Midterm Math 13, Spring 2013, Lecture B: Midterm Name Signature UCI ID # E-mail address Each numbered problem is worth 12 points, for a total of 84 points. Present your work, especially proofs, as clearly as possible.

More information

Sec$on Summary. Definition of sets Describing Sets

Sec$on Summary. Definition of sets Describing Sets Section 2.1 Sec$on Summary Definition of sets Describing Sets Roster Method Set-Builder Notation Some Important Sets in Mathematics Empty Set and Universal Set Subsets and Set Equality Cardinality of Sets

More information

CHAPTER 11. Introduction to Intuitionistic Logic

CHAPTER 11. Introduction to Intuitionistic Logic CHAPTER 11 Introduction to Intuitionistic Logic Intuitionistic logic has developed as a result of certain philosophical views on the foundation of mathematics, known as intuitionism. Intuitionism was originated

More information

Basic counting techniques. Periklis A. Papakonstantinou Rutgers Business School

Basic counting techniques. Periklis A. Papakonstantinou Rutgers Business School Basic counting techniques Periklis A. Papakonstantinou Rutgers Business School i LECTURE NOTES IN Elementary counting methods Periklis A. Papakonstantinou MSIS, Rutgers Business School ALL RIGHTS RESERVED

More information

PEANO AXIOMS FOR THE NATURAL NUMBERS AND PROOFS BY INDUCTION. The Peano axioms

PEANO AXIOMS FOR THE NATURAL NUMBERS AND PROOFS BY INDUCTION. The Peano axioms PEANO AXIOMS FOR THE NATURAL NUMBERS AND PROOFS BY INDUCTION The Peano axioms The following are the axioms for the natural numbers N. You might think of N as the set of integers {0, 1, 2,...}, but it turns

More information

1 Completeness Theorem for Classical Predicate

1 Completeness Theorem for Classical Predicate 1 Completeness Theorem for Classical Predicate Logic The relationship between the first order models defined in terms of structures M = [M, I] and valuations s : V AR M and propositional models defined

More information

Sets. Alice E. Fischer. CSCI 1166 Discrete Mathematics for Computing Spring, Outline Sets An Algebra on Sets Summary

Sets. Alice E. Fischer. CSCI 1166 Discrete Mathematics for Computing Spring, Outline Sets An Algebra on Sets Summary An Algebra on Alice E. Fischer CSCI 1166 Discrete Mathematics for Computing Spring, 2018 Alice E. Fischer... 1/37 An Algebra on 1 Definitions and Notation Venn Diagrams 2 An Algebra on 3 Alice E. Fischer...

More information

Analysis I. Classroom Notes. H.-D. Alber

Analysis I. Classroom Notes. H.-D. Alber Analysis I Classroom Notes H-D Alber Contents 1 Fundamental notions 1 11 Sets 1 12 Product sets, relations 5 13 Composition of statements 7 14 Quantifiers, negation of statements 9 2 Real numbers 11 21

More information

Chapter 2. Mathematical Reasoning. 2.1 Mathematical Models

Chapter 2. Mathematical Reasoning. 2.1 Mathematical Models Contents Mathematical Reasoning 3.1 Mathematical Models........................... 3. Mathematical Proof............................ 4..1 Structure of Proofs........................ 4.. Direct Method..........................

More information

A Little Deductive Logic

A Little Deductive Logic A Little Deductive Logic In propositional or sentential deductive logic, we begin by specifying that we will use capital letters (like A, B, C, D, and so on) to stand in for sentences, and we assume that

More information

Contradiction MATH Contradiction. Benjamin V.C. Collins, James A. Swenson MATH 2730

Contradiction MATH Contradiction. Benjamin V.C. Collins, James A. Swenson MATH 2730 MATH 2730 Contradiction Benjamin V.C. Collins James A. Swenson Contrapositive The contrapositive of the statement If A, then B is the statement If not B, then not A. A statement and its contrapositive

