WIND PREDICTION IN URBAN AREA. Zhenqing Liu. Department of Civil Engineering University of Tokyo

Size: px
Start display at page:

Download "WIND PREDICTION IN URBAN AREA. Zhenqing Liu. Department of Civil Engineering University of Tokyo"

Transcription

1 LES MODELING OF CANOPY FLOWS FOR WIND PREDICTION IN URBAN AREA Zhenqing Liu Takeshi Ishihara Bridge & Structure Lab Bridge & Structure Lab Department of Civil Engineering University of Tokyo

2 Background Single building Street City km Tens of Kilometers Hundreds of kilometers Generate the real building model Using ground roughness length Wide area : Wide area : High resolution : High resolution : Eg. Wind environment around buildings Eg. Long bridge, wind energy prediction 2

3 Objectives Propose a method to simulated the flow over urban area Validate the method by comparing the simulated results with experiments. Check if the method could give good results for Two different types of canopy exists in urban area, i.e. buildingsand d forest. 3

4 Fundamental equation Continuity equation u x i i = Momentum equation In fluid In roughness canopy u uu æ ö i u p t r + r = m - - t x x çè x ø x x i j i ij j j j i j u i uu i j u i p t ij r r æ m ö + = t xj x j çè xj ø xi xj Smagorinsky Lilly SGS model 1 1æ ui u ö j t ij =- 2 mt Sij + tkkdij ; S ij = 3 2 ç + ç è xj xi ø 1 m 2 t = rls S = rls 2 S ijs ij; Ls = min æ kd, CV ö s 3 çèç ø f ui, C s =.32 s 4

5 Flow pattern V.S. density of roughness Ishihara et al. (1997) Isolated roughness flow Frontal density<1% Wake interference flow Skimming i flow (cavity flow) Frontal density>3% 5

6 Roughness canopy model V grid F Drag i V u A o u fu, i Velocity in cell Occupancy rate F Drag 1 = rc DAo u u i = -fui, Vg rid 2 FDrag 1 1 =- rc 2 l F Drag C D g : Drag force : Drag force coefficient =-f ui, V grid uu f o i l o Equivalent CD = force coefficient (1 - g ) ui = (1 - g o ) u i C f 2 g = o V grid V u Representative length l o g o V o gov = = A A o grid o 6

7 Drag force coefficient V u f u, i Drag force 1 1 =- rc 2 l g uu f o i o V grid F Drag 4 4. u i A o C Equivalent force coefficient C D f = - g o (1 ) 2 3. Exp. 風洞実験 Fitting 式 line Force coefficient C D,u g u C D æ 1.53 ö = min,2.75(1 - gu) è ç (1 - g ) ø u 7

8 Verification of street model Wind tunnel experiment Outline of simulation Roughness 2. 粗度ブロック P1 P2 P z [m] x [m] Case 21. Layout of blocks Inflow Inflow Inflow.18 [m].3 [m].3 [m].6 [m].3 [m].3 [m].18 [m].12 [m].6 [m].3 [m].3 [m] g o=5.6% g o=12.5% g o=25.% 8

9 Numerical model Y Z Bird s view X Outlet 2 Side view 2 1 z 1.5 Inflow velocity Profile y Inlet 5 1 x 15 2 z 1 Roughness Canopy x z(m.3 m)growing g rate: u(m/s) Canopy top grid size:.2m h Roughness Canopy First grid size:.2m Horizontal resolution: h 1 grids 9

10 Instantaneous flow fields over modeled roughness canopy Instantaneous flow fields visualized by vorticity Occupancy 5.6% Horizontal Slice z=1h Horizontal ontal Slice z=2h Occupancy 12.5% Horizontal Slice z=1h Horizontal Slice z=2h Occupancy 25.% Horizontal Slice z=1h Horizontal Slice z=2h Instantaneous turbulent flow fields are successfully captured 1

11 Comparison with experiments Occupancy 56% 5.6% 1m s 1 Simulation Experiment.25m 2 s 2 Simulation Experiment Mean Wind Speed Turbulent Kinetic Energy Occupancy 12.5% Occupancy 25.% Mean wind speed and kinetic energy are well reproduced. 11

12 Limitation of horizontal resolution In order to examine the effects of the horizontal grid resolution, threemeshsystems systems arechecked. h 2h 4h h h h Horizontal grid size h Horizontal grid size 2h Horizontal grid size 4h Vertical grid distributions are same for each case. Only the horizontal grid sizes are changed. 12

13 Effects of horizontal grid size to the mean wind speed Mean wind speed profile at x=12.96 (P3) h 2h 4h Occupancy 5.6% Occupancy 12.5% U(m/s) U(m/s) U(m/s) Horizontal grid size h Horizontal grid size 2hh Occupancy 25.% U(m/s) U(m/s) Horizontal grid size 4h U(m/s).5 Experiment U(m/s) U(m/s) U(m/s) Accurate Acceptable Large error 13

14 Effects of horizontal grid size to the kinetic energy Kinetic energy profile at x=12.96 (P3) h 2h 4h Occupancy 5.6% Occupancy 12.5% k(m 2 /s 2 ) k(m 2 /s 2 ) k(m 2 /s 2 ) Horizontal grid size h Horizontal grid size 2hh Horizontal grid size 4h 25.%.5 k(m 2 /s 2 ) k(m 2 /s 2 ) k(m 2 /s 2 ).5.5 Experiment Occupancy k(m 2 /s 2 ) k(m 2 /s 2 ) k(m 2 /s 2 ) Accurate Acceptable Large error 14

15 Verification of forest model If the ground is covered by forest like canopy Momentum equation in canopy u i uu i j ui p tij r r æ m ö + = f t x j x j èç x j ø x i x j 1 go f ui, =- rc f uu 2 i lo C ' o f ui u g, d = C f This value will be adjusted. d i lo ui, In the wind tunnel the ground is covered by artificial grass whose drag force coefficient, occupancy rate and the representative length thhave not been measured. 15

