MINIMAL DEGREE UNIVARIATE PIECEWISE POLYNOMIALS WITH PRESCRIBED SOBOLEV REGULARITY

Size: px
Start display at page:

Download "MINIMAL DEGREE UNIVARIATE PIECEWISE POLYNOMIALS WITH PRESCRIBED SOBOLEV REGULARITY"

Transcription

1 MINIMAL DEGREE UNIVARIATE PIECEWISE POLYNOMIALS WITH PRESCRIBED SOBOLEV REGULARITY Amal Al-Rashdan & Michael J. Johnson* Department of Mathematics Kuwait University P.O. Box: 5969 Safat 136 Kuwait Abstract. For k {1, 2, 3,... }, we construct an even compactly supported piecewise polynomial ψ k whose Fourier transform satisfies A k (1 + ω 2 ) k b ψ k (ω) B k (1 + ω 2 ) k, ω R, for some constants B k A k >. The degree of ψ k is shown to be minimal, and is strictly less than that of Wendland s function φ 1,k 1 when k > 2. This shows that, for k > 2, Wendland s piecewise polynomial φ 1,k 1 is not of minimal degree if one places no restrictions on the number of pieces. 1. Introduction A function Φ L 1 (R d ) is said to have Sobolev regularity k > if its Fourier transform Φ(ω) := (2π) d/2 R d Φ(x)e ıx ω dx satisfies A(1 + ω 2 ) k Φ(ω) B(1 + ω 2 ) k, ω R d, for some constants B A >. Such functions are useful in radial basis function methods since the generated native space will equal the Sobolev space W2 k(rd ). The reader is referred to Schaback [3] for a description of the current state of the art in the construction of compactly supported functions Φ having prescribed Sobolev regularity. Wendland (see [4] and [5]) has constructed radial { functions Φ d,l (x) = φ d,l ( x ), where φ d,l is a piecewise polynomial of the form φ d,l (t) =, p being a polynomial. For d {1, 2, 3,...} p( t ), t 1, t > 1 and l {, 1, 2,...}, with the case d = 1, l = excluded, Φ d,l has Sobolev regularity k = l+(d+1)/2 and the degree of the piecewise polynomial φ d,l, namely d/2 +3l+1, is minimal with respect to this property. A natural question to ask is whether the degree of φ d,l would still be minimal if we considered functions of the form Φ(x) = φ( x ) where φ is a piecewise polynomial having bounded support. In this note, we answer this question in the univariate case d = 1. Specifically, we construct a compactly supported even piecewise Key words and phrases. positive definite function, compactly supported, B-spline. 1 Typeset by AMS-TEX

2 2 PIECEWISE POLYNOMIALS WITH PRESCRIBED SOBOLEV REGULARITY polynomial ψ k, with Sobolev regularity k (see Theorem 2.8), and we show that the degree of ψ k, namely 2k, is minimal (see Theorem 2.1). In comparison with Wendland s function Φ 1,k 1 (which has Sobolev regularity k when k > 1), we see that deg ψ k = deg φ 1,k 1, if k = 2, while deg ψ k = 2k < 3k 2 = deg φ 1,k 1 when k > Results Wendland s piecewise polynomial φ d,l can be identified as a constant multiple of the B-spline having l + 1 knots at the nodes 1 and 1 and d/2 + l + 1 knots at. This can be verified simply by observing that φ d,l and the above-mentioned B-spline have the same degree, d/2 + 3l + 1, and satisfy the same number of continuity conditions across each of the nodes 1,, 1, namely d/2 + 2l + 1 at 1, 1 and 2l + 1 at. It is well understood in the theory of B-splines that multiple knots are to be avoided if one wishes to keep the degree low, and with this in mind, we define ψ k as follows. For k = 1, 2, 3,..., let ψ k be the B-spline having knots k,..., 2, 1, ;, 1, 2,..., k (note that is the only double knot). For easy reference, we display ψ k (t) (normalized) for t [, k] and k = 1, 2, 3: { 8 24t ψ 1 (t) = (1 t) t 3 7t 4, t [, 1], ψ 2 (t) = (2 t) 4, t (1, 2] t t 4 18t t 6, t [, 1] ψ 3 (t) = t 945t 2 + 9t 3 45t 4 + 9t 5 8t 6, t (1, 2] (3 t) 6, t (2, 3] We begin by mentioning several salient facts about the B-spline ψ k which can be found in [1, pp ]. The piecewise polynomial ψ k is supported on [ k, k], positive on ( k, k), even and of degree 2k. Furthermore, it is 2k 1 times continuously differentiable on R\{} and 2k 2 times continuously differentiable on all of R. It follows from this that the 2k 1 order derivative, D 2k 1 ψ k, is a piecewise linear function which is supported on [ k, k] and is continuous except at the origin where it has a jump discontinuity. Consequently, the 2k order derivative has the form D 2k ψ k = 2πa δ + 2πaj (χ [j 1,j) + χ [ j,1 j) ), for some constants a, a 1, a 2,..., a k and where δ is the Dirac δ-distribution defined by δ (f) = f(). We can thus express the Fourier transform of D 2k ψ k as ( D 2k ψ k ) (ω) = a + 2 a j sin(jω) sin((j 1)ω) ω = a + 2(a j a j+1 ) sin(jω), ω with a k+1 :=, whence it follows that (2.1) ψk (ω) = (ıω) ( 2k D 2k ( 1) ψ k ) (ω) k = a ω + 2(a j a j+1 ) sin(jω).