More information

MATH10040: Chapter 0 Mathematics, Logic and Reasoning

MATH10040: Chapter 0 Mathematics, Logic and Reasoning MATH10040: Chapter 0 Mathematics, Logic and Reasoning 1. What is Mathematics? There is no definitive answer to this question. 1 Indeed, the answer given by a 21st-century mathematician would differ greatly

More information

8. Reductio ad absurdum

8. Reductio ad absurdum 8. Reductio ad absurdum 8.1 A historical example In his book, The Two New Sciences, 10 Galileo Galilea (1564-1642) gives several arguments meant to demonstrate that there can be no such thing as actual

More information

CHAPTER 3: THE INTEGERS Z

CHAPTER 3: THE INTEGERS Z CHAPTER 3: THE INTEGERS Z MATH 378, CSUSM. SPRING 2009. AITKEN 1. Introduction The natural numbers are designed for measuring the size of finite sets, but what if you want to compare the sizes of two sets?

More information

2. Ordered sets. A theorem of Hausdorff.

2. Ordered sets. A theorem of Hausdorff. ORDERED SETS. 2. Ordered sets. A theorem of Hausdorff. One obtains a more complete idea of Cantor's work by studying his theory of ordered sets. As to the notion "ordered set" this is nowadays mostly defined

More information

Logic of Sentences (Propositional Logic) is interested only in true or false statements; does not go inside.

Logic of Sentences (Propositional Logic) is interested only in true or false statements; does not go inside. You are a mathematician if 1.1 Overview you say to a car dealer, I ll take the red car or the blue one, but then you feel the need to add, but not both. --- 1. Logic and Mathematical Notation (not in the

More information

Sets. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Fall 2007

Sets. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Fall 2007 Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Fall 2007 1 / 42 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 2.1, 2.2 of Rosen Introduction I Introduction

More information

Section 3.1: Direct Proof and Counterexample 1

Section 3.1: Direct Proof and Counterexample 1 Section 3.1: Direct Proof and Counterexample 1 In this chapter, we introduce the notion of proof in mathematics. A mathematical proof is valid logical argument in mathematics which shows that a given conclusion

More information

CONSTRUCTION OF THE REAL NUMBERS.

CONSTRUCTION OF THE REAL NUMBERS. CONSTRUCTION OF THE REAL NUMBERS. IAN KIMING 1. Motivation. It will not come as a big surprise to anyone when I say that we need the real numbers in mathematics. More to the point, we need to be able to

More information

Analysis 1. Lecture Notes 2013/2014. The original version of these Notes was written by. Vitali Liskevich

Analysis 1. Lecture Notes 2013/2014. The original version of these Notes was written by. Vitali Liskevich Analysis 1 Lecture Notes 2013/2014 The original version of these Notes was written by Vitali Liskevich followed by minor adjustments by many Successors, and presently taught by Misha Rudnev University

More information

The Integers. Math 3040: Spring Contents 1. The Basic Construction 1 2. Adding integers 4 3. Ordering integers Multiplying integers 12

The Integers. Math 3040: Spring Contents 1. The Basic Construction 1 2. Adding integers 4 3. Ordering integers Multiplying integers 12 Math 3040: Spring 2011 The Integers Contents 1. The Basic Construction 1 2. Adding integers 4 3. Ordering integers 11 4. Multiplying integers 12 Before we begin the mathematics of this section, it is worth

More information

Discrete Mathematics: Lectures 6 and 7 Sets, Relations, Functions and Counting Instructor: Arijit Bishnu Date: August 4 and 6, 2009

Discrete Mathematics: Lectures 6 and 7 Sets, Relations, Functions and Counting Instructor: Arijit Bishnu Date: August 4 and 6, 2009 Discrete Mathematics: Lectures 6 and 7 Sets, Relations, Functions and Counting Instructor: Arijit Bishnu Date: August 4 and 6, 2009 Our main goal is here is to do counting using functions. For that, we

More information

Gödel Numbering. Substitute {x: x is not an element of itself} for y, and we get a contradiction:

Gödel Numbering. Substitute {x: x is not an element of itself} for y, and we get a contradiction: Gödel Numbering {x: x is a horse} is a collection that has all the worlds horses as elements, and nothing else. Thus we have For any y, y 0 {x: x is a horse} if and only if y is a horse. Traveler, for