16 Numerical model Grid No. 7.5million 1mm f u, i 1 1 =- rc g 2 l go C = C = l ' d uu f o i 2 o f o 8. Roughness canopy 1mm Mean wind speed Fluctuations σ i /U ref Simulated results for the flow fields over forest are accurate. 16

17 Mean and fluctuating components Grid No. 7.5million h Exp. Ishihara (21) LES simulation U W σ u σv σ w Both mean and fluctuations of 3 D hill could be reproduced well. 17

18 Conclusions A method simulating the roughness canopy by adding a source term in the momentum equation are proposed. The flow fields over the roughness blocks are successfully reproduced by using this method. Simulated results show good agreement with experiment. The same method are applied for the flow over the artificial grass, and with adjusting the equivalent force coefficients the flow fields are well reproduced. 18

19 Thanks for your attention!

Keywords: Large-eddy simulation, Turbulent coherent structure, Four quadrant analysis, Integral scale

Keywords: Large-eddy simulation, Turbulent coherent structure, Four quadrant analysis, Integral scale The Eighth Asia-Pacific Conference on Wind Engineering, December 4, 3, Chennai, India NUMERICAL ANALYSIS OF THE MOMENTUM TRANSPORT AND TEMPORAL AND SPATIAL SCALES OF TURBULENT COHERENT STRUCTURES IN THE

More information

VALIDATION OF LES FOR LOCAL HEAT ENVIRONMENT IN TOKYO -COMPARISON WITH FIELD MEASUREMENT DATA-

VALIDATION OF LES FOR LOCAL HEAT ENVIRONMENT IN TOKYO -COMPARISON WITH FIELD MEASUREMENT DATA- The Seventh Asia-Pacific Conference on Wind Engineering, November 8-12, 29, Taipei, Taiwan VALIDATION OF LES FOR LOCAL HEAT ENVIRONMENT IN TOKYO -COMPARISON WITH FIELD MEASUREMENT DATA- Tsuyoshi Nozu 1,

More information

Lecture 5.7 Compressible Euler Equations

Lecture 5.7 Compressible Euler Equations Lecture 5.7 Compressible Euler Equations Nomenclature Density u, v, w Velocity components p E t H u, v, w e S=c v ln p - c M Pressure Total energy/unit volume Total enthalpy Conserved variables Internal

More information

LES STUDY OF UNSTEADY FLOW PHENOMENA IN AN URBAN GEOMETRY - THE NEED FOR SPECIAL EVALUATION METHODS

LES STUDY OF UNSTEADY FLOW PHENOMENA IN AN URBAN GEOMETRY - THE NEED FOR SPECIAL EVALUATION METHODS LES STUDY OF UNSTEADY FLOW PHENOMENA IN AN URBAN GEOMETRY - THE NEED FOR SPECIAL EVALUATION METHODS Nektarios Koutsourakis 1,2, John G. Bartzis 1, George C. Efthimiou 2, Alexandros G. Venetsanos 2, Ilias

More information

F O R SOCI AL WORK RESE ARCH

F O R SOCI AL WORK RESE ARCH 7 TH EUROPE AN CONFERENCE F O R SOCI AL WORK RESE ARCH C h a l l e n g e s i n s o c i a l w o r k r e s e a r c h c o n f l i c t s, b a r r i e r s a n d p o s s i b i l i t i e s i n r e l a t i o n

More information

LES of wind turbulence and heat environment around dense tall buildings

LES of wind turbulence and heat environment around dense tall buildings EACWE 5 Florence, Italy 19 th 23 rd July 2009 LES of wind turbulence and heat environment around dense tall buildings Flying Sphere image Museo Ideale L. Da Vinci Tsuyoshi Nozu 1, Takeshi Kishida 2, Tetsuro

More information

Research on Dynamic Stall and Aerodynamic Characteristics of Wind Turbine 3D Rotational Blade

Research on Dynamic Stall and Aerodynamic Characteristics of Wind Turbine 3D Rotational Blade Research on Dynamic Stall and Aerodynamic Characteristics of Wind Turbine 3D Rotational Blade HU Guo-yu, SUN Wen-lei, Dong Ping The School of Mechanical Engineering Xinjiang University Urumqi, Xinjiang,

More information

PRELIMINARY STUDY OF COMPUTATIONAL SETUP FOR URBAN STREET CANYONS. by MUHAMMAD NOOR AFIQ WITRI, M.Eng

PRELIMINARY STUDY OF COMPUTATIONAL SETUP FOR URBAN STREET CANYONS. by MUHAMMAD NOOR AFIQ WITRI, M.Eng PRELIMINARY STUDY OF COMPUTATIONAL SETUP FOR URBAN STREET CANYONS by MUHAMMAD NOOR AFIQ WITRI, M.Eng 1 CONTENTS 1.Introduction 2.Building Configuration 3.Boundary Condition 4.Previous Works 5.Summary 2

More information

RANS-LES inlet boundary condition for aerodynamic and aero-acoustic. acoustic applications. Fabrice Mathey Davor Cokljat Fluent Inc.

RANS-LES inlet boundary condition for aerodynamic and aero-acoustic. acoustic applications. Fabrice Mathey Davor Cokljat Fluent Inc. RANS-LES inlet boundary condition for aerodynamic and aero-acoustic acoustic applications Fabrice Mathey Davor Cokljat Fluent Inc. Presented by Fredrik Carlsson Fluent Sweden ZONAL MULTI-DOMAIN RANS/LES

More information

Large-Eddy Simulation for Turbulent Nature of Flow and Pressure Fields over Urban Building Arrays C. Hirose*, A. Hagishima, N. Ikegaya, and J. Tanimot

Large-Eddy Simulation for Turbulent Nature of Flow and Pressure Fields over Urban Building Arrays C. Hirose*, A. Hagishima, N. Ikegaya, and J. Tanimot Large-Eddy Simulation for Turbulent Nature of Flow and Pressure Fields over Urban Building Arrays C. Hirose*, A. Hagishima, N. Ikegaya, and J. Tanimoto Interdisciplinary Graduate School of Engineering

More information

Analysis of wind turbulence in canopy layer at large urban area using HPC database