3 A. AL-RASHDAN & M.J. JOHNSON 3 Lemma 2.2. Let β R. Then there exist unique scalars c 1, c 2,..., c k R such that (2.3) β + c j cos(jω) = O( ω 2k ) as ω. Proof. Define g(w) = β + k i=1 c i cos(iω). Since g C (R) is even, (2.3) holds if and only if D 2l g() = for l =, 1, 2,..., k 1. These conditions form the system of linear equations [c 1, c 2,..., c k ]A = [ β,,,..., ], where A is the k k matrix given by A(i, j) = ( 1) j 1 i 2j 2. Writing A(i, j) = ( i 2 ) j 1, we recognize A as a nonsingular Vandermonde matrix, and therefore, (2.3) holds if and only if [c 1, c 2,..., c k ] = [ β,,,..., ]A 1. Theorem 2.4. Let β, c 1, c 2,..., c k R be such that (2.3) holds. Then (2.5) β + c j cos(jω) = βα k (1 cos ω) k, ω R, where α k > is defined by 1 α k = 1 π (1 cos ω)k dω. Proof. Since cos j ω span{1, cosω, cos2ω,..., coskω} for j =, 1,..., k, it follows that there exist b j R such that (1 cos ω) k = b + k b j cos(jω). Note that < 1 = 1 α k π (1 cos ω) k dω = 1 π b dω + b j 1 π cos(jω) dω = b, and hence βα k (1 cos ω) k = β + k βα kb j cos(jω). Since βαk (1 cos ω) k = O( ω 2k ) as ω, it follows from the lemma that c j = βα k b j for j = 1, 2,..., k, and therefore (2.5) holds. Corollary 2.6. Let a be as in (2.1). Then ( 1) k a > and (2.7) ψk (ω) = ( 1)k a α k ω (1 cos t) k dt, ω. Proof. It follows from (2.1) that ψ k (ω) = ( 1)k f(ω), where f(ω) := a ω + k 2(a j a j+1 ) sin(jω). Since ψ k is supported on [ k, k] and positive on ( k, k), it follows that ψ k is continuous (in fact entire) and ψ k () >. Consequently, f(ω) = O( ω 2k+1 ) as ω. Since f is infinitely differentiable, it follows that f (ω) = a + k 2j(a j a j+1 ) cos(jω) = O( ω 2k ) as ω, and so by Theorem 2.4, f (ω) = a α k (1 cos ω) k. Since f() =, we can write f(ω) = ω f ω (t) dt = a α k (1 cos t)k dt, and hence obtain (2.7). That ( 1) k a > is now evident since < ψ k () = lim ψ ω + k (w). Remark. At this point, it is also easy to show that ψ k (ω) = ( 1)k a (ω + b j sin(jω)), ω, where the scalars {b j } are determined by the fact that ψ k is continuous at.