More information

Direct Proof MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Direct Proof Fall / 24

Direct Proof MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Direct Proof Fall / 24 Direct Proof MAT231 Transition to Higher Mathematics Fall 2014 MAT231 (Transition to Higher Math) Direct Proof Fall 2014 1 / 24 Outline 1 Overview of Proof 2 Theorems 3 Definitions 4 Direct Proof 5 Using

More information

INFINITY: CARDINAL NUMBERS

INFINITY: CARDINAL NUMBERS INFINITY: CARDINAL NUMBERS BJORN POONEN 1 Some terminology of set theory N := {0, 1, 2, 3, } Z := {, 2, 1, 0, 1, 2, } Q := the set of rational numbers R := the set of real numbers C := the set of complex

More information

Propositional Logic Review

Propositional Logic Review Propositional Logic Review UC Berkeley, Philosophy 142, Spring 2016 John MacFarlane The task of describing a logical system comes in three parts: Grammar Describing what counts as a formula Semantics Defining

More information

An Introduction to Mathematical Reasoning

An Introduction to Mathematical Reasoning An Introduction to Mathematical Reasoning Matthew M. Conroy and Jennifer L. Taggart University of Washington 2 Version: December 28, 2016 Contents 1 Preliminaries 7 1.1 Axioms and elementary properties

More information

On an Unsound Proof of the Existence of Possible Worlds

On an Unsound Proof of the Existence of Possible Worlds 598 Notre Dame Journal of Formal Logic Volume 30, Number 4, Fall 1989 On an Unsound Proof of the Existence of Possible Worlds CHRISTOPHER MENZEL* Abstract In this paper, an argument of Alvin Plantinga's

More information

Chapter 2 Sets, Relations and Functions

Chapter 2 Sets, Relations and Functions Chapter 2 Sets, Relations and Functions Key Topics Sets Set Operations Russell s Paradox Relations Composition of Relations Reflexive, Symmetric and Transitive Relations Functions Partial and Total Functions

More information

Section 20: Arrow Diagrams on the Integers

Section 20: Arrow Diagrams on the Integers Section 0: Arrow Diagrams on the Integers Most of the material we have discussed so far concerns the idea and representations of functions. A function is a relationship between a set of inputs (the leave

More information

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1.

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1. Chapter 3 Sequences Both the main elements of calculus (differentiation and integration) require the notion of a limit. Sequences will play a central role when we work with limits. Definition 3.. A Sequence

More information

Solving Equations by Adding and Subtracting

Solving Equations by Adding and Subtracting SECTION 2.1 Solving Equations by Adding and Subtracting 2.1 OBJECTIVES 1. Determine whether a given number is a solution for an equation 2. Use the addition property to solve equations 3. Determine whether

More information

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS 1. Cardinal number of a set The cardinal number (or simply cardinal) of a set is a generalization of the concept of the number of elements

More information

HANDOUT AND SET THEORY. Ariyadi Wijaya

HANDOUT AND SET THEORY. Ariyadi Wijaya HANDOUT LOGIC AND SET THEORY Ariyadi Wijaya Mathematics Education Department Faculty of Mathematics and Natural Science Yogyakarta State University 2009 1 Mathematics Education Department Faculty of Mathematics

More information

Math 115A: Linear Algebra

Math 115A: Linear Algebra Math 115A: Linear Algebra Michael Andrews UCLA Mathematics Department February 9, 218 Contents 1 January 8: a little about sets 4 2 January 9 (discussion) 5 2.1 Some definitions: union, intersection, set

More information

After taking the square and expanding, we get x + y 2 = (x + y) (x + y) = x 2 + 2x y + y 2, inequality in analysis, we obtain.