Analysis of wind turbulence in canopy layer at large urban area using HPC database Analysis of wind turbulence in canopy layer at large urban area using HPC database Tetsuro TAMURA 1, Hidenori KAWAI 1, Rahul BALE 2, Keiji ONISHI 2, Makoto TSUBOKURA 2, Koji KONDO 3, and Tsuyoshi NOZU

More information

Lecture 7. Turbulence

Lecture 7. Turbulence Lecture 7 Content Basic features of turbulence Energy cascade theory scales mixing Basic features of turbulence What is turbulence? spiral galaxies NGC 2207 and IC 2163 Turbulent jet flow Volcano jet flow

More information

High resolution simulations of the interactions between urban canopy and Boundary Layer

High resolution simulations of the interactions between urban canopy and Boundary Layer High resolution simulations of the interactions between urban canopy and Boundary Layer Alberto Martilli CIEMAT alberto.martilli@ciemat.es WhyistheUrbanCanopyLayer(UCL) important? Many people live in the

More information

Large Eddy Simulation as a Powerful Engineering Tool for Predicting Complex Turbulent Flows and Related Phenomena

Large Eddy Simulation as a Powerful Engineering Tool for Predicting Complex Turbulent Flows and Related Phenomena 29 Review Large Eddy Simulation as a Powerful Engineering Tool for Predicting Complex Turbulent Flows and Related Phenomena Masahide Inagaki Abstract Computational Fluid Dynamics (CFD) has been applied

More information

Flow Characteristics around an Inclined Circular Cylinder with Fin

Flow Characteristics around an Inclined Circular Cylinder with Fin Lisbon, Portugal, 7- July, 28 Flow Characteristics around an Inclined Circular Cylinder with Fin Tsuneaki ISHIMA, Takeshi SASAKI 2, Yoshitsugu GOKAN 3 Yasushi TAKAHASHI 4, Tomio OBOKATA 5 : Department

More information

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling Turbulence Modeling Niels N. Sørensen Professor MSO, Ph.D. Department of Civil Engineering, Alborg University & Wind Energy Department, Risø National Laboratory Technical University of Denmark 1 Outline

More information

Numerical Simulation of the Evolution Law of Tornado Wind Field Based on Radar Measured Data

Numerical Simulation of the Evolution Law of Tornado Wind Field Based on Radar Measured Data Numerical Simulation of the Evolution Law of Tornado Wind Field Based on Radar Measured Data *Feng Xu 1), Zhouling Ye 2), Wenli Chen 3), Jie Ma 4) and Yiqing Xiao 5) 1), 2), 4), 5) School of Civil and

More information

Pollutant dispersion in urban geometries

Pollutant dispersion in urban geometries Pollutant dispersion in urban geometries V. Garbero 1, P. Salizzoni 2, L. Soulhac 2 1 Politecnico di Torino - Department of Mathematics 2 Ecole Centrale de Lyon - Laboratoire de Méchaniques des Fluides

More information

Cross Comparisons of CFD Results of Wind Environment at Pedestrian Level around a High-rise Building and within a Building Complex

Cross Comparisons of CFD Results of Wind Environment at Pedestrian Level around a High-rise Building and within a Building Complex Cross Comparisons of CFD Results of Wind Environment at Pedestrian Level around a High-rise Building and within a Building Complex Yoshihide Tominaga* 1, Akashi Mochida 2, Taichi Shirasawa 3, Ryuichiro

More information

elements remain in high frequency region and sometimes very large spike-shaped peaks appear. So we corrected the PIV time histories by peak cutting an

elements remain in high frequency region and sometimes very large spike-shaped peaks appear. So we corrected the PIV time histories by peak cutting an The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China; September 2-6, 2012 LES of fluctuating wind pressure on a 3D square cylinder for PIV-based inflow

More information

Numerical Investigation of Forces and Pressure Characteristics on Rivulet Attached Cables

Numerical Investigation of Forces and Pressure Characteristics on Rivulet Attached Cables Numerical Investigation of Forces and Characteristics on Rivulet Attached Cables P. Xie and C. Y. hou Abstract Upper rivulet plays an important role when Rain-wind induced vibration (RWIV) happens. In

More information

LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIR-WATER INTERFACE AT HIGH SCHMIDT NUMBERS

LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIR-WATER INTERFACE AT HIGH SCHMIDT NUMBERS The 6th ASME-JSME Thermal Engineering Joint Conference March 6-, 3 TED-AJ3-3 LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIR-WATER INTERFACE AT HIGH SCHMIDT NUMBERS Akihiko Mitsuishi, Yosuke Hasegawa,

More information

Direct and Large Eddy Simulation of stably stratified turbulent Ekman layers

Direct and Large Eddy Simulation of stably stratified turbulent Ekman layers Direct and Large Eddy Simulation of stably stratified turbulent Ekman layers Stimit Shah, Elie Bou-Zeid Princeton University 64 th APS DFD Baltimore, Maryland Nov 21, 211 Effect of Stability on Atmospheric

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

3D NUMERICAL EXPERIMENTS ON DRAG RESISTANCE IN VEGETATED FLOWS

3D NUMERICAL EXPERIMENTS ON DRAG RESISTANCE IN VEGETATED FLOWS 3D NUMERICAL EXPERIMENTS ON DRAG RESISTANCE IN VEGETATED FLOWS Dimitris Souliotis (), Panagiotis Prinos () () Hydraulics Laboratory, Department of Civil Engineering, Aristotle University of Thessaloniki,

More information

The Simulation of Wraparound Fins Aerodynamic Characteristics

The Simulation of Wraparound Fins Aerodynamic Characteristics The Simulation of Wraparound Fins Aerodynamic Characteristics Institute of Launch Dynamics Nanjing University of Science and Technology Nanjing Xiaolingwei 00 P. R. China laithabbass@yahoo.com Abstract:

More information

Canopy structure effects on the wind at a complex forested site

Canopy structure effects on the wind at a complex forested site Journal of Physics: Conference Series OPEN ACCESS Canopy structure effects on the wind at a complex forested site To cite this article: L-É Boudreault et al 214 J. Phys.: Conf. Ser. 524 12112 View the