4 4 PIECEWISE POLYNOMIALS WITH PRESCRIBED SOBOLEV REGULARITY Theorem 2.8. For k {1, 2, 3,...}, ψ k has Sobolev regularity k; that is, there exist constants B k A k > such that (2.9) A k (1 + ω 2 ) k ψ k (ω) B k (1 + ω 2 ) k, ω R. Proof. As in the proof of Corollary 2.6, let us write ψ k (ω) = ( 1)k f(ω), where f(ω) := a ω+ k 2(a f(ω) j a j+1 ) sin(jω). Since lim ω ω = a, it follows that lim w w 2k ψ k (w) = ( 1) k a. Since ( 1) k a > (by Corollary 2.6), it follows that there exists N > such that (2.9) holds for ω N. That ψ k (ω) > for all ω > follows easily from Corollary 2.6, and since ψ k is continuous and ψ k () >, we see that (2.9) holds for ω N. We finally conclude that (2.9) holds for all ω R since ψ k is an even function. We now show that the degree of ψ k is minimal. Theorem 2.1. If ψ is an even, compactly supported, piecewise polynomial satisfying (2.9), then the degree of ψ is at least 2k. Proof. Let ψ be an even, compactly supported piecewise polynomial satisfying (2.9) and let the l-th derivative of ψ be the first discontinuous derivative of ψ (if ψ is itself discontinuous then l = ). Then D l+1 ψ can be written as (2.11) D l+1 ψ = g + n 2πcj δ xj, where g L 1 (R) and c j is the height (possibly ) of the jump discontinuity at x j. We can then express the Fourier transform of ψ as ψ(ω) = (ıω) l 1 ( D l+1 ψ ) (ω) = (ıω) l 1 (ĝ(ω) + Θ(ω)), where Θ(ω) = n c je ıxjω. Since Θ is bounded and ĝ(ω) has limit as ω (by the Riemann-Lebesgue lemma), it follows that ψ(ω) = O( ω l 1 ) as ω. With the left side of (2.9) in view, we conclude that l + 1 2k. Since Θ is a non-trivial almost periodic function (see [2, pp.9 14]), it follows that Θ(ω) o(1) as ω, and with the right side of (2.9) in view, we see that l + 1 2k. Therefore, l + 1 = 2k and we conclude that ψ k is 2k 2 times continuously differentiable. Since ψ k is compactly supported (ie. ψ k is not a polynomial), it follows that ψ k has degree at least 2k 1 (see [1, pp ]). In order to show that the degree of ψ k is at least 2k, let us assume to the contrary that the degree equals 2k 1. In this case the l = 2k 1 derivative of ψ k is piecewise constant and hence g = and ψ(ω) = ( 1) k ω 2k Θ(ω). Since ψ is continuous at, it follows that Θ() =. Since Θ is an almost periodic function, there exist values ω 1 < ω 2 < such that lim n ω n = and lim n Θ(ω n ) = ; but this contradicts the left side of (2.9). Therefore, ψ has degree at least 2k.

5 A. AL-RASHDAN & M.J. JOHNSON 5 References 1. C. de Boor, A practical guide to splines, Applied Mathematical Sciences 27, Springer-Verlag, New York, C. Corduneanu, Almost periodic functions, Chelsea Publishing Company, New York, R. Schaback, The missing Wendland functions, Adv. Comp. Math. 34 (211), H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comp. Math. 4 (1995), H. Wendland, Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 25.

Stability of Kernel Based Interpolation

Stability of Kernel Based Interpolation Stability of Kernel Based Interpolation Stefano De Marchi Department of Computer Science, University of Verona (Italy) Robert Schaback Institut für Numerische und Angewandte Mathematik, University of Göttingen

More information

Lecture 4: Fourier Transforms.

Lecture 4: Fourier Transforms. 1 Definition. Lecture 4: Fourier Transforms. We now come to Fourier transforms, which we give in the form of a definition. First we define the spaces L 1 () and L 2 (). Definition 1.1 The space L 1 ()

More information

Vectors in Function Spaces

Vectors in Function Spaces Jim Lambers MAT 66 Spring Semester 15-16 Lecture 18 Notes These notes correspond to Section 6.3 in the text. Vectors in Function Spaces We begin with some necessary terminology. A vector space V, also

More information

Scattered Data Interpolation with Polynomial Precision and Conditionally Positive Definite Functions

Scattered Data Interpolation with Polynomial Precision and Conditionally Positive Definite Functions Chapter 3 Scattered Data Interpolation with Polynomial Precision and Conditionally Positive Definite Functions 3.1 Scattered Data Interpolation with Polynomial Precision Sometimes the assumption on the

More information

Kernel B Splines and Interpolation

Kernel B Splines and Interpolation Kernel B Splines and Interpolation M. Bozzini, L. Lenarduzzi and R. Schaback February 6, 5 Abstract This paper applies divided differences to conditionally positive definite kernels in order to generate

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 33: Adaptive Iteration Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu MATH 590 Chapter 33 1 Outline 1 A

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 33: Adaptive Iteration Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu MATH 590 Chapter 33 1 Outline 1 A

More information

EXAMPLES OF REFINABLE COMPONENTWISE POLYNOMIALS

EXAMPLES OF REFINABLE COMPONENTWISE POLYNOMIALS EXAMPLES OF REFINABLE COMPONENTWISE POLYNOMIALS NING BI, BIN HAN, AND ZUOWEI SHEN Abstract. This short note presents four examples of compactly supported symmetric refinable componentwise polynomial functions:

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 2 Part 3: Native Space for Positive Definite Kernels Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2014 fasshauer@iit.edu MATH