After taking the square and expanding, we get x + y 2 = (x + y) (x + y) = x 2 + 2x y + y 2, inequality in analysis, we obtain. Lecture 1: August 25 Introduction. Topology grew out of certain questions in geometry and analysis about 100 years ago. As Wikipedia puts it, the motivating insight behind topology is that some geometric

More information

Introduction to Karnaugh Maps

Introduction to Karnaugh Maps Introduction to Karnaugh Maps Review So far, you (the students) have been introduced to truth tables, and how to derive a Boolean circuit from them. We will do an example. Consider the truth table for

More information

An Introduction to University Level Mathematics

An Introduction to University Level Mathematics An Introduction to University Level Mathematics Alan Lauder May 22, 2017 First, a word about sets. These are the most primitive objects in mathematics, so primitive in fact that it is not possible to give

More information

Discrete Mathematical Structures: Theory and Applications

Discrete Mathematical Structures: Theory and Applications Chapter 1: Foundations: Sets, Logic, and Algorithms Discrete Mathematical Structures: Theory and Applications Learning Objectives Learn about sets Explore various operations on sets Become familiar with

More information

Axioms of Kleene Algebra

Axioms of Kleene Algebra Introduction to Kleene Algebra Lecture 2 CS786 Spring 2004 January 28, 2004 Axioms of Kleene Algebra In this lecture we give the formal definition of a Kleene algebra and derive some basic consequences.

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 3

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 3 EECS 70 Discrete Mathematics and Probability Theory Spring 014 Anant Sahai Note 3 Induction Induction is an extremely powerful tool in mathematics. It is a way of proving propositions that hold for all

More information

Logic. Propositional Logic: Syntax

Logic. Propositional Logic: Syntax Logic Propositional Logic: Syntax Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about

More information

Choosing Logical Connectives

Choosing Logical Connectives Choosing Logical Connectives 1. Too Few Connectives?: We have chosen to use only 5 logical connectives in our constructed language of logic, L1 (they are:,,,, and ). But, we might ask, are these enough?

More information

INTRODUCTION TO LOGIC 8 Identity and Definite Descriptions

INTRODUCTION TO LOGIC 8 Identity and Definite Descriptions 8.1 Qualitative and Numerical Identity INTRODUCTION TO LOGIC 8 Identity and Definite Descriptions Volker Halbach Keith and Volker have the same car. Keith and Volker have identical cars. Keith and Volker

More information

INTRODUCTION TO LOGIC. Propositional Logic. Examples of syntactic claims

INTRODUCTION TO LOGIC. Propositional Logic. Examples of syntactic claims Introduction INTRODUCTION TO LOGIC 2 Syntax and Semantics of Propositional Logic Volker Halbach In what follows I look at some formal languages that are much simpler than English and define validity of

More information

Chapter 2: Introduction to Propositional Logic

Chapter 2: Introduction to Propositional Logic Chapter 2: Introduction to Propositional Logic PART ONE: History and Motivation Origins: Stoic school of philosophy (3rd century B.C.), with the most eminent representative was Chryssipus. Modern Origins:

More information

MATH 201 Solutions: TEST 3-A (in class)

MATH 201 Solutions: TEST 3-A (in class) MATH 201 Solutions: TEST 3-A (in class) (revised) God created infinity, and man, unable to understand infinity, had to invent finite sets. - Gian Carlo Rota Part I [5 pts each] 1. Let X be a set. Define

More information

Infinite constructions in set theory

Infinite constructions in set theory VI : Infinite constructions in set theory In elementary accounts of set theory, examples of finite collections of objects receive a great deal of attention for several reasons. For example, they provide

More information

UC Berkeley, Philosophy 142, Spring 2016 John MacFarlane Philosophy 142

UC Berkeley, Philosophy 142, Spring 2016 John MacFarlane Philosophy 142 Plural Quantifiers UC Berkeley, Philosophy 142, Spring 2016 John MacFarlane Philosophy 142 1 Expressive limitations of first-order logic First-order logic uses only quantifiers that bind variables in name

More information

Lecture Notes 1 Basic Concepts of Mathematics MATH 352

Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Ivan Avramidi New Mexico Institute of Mining and Technology Socorro, NM 87801 June 3, 2004 Author: Ivan Avramidi; File: absmath.tex; Date: June 11,

More information

Roberto s Notes on Linear Algebra Chapter 4: Matrix Algebra Section 7. Inverse matrices