More information

* Ho h h (3) D where H o is the water depth of undisturbed flow, D is the thickness of the bridge deck, and h is the distance from the channel floor t

* Ho h h (3) D where H o is the water depth of undisturbed flow, D is the thickness of the bridge deck, and h is the distance from the channel floor t The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China; September -6, 01 Numerical simulation of hydrodynamic loading on submerged rectangular bridge decks

More information

4.3 A LARGE EDDY SIMULATION STUDY OF POLLUTANT DISPERSION IN URBAN AREAS. Valentina Stocca* and V. Armenio University of Trieste, Italy

4.3 A LARGE EDDY SIMULATION STUDY OF POLLUTANT DISPERSION IN URBAN AREAS. Valentina Stocca* and V. Armenio University of Trieste, Italy 4.3 A LARGE EDDY SIMULATION STUDY OF POLLUTANT DISPERSION IN URBAN AREAS Valentina Stocca* and V. Armenio University of Trieste, Italy 1. INTRODUCTION It has been estimated that in 2008 for the first time

More information

15.2 AREA-AVERAGED PROFILES OVER THE MOCK URBAN SETTING TEST ARRAY

15.2 AREA-AVERAGED PROFILES OVER THE MOCK URBAN SETTING TEST ARRAY 15.2 AREA-AVERAGED PROFILES OVER THE MOCK URBAN SETTING TEST ARRAY Matthew A. Nelson*, Michael J. Brown Los Alamos National Laboratory, Los Alamos, NM Eric R. Pardyjak, Joseph C. Klewicki University of

More information

A NOTE ON THE CONTRIBUTION OF DISPERSIVE FLUXES TO MOMENTUM TRANSFER WITHIN CANOPIES. Research Note

A NOTE ON THE CONTRIBUTION OF DISPERSIVE FLUXES TO MOMENTUM TRANSFER WITHIN CANOPIES. Research Note A NOTE ON THE CONTRIBUTION OF DISPERSIVE FLUXES TO MOMENTUM TRANSFER WITHIN CANOPIES Research Note D. POGGI Dipartimento di Idraulica, Trasporti ed Infrastrutture Civili, Politecnico di Torino, Torino,

More information

Multi Time Scale Wind Energy Forecasting Model based on Meteorological Simulation and Onsite Measurement

Multi Time Scale Wind Energy Forecasting Model based on Meteorological Simulation and Onsite Measurement Multi Time Scale Wind Energy Forecasting Model based on Meteorological Simulation and Onsite Measurement Kota ENOKI, Takeshi ISHIHARA, Atsushi YAMAGUCHI, Yukinari FUKUMOTO, The University of Tokyo Tokyo

More information

Analysis of the high Reynolds number 2D tests on a wind turbine airfoil performed at two different wind tunnels

Analysis of the high Reynolds number 2D tests on a wind turbine airfoil performed at two different wind tunnels Analysis of the high Reynolds number 2D tests on a wind turbine airfoil performed at two different wind tunnels O.Pires 1, X.Munduate 2, O.Ceyhan 3, M.Jacobs 4, J.Madsen 5 1 National Renewable Energy Centre

More information

+ = + t x x x x u. The standard Smagorinsky model has been used in the work to provide the closure for the subgridscale eddy viscosity in (2):

+ = + t x x x x u. The standard Smagorinsky model has been used in the work to provide the closure for the subgridscale eddy viscosity in (2): International Conference on Methods of Aerophysical Research, ICMAR 008 LARGE EDDY SIMULATION OF TURBULENT ROUND IMPINGING JET B.B. Ilyushin, D.V. Krasinsky Kutateladze Institute of Thermophysics SB RAS

More information

The Role of Splatting Effect in High Schmidt Number Turbulent Mass Transfer Across an Air-Water Interface

The Role of Splatting Effect in High Schmidt Number Turbulent Mass Transfer Across an Air-Water Interface Turbulence, Heat and Mass Transfer 4 K. Hanjalic, Y. Nagano and M. Tummers (Editors) 3 Begell House, Inc. The Role of Splatting Effect in High Schmidt Number Turbulent Mass Transfer Across an Air-Water

More information

Numerical simulation of dispersion around an isolated cubic building: Model evaluation of RANS and LES. Yoshihide Tominaga a and Ted Stathopoulos b

Numerical simulation of dispersion around an isolated cubic building: Model evaluation of RANS and LES. Yoshihide Tominaga a and Ted Stathopoulos b Accepted on 3 April for publication in the Building and Environment Numerical simulation of dispersion around an isolated cubic building: Model evaluation of RANS and Yoshihide Tominaga a and Ted Stathopoulos

More information

Chuichi Arakawa Graduate School of Interdisciplinary Information Studies, the University of Tokyo. Chuichi Arakawa

Chuichi Arakawa Graduate School of Interdisciplinary Information Studies, the University of Tokyo. Chuichi Arakawa Direct Numerical Simulations of Fundamental Turbulent Flows with the Largest Grid Numbers in the World and its Application of Modeling for Engineering Turbulent Flows Project Representative Chuichi Arakawa

More information

A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries

A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries Center for Turbulence Research Annual Research Briefs 2006 41 A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries By D. You AND P. Moin 1. Motivation

More information

APPLICATION OF LAGRANGIAN MODELLING IN URBAN AREAS. Richard Leduc, Ph.D. Environmental Modelling Workshop Edmonton, March

APPLICATION OF LAGRANGIAN MODELLING IN URBAN AREAS. Richard Leduc, Ph.D. Environmental Modelling Workshop Edmonton, March APPLICATION OF LAGRANGIAN MODELLING IN URBAN AREAS Richard Leduc, Ph.D. Environmental Modelling Workshop Edmonton, March 13 2013 1 SPECIAL THANKS Thanks to Jesse Thé, Lakes Environmental, and Yann Contratto,