More information

On stable inversion of the attenuated Radon transform with half data Jan Boman. We shall consider weighted Radon transforms of the form

On stable inversion of the attenuated Radon transform with half data Jan Boman. We shall consider weighted Radon transforms of the form On stable inversion of the attenuated Radon transform with half data Jan Boman We shall consider weighted Radon transforms of the form R ρ f(l) = f(x)ρ(x, L)ds, L where ρ is a given smooth, positive weight

More information

Approximation by Conditionally Positive Definite Functions with Finitely Many Centers

Approximation by Conditionally Positive Definite Functions with Finitely Many Centers Approximation by Conditionally Positive Definite Functions with Finitely Many Centers Jungho Yoon Abstract. The theory of interpolation by using conditionally positive definite function provides optimal

More information

Stability constants for kernel-based interpolation processes

Stability constants for kernel-based interpolation processes Dipartimento di Informatica Università degli Studi di Verona Rapporto di ricerca Research report 59 Stability constants for kernel-based interpolation processes Stefano De Marchi Robert Schaback Dipartimento

More information

Multivariate Interpolation with Increasingly Flat Radial Basis Functions of Finite Smoothness

Multivariate Interpolation with Increasingly Flat Radial Basis Functions of Finite Smoothness Multivariate Interpolation with Increasingly Flat Radial Basis Functions of Finite Smoothness Guohui Song John Riddle Gregory E. Fasshauer Fred J. Hickernell Abstract In this paper, we consider multivariate

More information

APPROXIMATING BOCHNER INTEGRALS BY RIEMANN SUMS

APPROXIMATING BOCHNER INTEGRALS BY RIEMANN SUMS APPROXIMATING BOCHNER INTEGRALS BY RIEMANN SUMS J.M.A.M. VAN NEERVEN Abstract. Let µ be a tight Borel measure on a metric space, let X be a Banach space, and let f : (, µ) X be Bochner integrable. We show

More information

We have to prove now that (3.38) defines an orthonormal wavelet. It belongs to W 0 by Lemma and (3.55) with j = 1. We can write any f W 1 as

We have to prove now that (3.38) defines an orthonormal wavelet. It belongs to W 0 by Lemma and (3.55) with j = 1. We can write any f W 1 as 88 CHAPTER 3. WAVELETS AND APPLICATIONS We have to prove now that (3.38) defines an orthonormal wavelet. It belongs to W 0 by Lemma 3..7 and (3.55) with j =. We can write any f W as (3.58) f(ξ) = p(2ξ)ν(2ξ)

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 5: Completely Monotone and Multiply Monotone Functions Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu MATH

More information

INVERSE AND SATURATION THEOREMS FOR RADIAL BASIS FUNCTION INTERPOLATION

INVERSE AND SATURATION THEOREMS FOR RADIAL BASIS FUNCTION INTERPOLATION MATHEMATICS OF COMPUTATION Volume 71, Number 238, Pages 669 681 S 0025-5718(01)01383-7 Article electronically published on November 28, 2001 INVERSE AND SATURATION THEOREMS FOR RADIAL BASIS FUNCTION INTERPOLATION

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 9: Conditionally Positive Definite Radial Functions Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu MATH

More information

Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK, 11-15th July 2005

Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK, 11-15th July 2005 Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK, 11-15th July 2005 SOME INVERSE SCATTERING PROBLEMS FOR TWO-DIMENSIONAL SCHRÖDINGER

More information

We denote the space of distributions on Ω by D ( Ω) 2.

We denote the space of distributions on Ω by D ( Ω) 2. Sep. 1 0, 008 Distributions Distributions are generalized functions. Some familiarity with the theory of distributions helps understanding of various function spaces which play important roles in the study

More information

Boundary Integral Equations on the Sphere with Radial Basis Functions: Error Analysis

Boundary Integral Equations on the Sphere with Radial Basis Functions: Error Analysis Boundary Integral Equations on the Sphere with Radial Basis Functions: Error Analysis T. Tran Q. T. Le Gia I. H. Sloan E. P. Stephan Abstract Radial basis functions are used to define approximate solutions

More information

Math 660-Lecture 15: Finite element spaces (I)

Math 660-Lecture 15: Finite element spaces (I) Math 660-Lecture 15: Finite element spaces (I) (Chapter 3, 4.2, 4.3) Before we introduce the concrete spaces, let s first of all introduce the following important lemma. Theorem 1. Let V h consists of

More information

A method for creating materials with a desired refraction coefficient

A method for creating materials with a desired refraction coefficient This is the author s final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher s web site or your institution s library. A method