Roberto s Notes on Linear Algebra Chapter 4: Matrix Algebra Section 7. Inverse matrices Roberto s Notes on Linear Algebra Chapter 4: Matrix Algebra Section 7 Inverse matrices What you need to know already: How to add and multiply matrices. What elementary matrices are. What you can learn

More information

(D) Introduction to order types and ordinals

(D) Introduction to order types and ordinals (D) Introduction to order types and ordinals Linear orders are one of the mathematical tools that are used all over the place. Well-ordered sets are a special kind of linear order. At first sight well-orders

More information

Dominoes and Counting

Dominoes and Counting Giuseppe Peano (Public Domain) Dominoes and Counting All of us have an intuitive feeling or innate sense for the counting or natural numbers, including a sense for infinity: ={1,, 3, }. The ability to

More information

8. Reductio ad absurdum

8. Reductio ad absurdum 8. Reductio ad absurdum 8.1 A historical example In his book, The Two New Sciences, Galileo Galilea (1564-1642) gives several arguments meant to demonstrate that there can be no such thing as actual infinities

More information

PL Proofs Introduced. Chapter A1. A1.1 Choices, choices

PL Proofs Introduced. Chapter A1. A1.1 Choices, choices Chapter A1 PL Proofs Introduced Outside the logic classroom, when we want to convince ourselves that an inference is valid, we don t often use techniques like the truth-table test or tree test. Instead

More information

MA103 STATEMENTS, PROOF, LOGIC

MA103 STATEMENTS, PROOF, LOGIC MA103 STATEMENTS, PROOF, LOGIC Abstract Mathematics is about making precise mathematical statements and establishing, by proof or disproof, whether these statements are true or false. We start by looking

More information

Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras. Lecture - 15 Propositional Calculus (PC)

Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras. Lecture - 15 Propositional Calculus (PC) Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras Lecture - 15 Propositional Calculus (PC) So, now if you look back, you can see that there are three

More information

Unary negation: T F F T

Unary negation: T F F T Unary negation: ϕ 1 ϕ 1 T F F T Binary (inclusive) or: ϕ 1 ϕ 2 (ϕ 1 ϕ 2 ) T T T T F T F T T F F F Binary (exclusive) or: ϕ 1 ϕ 2 (ϕ 1 ϕ 2 ) T T F T F T F T T F F F Classical (material) conditional: ϕ 1

More information

Kaplan s Paradox and Epistemically Possible Worlds

Kaplan s Paradox and Epistemically Possible Worlds Kaplan s Paradox and Epistemically Possible Worlds 1. Epistemically possible worlds David Chalmers Metaphysically possible worlds: S is metaphysically possible iff S is true in some metaphysically possible

More information

CHAPTER 1: THE PEANO AXIOMS

CHAPTER 1: THE PEANO AXIOMS CHAPTER 1: THE PEANO AXIOMS MATH 378, CSUSM. SPRING 2009. AITKEN 1. Introduction We begin our exploration of number systems with the most basic number system: the natural numbers N. Informally, natural

More information

CHAPTER 1. MATHEMATICAL LOGIC 1.1 Fundamentals of Mathematical Logic

CHAPTER 1. MATHEMATICAL LOGIC 1.1 Fundamentals of Mathematical Logic CHAPER 1 MAHEMAICAL LOGIC 1.1 undamentals of Mathematical Logic Logic is commonly known as the science of reasoning. Some of the reasons to study logic are the following: At the hardware level the design

More information

MATH 2200 Final Review

MATH 2200 Final Review MATH 00 Final Review Thomas Goller December 7, 01 1 Exam Format The final exam will consist of 8-10 proofs It will take place on Tuesday, December 11, from 10:30 AM - 1:30 PM, in the usual room Topics

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 1 Course Web Page www3.cs.stonybrook.edu/ cse303 The webpage contains: lectures notes slides; very detailed solutions to

More information

Cosets and Lagrange s theorem

Cosets and Lagrange s theorem Cosets and Lagrange s theorem These are notes on cosets and Lagrange s theorem some of which may already have been lecturer. There are some questions for you included in the text. You should write the