More information

A Note on Spatial Averaging and Shear Stresses Within Urban Canopies

A Note on Spatial Averaging and Shear Stresses Within Urban Canopies Boundary-Layer Meteorol (2018) 167:171 179 https://doi.org/10.1007/s10546-017-0321-7 NOTES AND COMMENTS A Note on Spatial Averaging and Shear Stresses Within Urban Canopies Zheng-Tong Xie 1 Vladimir Fuka

More information

The Effect of Surroundings with Different Separation Distances on Surface Pressures on Low-Rise Buildings

The Effect of Surroundings with Different Separation Distances on Surface Pressures on Low-Rise Buildings The Effect of Surroundings with Different Separation Distances on Surface Pressures on Low-Rise Buildings Cheng-Hsin Chang 1 and Robert N. Meroney 1) Department of Civil Engineering, Tamkang University,

More information

(Wind profile) Chapter five. 5.1 The Nature of Airflow over the surface:

(Wind profile) Chapter five. 5.1 The Nature of Airflow over the surface: Chapter five (Wind profile) 5.1 The Nature of Airflow over the surface: The fluid moving over a level surface exerts a horizontal force on the surface in the direction of motion of the fluid, such a drag

More information

Nowadays, the rapid development of computer resources has enabled the numerical simulation based on the computational fluid dynamics (CFD) techniques

Nowadays, the rapid development of computer resources has enabled the numerical simulation based on the computational fluid dynamics (CFD) techniques Large-Eddy Simulation On The Gust Probability In Urban Pedestrian Spaces Y. Ikeda 1,*, A. Hagishima 1, N. Ikegaya 1, and J. Tanimoto 1 1 Interdisciplinary Graduate School of Engineering Science, Kyushu

More information

LES ANALYSIS ON CYLINDER CASCADE FLOW BASED ON ENERGY RATIO COEFFICIENT

LES ANALYSIS ON CYLINDER CASCADE FLOW BASED ON ENERGY RATIO COEFFICIENT 2th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics ANALYSIS ON CYLINDER CASCADE FLOW BASED ON ENERGY RATIO COEFFICIENT Wang T.*, Gao S.F., Liu Y.W., Lu Z.H. and Hu H.P. *Author

More information

GENERALISATION OF THE TWO-SCALE MOMENTUM THEORY FOR COUPLED WIND TURBINE/FARM OPTIMISATION

GENERALISATION OF THE TWO-SCALE MOMENTUM THEORY FOR COUPLED WIND TURBINE/FARM OPTIMISATION 25 th National Symposium on Wind Engineering, Tokyo, Japan, 3-5 December 2018 第 25 回風工学シンポジウム (2018) GENERALISATION OF THE TWO-SCALE MOMENTUM THEORY FOR COUPLED WIND TURBINE/FARM OPTIMISATION Takafumi

More information

CFD Modelling of Turbulent Mass Transfer in a Mixing Channel

CFD Modelling of Turbulent Mass Transfer in a Mixing Channel CFD Modelling of Turbulent Mass Transfer in a Mixing Channel Lene K. Hjertager Osenbroch, Bjørn H. Hjertager and Tron Solberg Aalborg University Esbjerg Esbjerg, Denmark Homepage: hugin.aue.auc.dk Prepared

More information

Large-eddy simulations for wind turbine blade: rotational augmentation and dynamic stall

Large-eddy simulations for wind turbine blade: rotational augmentation and dynamic stall Large-eddy simulations for wind turbine blade: rotational augmentation and dynamic stall Y. Kim, I.P. Castro, and Z.T. Xie Introduction Wind turbines operate in the atmospheric boundary layer and their

More information

Challenges of modelling wind engineering problems

Challenges of modelling wind engineering problems Challenges of modelling wind engineering problems Zheng-Tong Xie With thanks to: Vladimir Fuka, Paul Hayden, Ian Castro, Alan Robins, Janet Barlow, Yusik Kim, Bob Plant, Omduth Coceal, Denise Hertwig,

More information

Regularization modeling of turbulent mixing; sweeping the scales

Regularization modeling of turbulent mixing; sweeping the scales Regularization modeling of turbulent mixing; sweeping the scales Bernard J. Geurts Multiscale Modeling and Simulation (Twente) Anisotropic Turbulence (Eindhoven) D 2 HFest, July 22-28, 2007 Turbulence

More information

Part I: Overview of modeling concepts and techniques Part II: Modeling neutrally stratified boundary layer flows

Part I: Overview of modeling concepts and techniques Part II: Modeling neutrally stratified boundary layer flows Physical modeling of atmospheric boundary layer flows Part I: Overview of modeling concepts and techniques Part II: Modeling neutrally stratified boundary layer flows Outline Evgeni Fedorovich School of

More information

Symmetry of Turbulent Characteristics Inside Urban Intersection

Symmetry of Turbulent Characteristics Inside Urban Intersection Colloquium FLUID DYNAMICS 2007 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 2007 p.1 Symmetry of Turbulent Characteristics Inside Urban Intersection Radka Kellnerová 1,2 Zbyněk

More information

Wind velocity profile observations for roughness parameterization of real urban surfaces

Wind velocity profile observations for roughness parameterization of real urban surfaces Wind velocity profile observations for roughness parameterization of real urban surfaces Jongyeon LIM, Ryozo OOKA, and Hideki KIKUMOTO Institute of Industrial Science The University of Tokyo Background:

More information

Computational Fluid Dynamics

Computational Fluid Dynamics Computational Fluid Dynamics A Practical Approach Jiyuan Tu RMIT University, Australia Guan Heng Yeoh Australian Nuclear Science and Technology Organisation Chaoqun Liu University of Texas, Arlington ^fl

More information

저작권법에따른이용자의권리는위의내용에의하여영향을받지않습니다.