More information

AN ELEMENTARY PROOF OF THE OPTIMAL RECOVERY OF THE THIN PLATE SPLINE RADIAL BASIS FUNCTION

AN ELEMENTARY PROOF OF THE OPTIMAL RECOVERY OF THE THIN PLATE SPLINE RADIAL BASIS FUNCTION J. KSIAM Vol.19, No.4, 409 416, 2015 http://dx.doi.org/10.12941/jksiam.2015.19.409 AN ELEMENTARY PROOF OF THE OPTIMAL RECOVERY OF THE THIN PLATE SPLINE RADIAL BASIS FUNCTION MORAN KIM 1 AND CHOHONG MIN

More information

Ring-like structures of frequency domains of wavelets

Ring-like structures of frequency domains of wavelets Ring-like structures of frequency domains of wavelets Zhihua Zhang and Naoki aito Dept. of Math., Univ. of California, Davis, California, 95616, UA. E-mail: zzh@ucdavis.edu saito@math.ucdavis.edu Abstract.

More information

Continuity. MATH 161 Calculus I. J. Robert Buchanan. Fall Department of Mathematics

Continuity. MATH 161 Calculus I. J. Robert Buchanan. Fall Department of Mathematics Continuity MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Fall 2017 Intuitive Idea A process or an item can be described as continuous if it exists without interruption. The mathematical

More information

Orthogonality of hat functions in Sobolev spaces

Orthogonality of hat functions in Sobolev spaces 1 Orthogonality of hat functions in Sobolev spaces Ulrich Reif Technische Universität Darmstadt A Strobl, September 18, 27 2 3 Outline: Recap: quasi interpolation Recap: orthogonality of uniform B-splines

More information

Wavelet Bi-frames with Uniform Symmetry for Curve Multiresolution Processing

Wavelet Bi-frames with Uniform Symmetry for Curve Multiresolution Processing Wavelet Bi-frames with Uniform Symmetry for Curve Multiresolution Processing Qingtang Jiang Abstract This paper is about the construction of univariate wavelet bi-frames with each framelet being symmetric.

More information

Solving the 3D Laplace Equation by Meshless Collocation via Harmonic Kernels

Solving the 3D Laplace Equation by Meshless Collocation via Harmonic Kernels Solving the 3D Laplace Equation by Meshless Collocation via Harmonic Kernels Y.C. Hon and R. Schaback April 9, Abstract This paper solves the Laplace equation u = on domains Ω R 3 by meshless collocation

More information

MATH 5640: Fourier Series

MATH 5640: Fourier Series MATH 564: Fourier Series Hung Phan, UMass Lowell September, 8 Power Series A power series in the variable x is a series of the form a + a x + a x + = where the coefficients a, a,... are real or complex

More information

1 Brownian Local Time

1 Brownian Local Time 1 Brownian Local Time We first begin by defining the space and variables for Brownian local time. Let W t be a standard 1-D Wiener process. We know that for the set, {t : W t = } P (µ{t : W t = } = ) =

More information

INEQUALITIES FOR SUMS OF INDEPENDENT RANDOM VARIABLES IN LORENTZ SPACES

INEQUALITIES FOR SUMS OF INDEPENDENT RANDOM VARIABLES IN LORENTZ SPACES ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 45, Number 5, 2015 INEQUALITIES FOR SUMS OF INDEPENDENT RANDOM VARIABLES IN LORENTZ SPACES GHADIR SADEGHI ABSTRACT. By using interpolation with a function parameter,

More information

JASSON VINDAS AND RICARDO ESTRADA

JASSON VINDAS AND RICARDO ESTRADA A QUICK DISTRIBUTIONAL WAY TO THE PRIME NUMBER THEOREM JASSON VINDAS AND RICARDO ESTRADA Abstract. We use distribution theory (generalized functions) to show the prime number theorem. No tauberian results

More information

Radial Basis Functions I

Radial Basis Functions I Radial Basis Functions I Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo November 14, 2008 Today Reformulation of natural cubic spline interpolation Scattered

More information

An inverse scattering problem for short-range systems in a time-periodic electric field. François Nicoleau

An inverse scattering problem for short-range systems in a time-periodic electric field. François Nicoleau An inverse scattering problem for short-range systems in a time-periodic electric field. François Nicoleau Laboratoire Jean Leray UMR CNRS-UN 6629 Département de Mathématiques 2, rue de la Houssinière

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods The Connection to Green s Kernels Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2014 fasshauer@iit.edu MATH 590 1 Outline 1 Introduction

More information

Linear Independence. Linear Algebra MATH Linear Algebra LI or LD Chapter 1, Section 7 1 / 1