More information

Natural deduction for truth-functional logic

Natural deduction for truth-functional logic Natural deduction for truth-functional logic Phil 160 - Boston University Why natural deduction? After all, we just found this nice method of truth-tables, which can be used to determine the validity or

More information

What is proof? Lesson 1

What is proof? Lesson 1 What is proof? Lesson The topic for this Math Explorer Club is mathematical proof. In this post we will go over what was covered in the first session. The word proof is a normal English word that you might

More information

Lecture 2: Syntax. January 24, 2018

Lecture 2: Syntax. January 24, 2018 Lecture 2: Syntax January 24, 2018 We now review the basic definitions of first-order logic in more detail. Recall that a language consists of a collection of symbols {P i }, each of which has some specified

More information

Lebesgue measure on R is just one of many important measures in mathematics. In these notes we introduce the general framework for measures.

Lebesgue measure on R is just one of many important measures in mathematics. In these notes we introduce the general framework for measures. Measures In General Lebesgue measure on R is just one of many important measures in mathematics. In these notes we introduce the general framework for measures. Definition: σ-algebra Let X be a set. A

More information

Zeno s Paradox #1. The Achilles

Zeno s Paradox #1. The Achilles Zeno s Paradox #1. The Achilles Achilles, who is the fastest runner of antiquity, is racing to catch the tortoise that is slowly crawling away from him. Both are moving along a linear path at constant

More information

1 Proof techniques. CS 224W Linear Algebra, Probability, and Proof Techniques

1 Proof techniques. CS 224W Linear Algebra, Probability, and Proof Techniques 1 Proof techniques Here we will learn to prove universal mathematical statements, like the square of any odd number is odd. It s easy enough to show that this is true in specific cases for example, 3 2

More information

Logical Reasoning. Chapter Statements and Logical Operators

Logical Reasoning. Chapter Statements and Logical Operators Chapter 2 Logical Reasoning 2.1 Statements and Logical Operators Preview Activity 1 (Compound Statements) Mathematicians often develop ways to construct new mathematical objects from existing mathematical

More information

Proofs. Chapter 2 P P Q Q

Proofs. Chapter 2 P P Q Q Chapter Proofs In this chapter we develop three methods for proving a statement. To start let s suppose the statement is of the form P Q or if P, then Q. Direct: This method typically starts with P. Then,

More information

Follow links for Class Use and other Permissions. For more information send to:

Follow links for Class Use and other Permissions. For more information send  to: COPYRIGHT NOTICE: John J. Watkins: Topics in Commutative Ring Theory is published by Princeton University Press and copyrighted, 2007, by Princeton University Press. All rights reserved. No part of this

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

Solutions to Problem Set 1

Solutions to Problem Set 1 Massachusetts Institute of Technology 6.042J/18.062J, Fall 05: Mathematics for Computer Science September 21 Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised September 21, 2005, 1076 minutes Problem

More information

Isomorphisms and Well-definedness

Isomorphisms and Well-definedness Isomorphisms and Well-definedness Jonathan Love October 30, 2016 Suppose you want to show that two groups G and H are isomorphic. There are a couple of ways to go about doing this depending on the situation,

More information

Semantics and Generative Grammar. The Semantics of Adjectival Modification 1. (1) Our Current Assumptions Regarding Adjectives and Common Ns

Semantics and Generative Grammar. The Semantics of Adjectival Modification 1. (1) Our Current Assumptions Regarding Adjectives and Common Ns The Semantics of Adjectival Modification 1 (1) Our Current Assumptions Regarding Adjectives and Common Ns a. Both adjectives and common nouns denote functions of type (i) [[ male ]] = [ λx : x D

More information

CS 360, Winter Morphology of Proof: An introduction to rigorous proof techniques

CS 360, Winter Morphology of Proof: An introduction to rigorous proof techniques CS 30, Winter 2011 Morphology of Proof: An introduction to rigorous proof techniques 1 Methodology of Proof An example Deep down, all theorems are of the form If A then B, though they may be expressed

More information