저작권법에따른이용자의권리는위의내용에의하여영향을받지않습니다. 저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할수없습니다. 변경금지. 귀하는이저작물을개작, 변형또는가공할수없습니다. 귀하는, 이저작물의재이용이나배포의경우,

More information

Large Eddy Simulation of Rough Surface Flow in Shallow Open Channels

Large Eddy Simulation of Rough Surface Flow in Shallow Open Channels Large Eddy Simulation of Rough Surface Flow in Shallow Open Channels Zeng Zhang A Thesis in The Department of Building, Civil, and Environmental Engineering Presented in Partial Fulfilment of the Requirements

More information

University of Huddersfield Repository

University of Huddersfield Repository University of Huddersfield Repository Malviya, Vihar, Gundala, Naresh and Mishra, Rakesh Effect of cross wind on aerodynamic coefficients of ground vehicles. Original Citation Malviya, Vihar, Gundala,

More information

CFD Study of Flow Over Parallel Ridges with Varying Height and Spacing

CFD Study of Flow Over Parallel Ridges with Varying Height and Spacing Proceedings of the World Congress on Engineering 21 Vol II WCE 21, June 3 - July 2, 21, London, U.K. CFD Study of Flow Over Parallel Ridges with Varying Height and Spacing Lee Chin Yik, Salim Mohamed Salim,

More information

M E 320 Professor John M. Cimbala Lecture 10

M E 320 Professor John M. Cimbala Lecture 10 M E 320 Professor John M. Cimbala Lecture 10 Today, we will: Finish our example problem rates of motion and deformation of fluid particles Discuss the Reynolds Transport Theorem (RTT) Show how the RTT

More information

Future trends of applications of CFD to industrial design

Future trends of applications of CFD to industrial design Future trends of applications of CFD to industrial design 4 Fully-resolved LES (Large Eddy Simulation) Resolve such eddies that are responsible for production of turbulence in TBL λ x+ =300, λ y+ = 30,

More information

Wind Conditions in Idealized Building Clusters: Macroscopic Simulations Using a Porous Turbulence Model

Wind Conditions in Idealized Building Clusters: Macroscopic Simulations Using a Porous Turbulence Model Boundary-Layer Meteorol (2010) 136:129 159 DOI 10.1007/s10546-010-9490-3 ARTICLE Wind Conditions in Idealized Building Clusters: Macroscopic Simulations Using a Porous Turbulence Model Jian Hang Yuguo

More information

M.G. Giometto 1, A. Christen 2, C. Meneveau 3, J. Fang 1 and M.B. Parlange 2

M.G. Giometto 1, A. Christen 2, C. Meneveau 3, J. Fang 1 and M.B. Parlange 2 Large-eddy simulations to characterize the role of turbulent and dispersive production, transport and dissipation of TKE over and within a realistic urban canopy M.G. Giometto 1, A. Christen 2, C. Meneveau

More information

AUGMENTING SIMULATIONS OF AIRFLOW AROUND BUILDINGS USING FIELD MEASUREMENTS

AUGMENTING SIMULATIONS OF AIRFLOW AROUND BUILDINGS USING FIELD MEASUREMENTS Vernay, D.G., Raphael, B. and Smith, I.F.C. "Augmenting simulations of airflow around buildings using field measurements" Advanced Engineering Informatics, 2014, pp 412-424 DOI:10.1016/j.aei.2014.06.003

More information

Numerical Study on Flow Field for a Solar Collector at Various Inflow Incidence Angles *

Numerical Study on Flow Field for a Solar Collector at Various Inflow Incidence Angles * Journal of Aeronautics, Astronautics and Aviation, Vol.46, No.4 pp.241 248 (2014) 241 DOI:10.6125/14-0728-808 Numerical Study on Flow Field for a Solar Collector at Various Inflow Incidence Angles * Uzu-Kuei

More information

Measurements and Simulations of Wakes in Onshore Wind Farms Julie K. Lundquist 1,2

Measurements and Simulations of Wakes in Onshore Wind Farms Julie K. Lundquist 1,2 Measurements and Simulations of Wakes in Onshore Wind Farms Julie K. Lundquist 1,2 1 University of Colorado Boulder, 2 National Renewable Energy Laboratory NORCOWE 2016, 14 16 Sept 2016, Bergen, Norway

More information

NUMERICAL INVESTIGATION OF VERTICAL AXIS WIND TURBINE WITH TWIST ANGLE IN BLADES

NUMERICAL INVESTIGATION OF VERTICAL AXIS WIND TURBINE WITH TWIST ANGLE IN BLADES Eleventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 7-9 December 05 NUMERICAL INVESTIGATION OF VERTICAL AXIS WIND TURBINE WITH TWIST ANGLE IN BLADES

More information

Applied Thermal and Fluid Engineering. Energy Engineering (Thermal Engineering Laboratory)

Applied Thermal and Fluid Engineering. Energy Engineering (Thermal Engineering Laboratory) Applied Thermal and Fluid Engineering Energy Engineering (Thermal Engineering Laboratory) Professor Assoc. Professor Hajime Nakamura Shunsuke Yamada Outline of Research In our laboratory, we have been

More information

Prediction of tropical cyclone induced wind field by using mesoscale model and JMA best track

Prediction of tropical cyclone induced wind field by using mesoscale model and JMA best track The Eighth Asia-Pacific Conference on Wind Engineering, December 1-14, 213, Chennai, India ABSTRACT Prediction of tropical cyclone induced wind field by using mesoscale model and JMA best track Jun Tanemoto

More information

LES evaluation of wind pressures on a standard tall building with and without a neighboring building

LES evaluation of wind pressures on a standard tall building with and without a neighboring building LES evaluation of wind pressures on a standard tall building with and without a neighboring building Agerneh K. Dagnew a, Girma T. Bitsuamlak b a PhD candidate, Civil and Environmental Eng. (CEE) Dept./

More information

Numerical Simulation of Rocket Engine Internal Flows

Numerical Simulation of Rocket Engine Internal Flows Numerical Simulation of Rocket Engine Internal Flows Project Representative Masao Furukawa Authors Taro Shimizu Nobuhiro Yamanishi Chisachi Kato Nobuhide Kasagi Institute of Space Technology and Aeronautics,

More information

ERTH 465 Fall Lab 8 Key. Absolute Geostrophic Vorticity. 200 points. 1. Answer questions with complete sentences on separate sheets.