Linear Independence. Linear Algebra MATH Linear Algebra LI or LD Chapter 1, Section 7 1 / 1 Linear Independence Linear Algebra MATH 76 Linear Algebra LI or LD Chapter, Section 7 / Linear Combinations and Span Suppose s, s,..., s p are scalars and v, v,..., v p are vectors (all in the same space

More information

Exponential stability of operators and operator semigroups

Exponential stability of operators and operator semigroups Exponential stability of operators and operator semigroups 1 J.M.A.M. van Neerven California Institute of Technology Alfred P. Sloan Laboratory of Mathematics Pasadena, CA 91125, U.S.A. Extending earlier

More information

Heisenberg's inequality for Fourier transform

Heisenberg's inequality for Fourier transform Heisenberg's inequality for Fourier transform Riccardo Pascuzzo Abstract In this paper, we prove the Heisenberg's inequality using the Fourier transform. Then we show that the equality holds for the Gaussian

More information

CHAPTER 3 Further properties of splines and B-splines

CHAPTER 3 Further properties of splines and B-splines CHAPTER 3 Further properties of splines and B-splines In Chapter 2 we established some of the most elementary properties of B-splines. In this chapter our focus is on the question What kind of functions

More information

RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets Class 22, 2004 Tomaso Poggio and Sayan Mukherjee

RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets Class 22, 2004 Tomaso Poggio and Sayan Mukherjee RKHS, Mercer s theorem, Unbounded domains, Frames and Wavelets 9.520 Class 22, 2004 Tomaso Poggio and Sayan Mukherjee About this class Goal To introduce an alternate perspective of RKHS via integral operators

More information

arxiv: v1 [math.co] 8 Dec 2013

arxiv: v1 [math.co] 8 Dec 2013 1 A Class of Kazhdan-Lusztig R-Polynomials and q-fibonacci Numbers William Y.C. Chen 1, Neil J.Y. Fan 2, Peter L. Guo 3, Michael X.X. Zhong 4 arxiv:1312.2170v1 [math.co] 8 Dec 2013 1,3,4 Center for Combinatorics,

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University The Residual and Error of Finite Element Solutions Mixed BVP of Poisson Equation

More information

NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES

NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES JUHA LEHRBÄCK Abstract. We establish necessary conditions for domains Ω R n which admit the pointwise (p, β)-hardy inequality u(x) Cd Ω(x)

More information

ISSN: [Engida* et al., 6(4): April, 2017] Impact Factor: 4.116

ISSN: [Engida* et al., 6(4): April, 2017] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY ELLIPTICITY, HYPOELLIPTICITY AND PARTIAL HYPOELLIPTICITY OF DIFFERENTIAL OPERATORS Temesgen Engida*, Dr.Vishwajeet S. Goswami

More information

1 Lecture 6-7, Scribe: Willy Quach

1 Lecture 6-7, Scribe: Willy Quach Special Topics in Complexity Theory, Fall 2017. Instructor: Emanuele Viola 1 Lecture 6-7, Scribe: Willy Quach In these lectures, we introduce k-wise indistinguishability and link this notion to the approximate

More information

Splines which are piecewise solutions of polyharmonic equation

Splines which are piecewise solutions of polyharmonic equation Splines which are piecewise solutions of polyharmonic equation Ognyan Kounchev March 25, 2006 Abstract This paper appeared in Proceedings of the Conference Curves and Surfaces, Chamonix, 1993 1 Introduction

More information

Construction of Biorthogonal Wavelets from Pseudo-splines

Construction of Biorthogonal Wavelets from Pseudo-splines Construction of Biorthogonal Wavelets from Pseudo-splines Bin Dong a, Zuowei Shen b, a Department of Mathematics, National University of Singapore, Science Drive 2, Singapore, 117543. b Department of Mathematics,

More information

AN ALGORITHM FOR COMPUTING FUNDAMENTAL SOLUTIONS OF DIFFERENCE OPERATORS

AN ALGORITHM FOR COMPUTING FUNDAMENTAL SOLUTIONS OF DIFFERENCE OPERATORS AN ALGORITHM FOR COMPUTING FUNDAMENTAL SOLUTIONS OF DIFFERENCE OPERATORS HENRIK BRANDÉN, AND PER SUNDQVIST Abstract We propose an FFT-based algorithm for computing fundamental solutions of difference operators

More information

Applied and Computational Harmonic Analysis

Applied and Computational Harmonic Analysis Appl Comput Harmon Anal 32 (2012) 401 412 Contents lists available at ScienceDirect Applied and Computational Harmonic Analysis wwwelseviercom/locate/acha Multiscale approximation for functions in arbitrary

More information

be the set of complex valued 2π-periodic functions f on R such that

be the set of complex valued 2π-periodic functions f on R such that . Fourier series. Definition.. Given a real number P, we say a complex valued function f on R is P -periodic if f(x + P ) f(x) for all x R. We let be the set of complex valued -periodic functions f on

More information

Time-Dependent Statistical Mechanics A1. The Fourier transform

Time-Dependent Statistical Mechanics A1. The Fourier transform Time-Dependent Statistical Mechanics A1. The Fourier transform c Hans C. Andersen November 5, 2009 1 Definition of the Fourier transform and its inverse. Suppose F (t) is some function of time. Then its

More information

Reducing subspaces. Rowan Killip 1 and Christian Remling 2 January 16, (to appear in J. Funct. Anal.)