ERTH 465 Fall Lab 8 Key. Absolute Geostrophic Vorticity. 200 points. 1. Answer questions with complete sentences on separate sheets. Name Date ERTH 465 Fall 2017 Lab 8 Key Absolute Geostrophic Vorticity 200 points. 1. Answer questions with complete sentences on separate sheets. 2. Show all work in mathematical problems. No credit given

More information

Aerodynamic Noise Simulation Technology for Developing Low Noise Products

Aerodynamic Noise Simulation Technology for Developing Low Noise Products Aerodynamic Noise Simulation Technology for Developing Noise Products KANEKO, Kimihisa MATSUMOTO, Satoshi YAMAMOTO, Tsutomu ABSTRACT The size reduction trend of electric power equipment causes increased

More information

Chapter 10. Discrete Data Analysis

Chapter 10. Discrete Data Analysis Chapter 1. Discrete Data Analysis 1.1 Inferences on a Population Proportion 1. Comparing Two Population Proportions 1.3 Goodness of Fit Tests for One-Way Contingency Tables 1.4 Testing for Independence

More information

! " # $! % & '! , ) ( + - (. ) ( ) * + / 0 1 2 3 0 / 4 5 / 6 0 ; 8 7 < = 7 > 8 7 8 9 : Œ Š ž P P h ˆ Š ˆ Œ ˆ Š ˆ Ž Ž Ý Ü Ý Ü Ý Ž Ý ê ç è ± ¹ ¼ ¹ ä ± ¹ w ç ¹ è ¼ è Œ ¹ ± ¹ è ¹ è ä ç w ¹ ã ¼ ¹ ä ¹ ¼ ¹ ±

More information

THE EFFECT OF SAMPLE SIZE, TURBULENCE INTENSITY AND THE VELOCITY FIELD ON THE EXPERIMENTAL ACCURACY OF ENSEMBLE AVERAGED PIV MEASUREMENTS

THE EFFECT OF SAMPLE SIZE, TURBULENCE INTENSITY AND THE VELOCITY FIELD ON THE EXPERIMENTAL ACCURACY OF ENSEMBLE AVERAGED PIV MEASUREMENTS 4th International Symposium on Particle Image Velocimetry Göttingen, Germany, September 7-9, 00 PIV 0 Paper 096 THE EFFECT OF SAMPLE SIZE, TURBULECE ITESITY AD THE VELOCITY FIELD O THE EXPERIMETAL ACCURACY

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

HYBRID LES-RANS: Inlet Boundary Conditions for Flows With Recirculation

HYBRID LES-RANS: Inlet Boundary Conditions for Flows With Recirculation 1 HYBRID LES-RANS: Inlet Boundary Conditions for Flows With Recirculation Lars Davidson Div. of Fluid Dynamics Dept. of Applied Mechanics Chalmers University of Technology, Göteborg, Sweden E-mail lada@chalmers.se

More information

LES of turbulent shear flow and pressure driven flow on shallow continental shelves.

LES of turbulent shear flow and pressure driven flow on shallow continental shelves. LES of turbulent shear flow and pressure driven flow on shallow continental shelves. Guillaume Martinat,CCPO - Old Dominion University Chester Grosch, CCPO - Old Dominion University Ying Xu, Michigan State

More information

INTER-COMPARISON AND VALIDATION OF RANS AND LES COMPUTATIONAL APPROACHES FOR ATMOSPHERIC DISPERSION AROUND A CUBIC OBSTACLE. Resources, Kozani, Greece

INTER-COMPARISON AND VALIDATION OF RANS AND LES COMPUTATIONAL APPROACHES FOR ATMOSPHERIC DISPERSION AROUND A CUBIC OBSTACLE. Resources, Kozani, Greece INTER-COMPARISON AND VALIDATION OF AND LES COMPUTATIONAL APPROACHES FOR ATMOSPHERIC DISPERSION AROUND A CUBIC OBSTACLE S. Andronopoulos 1, D.G.E. Grigoriadis 1, I. Mavroidis 2, R.F. Griffiths 3 and J.G.

More information

Canopy flow. Acknowledged contribution from Corey Markfort, Iowa State U

Canopy flow. Acknowledged contribution from Corey Markfort, Iowa State U Canopy flow Examples of canopy flows canopy characterization Failure of log-law and K-theory in and over canopies Roughness sublayer and canopy flow dynamics Mixing layer analogy for canopies Potential

More information

Reduction in Majority-Carrier Concentration in N-Doped or Al-Doped 4H-SiC Epilayer by Electron Irradiation

Reduction in Majority-Carrier Concentration in N-Doped or Al-Doped 4H-SiC Epilayer by Electron Irradiation Reduction in Majority-Carrier Concentration in -Doped or Al-Doped 4H-SiC Epilayer by Electron Irradiation Hideharu Matsuura, Hideki Yanagisawa, Kozo ishino, Takunori ojiri Shinobu Onoda, Takeshi Ohshima

More information

Large-eddy simulation of urban boundary-layer flows by generating turbulent inflows from mesoscale meteorological simulations

Large-eddy simulation of urban boundary-layer flows by generating turbulent inflows from mesoscale meteorological simulations ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. 13: 18 186 (212) Published online 27 April 212 in Wiley Online Library (wileyonlinelibrary.com) DOI: 1.12/asl.377 Large-eddy simulation of urban boundary-layer

More information

LARGE EDDY SIMULATION AND FLOW CONTROL OVER A 25 RAMP MODEL

LARGE EDDY SIMULATION AND FLOW CONTROL OVER A 25 RAMP MODEL LARGE EDDY SIMULATION AND FLOW CONTROL OVER A 25 RAMP MODEL 09/11/2017 Paolo Casco Stephie Edwige Philippe Gilotte Iraj Mortazavi LES and flow control over a 25 ramp model : context 2 Context Validation

More information

Environmental Pollution

Environmental Pollution Gousseau P, Blocken B, van Heijst GJF. 2012. Large-Eddy Simulation of pollutant dispersion around a cubical building: Analysis of the turbulent mass transport mechanism by unsteady concentration and velocity