Reducing subspaces. Rowan Killip 1 and Christian Remling 2 January 16, (to appear in J. Funct. Anal.) Reducing subspaces Rowan Killip 1 and Christian Remling 2 January 16, 2001 (to appear in J. Funct. Anal.) 1. University of Pennsylvania, 209 South 33rd Street, Philadelphia PA 19104-6395, USA. On leave

More information

Michael J. Johnson. Department of Mathematics and Computer Science Kuwait University P.O. Box: 5969 Safat Kuwait

Michael J. Johnson. Department of Mathematics and Computer Science Kuwait University P.O. Box: 5969 Safat Kuwait A SYMMETRIC COLLOCATION METHOD WITH FAST EVALUATION Michael J. Johnson Department of Mathematics and Computer Science Kuwait University P.O. Box: 5969 Safat 13060 Kuwait johnson@mcs.sci.kuniv.edu.kw In

More information

Fourier Transform & Sobolev Spaces

Fourier Transform & Sobolev Spaces Fourier Transform & Sobolev Spaces Michael Reiter, Arthur Schuster Summer Term 2008 Abstract We introduce the concept of weak derivative that allows us to define new interesting Hilbert spaces the Sobolev

More information

Reproducing Kernels of Generalized Sobolev Spaces via a Green Function Approach with Differential Operators

Reproducing Kernels of Generalized Sobolev Spaces via a Green Function Approach with Differential Operators Reproducing Kernels of Generalized Sobolev Spaces via a Green Function Approach with Differential Operators Qi Ye Abstract In this paper we introduce a generalization of the classical L 2 ( )-based Sobolev

More information

c 2000 Society for Industrial and Applied Mathematics

c 2000 Society for Industrial and Applied Mathematics SIAM J MATH ANAL Vol 32, No 2, pp 420 434 c 2000 Society for Industrial and Applied Mathematics DISTRIBUTIONAL SOLUTIONS OF NONHOMOGENEOUS DISCRETE AND CONTINUOUS REFINEMENT EQUATIONS RONG-QING JIA, QINGTANG

More information

1. Introduction. A radial basis function (RBF) interpolant of multivariate data (x k, y k ), k = 1, 2,..., n takes the form

1. Introduction. A radial basis function (RBF) interpolant of multivariate data (x k, y k ), k = 1, 2,..., n takes the form A NEW CLASS OF OSCILLATORY RADIAL BASIS FUNCTIONS BENGT FORNBERG, ELISABETH LARSSON, AND GRADY WRIGHT Abstract Radial basis functions RBFs form a primary tool for multivariate interpolation, and they are

More information

HOMEOMORPHISMS OF BOUNDED VARIATION

HOMEOMORPHISMS OF BOUNDED VARIATION HOMEOMORPHISMS OF BOUNDED VARIATION STANISLAV HENCL, PEKKA KOSKELA AND JANI ONNINEN Abstract. We show that the inverse of a planar homeomorphism of bounded variation is also of bounded variation. In higher

More information

Time Series Analysis. Solutions to problems in Chapter 7 IMM

Time Series Analysis. Solutions to problems in Chapter 7 IMM Time Series Analysis Solutions to problems in Chapter 7 I Solution 7.1 Question 1. As we get by subtraction kx t = 1 + B + B +...B k 1 )ǫ t θb) = 1 + B +... + B k 1 ), and BθB) = B + B +... + B k ), 1

More information

Optimal Approximation by sk-splines on the Torus

Optimal Approximation by sk-splines on the Torus arxiv:1804.03106v1 [math.fa] 9 Apr 2018 Optimal Approximation by sk-splines on the Torus J. G. Oliveira and S. A. Tozoni Instituto de Matemática, Universidade Estadual de Campinas, Rua Sérgio Buarque de

More information

Construction of Multivariate Compactly Supported Tight Wavelet Frames

Construction of Multivariate Compactly Supported Tight Wavelet Frames Construction of Multivariate Compactly Supported Tight Wavelet Frames Ming-Jun Lai and Joachim Stöckler April 5, 2006 Abstract Two simple constructive methods are presented to compute compactly supported