More information

Convective Fluxes: Sensible and Latent Heat Convective Fluxes Convective fluxes require Vertical gradient of temperature / water AND Turbulence ( mixing ) Vertical gradient, but no turbulence: only very

More information

Drag Coefficient of Tall Building by CFD Method using ANSYS

Drag Coefficient of Tall Building by CFD Method using ANSYS Drag Coefficient of Tall Building by CFD Method using ANSYS Sharma P K 1, Dr. Parekar S R 2 1ME Student, Department of Civil Engineering, AISSM S, Pune, Maharashtra, India 2HOD, Department of Civil Engineering,

More information

A Nonlinear Sub-grid Scale Model for Compressible Turbulent Flow

A Nonlinear Sub-grid Scale Model for Compressible Turbulent Flow hinese Journal of Aeronautics 0(007) 495-500 hinese Journal of Aeronautics www.elsevier.com/locate/cja A Nonlinear Sub-grid Scale Model for ompressible Turbulent Flow Li Bin, Wu Songping School of Aeronautic

More information

U=Gy+U C High-velocity side U C θ Monitor points Low-velocity side Fig.1. Schematic of shear flow configuration Although the number of published paper

U=Gy+U C High-velocity side U C θ Monitor points Low-velocity side Fig.1. Schematic of shear flow configuration Although the number of published paper Shear effects on flow past a rectangular cylinder with side ratio B/D=5 Qiang Zhou, Shuyang Cao*, Zhiyong Zhou State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai

More information

Day 24: Flow around objects

Day 24: Flow around objects Day 24: Flow around objects case 1) fluid flowing around a fixed object (e.g. bridge pier) case 2) object travelling within a fluid (cars, ships planes) two forces are exerted between the fluid and the

More information

Since the cylinder rolls without slipping, the point of contact with the ground is the instantaneous center. r Ë Á 1 2ˆ = = = r

Since the cylinder rolls without slipping, the point of contact with the ground is the instantaneous center. r Ë Á 1 2ˆ = = = r PROBEM 7.7 A 0-kg uniform cylindrical roller, initially at rest, is acted upon by a 90-N force as shown. Knowing that the body rolls without slipping, determine (a) the velocity of its center G after it

More information

Fluid Mechanics. Chapter 9 Surface Resistance. Dr. Amer Khalil Ababneh

Fluid Mechanics. Chapter 9 Surface Resistance. Dr. Amer Khalil Ababneh Fluid Mechanics Chapter 9 Surface Resistance Dr. Amer Khalil Ababneh Wind tunnel used for testing flow over models. Introduction Resistances exerted by surfaces are a result of viscous stresses which create

More information

FLACS CFD Model Evaluation with Kit Fox, MUST, Prairie Grass, and EMU L-Shaped Building Data

FLACS CFD Model Evaluation with Kit Fox, MUST, Prairie Grass, and EMU L-Shaped Building Data FLACS CFD Model Evaluation with Kit Fox, MUST, Prairie Grass, and EMU L-Shaped Building Data Steven Hanna (Harvard Univ., Boston, MA) Olav Hansen (Gexcon, Bergen, Norway) Seshu Dharmavaram (Dupont Corp.,

More information

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,

Masters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h, Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =

More information

CFD Time Evolution of Heat Transfer Around A Bundle of Tubes In Staggered Configuration. G.S.T.A. Bangga 1*, W.A. Widodo 2

CFD Time Evolution of Heat Transfer Around A Bundle of Tubes In Staggered Configuration. G.S.T.A. Bangga 1*, W.A. Widodo 2 CFD Time Evolution of Heat Transfer Around A Bundle of Tubes In Staggered Configuration G.S.T.A. Bangga 1*, W.A. Widodo 2 1,2 Department of mechanical engineering Field of study energy conversion Institut

More information

Land/Atmosphere Interface: Importance to Global Change

Land/Atmosphere Interface: Importance to Global Change Land/Atmosphere Interface: Importance to Global Change Chuixiang Yi School of Earth and Environmental Sciences Queens College, City University of New York Outline Land/atmosphere interface Fundamental

More information

Simulation of mean flow and turbulence over a 2D building array using high-resolution CFD and a distributed drag force approach

Simulation of mean flow and turbulence over a 2D building array using high-resolution CFD and a distributed drag force approach Journal of Wind Engineering and Industrial Aerodynamics 92 (24) 117 158 Simulation of mean flow and turbulence over a 2D building array using high-resolution CFD and a distributed drag force approach F.S.

More information

Turbulence Laboratory

Turbulence Laboratory Objective: CE 319F Elementary Mechanics of Fluids Department of Civil, Architectural and Environmental Engineering The University of Texas at Austin Turbulence Laboratory The objective of this laboratory

More information

17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 9-12 May 2016, Budapest, Hungary

17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 9-12 May 2016, Budapest, Hungary 17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 9-12 May 2016, Budapest, Hungary INVESTIGATION OF VENTILATION AND AIR QUALITY IN URBAN SQUARES

More information

Engineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. Large-Eddy Simulation in Mechanical

Engineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. Large-Eddy Simulation in Mechanical Outline Geurts Book Department of Fluid Mechanics, Budapest University of Technology and Economics Spring 2013 Outline Outline Geurts Book 1 Geurts Book Origin This lecture is strongly based on the book:

More information

CFD modeling of dust dispersion through Najaf historic city centre

CFD modeling of dust dispersion through Najaf historic city centre INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENT Volume 5, Issue 6, 2014 pp.723-728 Journal homepage: www.ijee.ieefoundation.org TECHNICAL PAPER CFD modeling of dust dispersion through Najaf historic city

More information

therefore cold air is released to the outdoor space, contributing to changes in the outdoor microclimate (Figure 1). This results in a cool spot in th

therefore cold air is released to the outdoor space, contributing to changes in the outdoor microclimate (Figure 1). This results in a cool spot in th Characteristics of Cold-air Release from Air-conditioned and Open-entrance Shops to Outside Street Spaces in Summer T. Asawa 1,*, and Y. Kugimachi 2 1 Interdisciplinary Graduate School of Science and Engineering,

More information