More information

ON A CERTAIN GENERALIZATION OF THE KRASNOSEL SKII THEOREM

ON A CERTAIN GENERALIZATION OF THE KRASNOSEL SKII THEOREM Journal of Applied Analysis Vol. 9, No. 1 23, pp. 139 147 ON A CERTAIN GENERALIZATION OF THE KRASNOSEL SKII THEOREM M. GALEWSKI Received July 3, 21 and, in revised form, March 26, 22 Abstract. We provide

More information

UNIVERSITY OF WISCONSIN-MADISON CENTER FOR THE MATHEMATICAL SCIENCES. A characterization of the approximation order of multivariate spline spaces

UNIVERSITY OF WISCONSIN-MADISON CENTER FOR THE MATHEMATICAL SCIENCES. A characterization of the approximation order of multivariate spline spaces UNIVERSITY OF WISCONSIN-MADISON CENTER FOR THE MATHEMATICAL SCIENCES A characterization of the approximation order of multivariate spline spaces Amos Ron Center for the Mathematical Sciences and Computer

More information

Applied Numerical Analysis Quiz #2

Applied Numerical Analysis Quiz #2 Applied Numerical Analysis Quiz #2 Modules 3 and 4 Name: Student number: DO NOT OPEN UNTIL ASKED Instructions: Make sure you have a machine-readable answer form. Write your name and student number in the

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 34: Improving the Condition Number of the Interpolation Matrix Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 7: Conditionally Positive Definite Functions Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu MATH 590 Chapter

More information

SINGULAR MEASURES WITH ABSOLUTELY CONTINUOUS CONVOLUTION SQUARES ON LOCALLY COMPACT GROUPS

SINGULAR MEASURES WITH ABSOLUTELY CONTINUOUS CONVOLUTION SQUARES ON LOCALLY COMPACT GROUPS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 10, Pages 2865 2869 S 0002-9939(99)04827-3 Article electronically published on April 23, 1999 SINGULAR MEASURES WITH ABSOLUTELY CONTINUOUS

More information

Viewed From Cubic Splines. further clarication and improvement. This can be described by applying the

Viewed From Cubic Splines. further clarication and improvement. This can be described by applying the Radial Basis Functions Viewed From Cubic Splines Robert Schaback Abstract. In the context of radial basis function interpolation, the construction of native spaces and the techniques for proving error

More information

SOME MEASURABILITY AND CONTINUITY PROPERTIES OF ARBITRARY REAL FUNCTIONS

SOME MEASURABILITY AND CONTINUITY PROPERTIES OF ARBITRARY REAL FUNCTIONS LE MATEMATICHE Vol. LVII (2002) Fasc. I, pp. 6382 SOME MEASURABILITY AND CONTINUITY PROPERTIES OF ARBITRARY REAL FUNCTIONS VITTORINO PATA - ALFONSO VILLANI Given an arbitrary real function f, the set D

More information

f(x) cos dx L L f(x) sin L + b n sin a n cos

f(x) cos dx L L f(x) sin L + b n sin a n cos Chapter Fourier Series and Transforms. Fourier Series et f(x be an integrable functin on [, ]. Then the fourier co-ecients are dened as a n b n f(x cos f(x sin The claim is that the function f then can

More information

Construction of scaling partitions of unity

Construction of scaling partitions of unity Construction of scaling partitions of unity arxiv:1710.08290v1 [math.fa] 23 Oct 2017 Ole Christensen and Say Song Goh Abstract Partitions of unity in R d formed by (matrix) scales of a fixed function appear

More information

REMARKS ON THE VANISHING OBSTACLE LIMIT FOR A 3D VISCOUS INCOMPRESSIBLE FLUID

REMARKS ON THE VANISHING OBSTACLE LIMIT FOR A 3D VISCOUS INCOMPRESSIBLE FLUID REMARKS ON THE VANISHING OBSTACLE LIMIT FOR A 3D VISCOUS INCOMPRESSIBLE FLUID DRAGOŞ IFTIMIE AND JAMES P. KELLIHER Abstract. In [Math. Ann. 336 (2006), 449-489] the authors consider the two dimensional

More information

On orthogonal polynomials for certain non-definite linear functionals

On orthogonal polynomials for certain non-definite linear functionals On orthogonal polynomials for certain non-definite linear functionals Sven Ehrich a a GSF Research Center, Institute of Biomathematics and Biometry, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany Abstract

More information

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines

Cubic Splines MATH 375. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Cubic Splines Cubic Splines MATH 375 J. Robert Buchanan Department of Mathematics Fall 2006 Introduction Given data {(x 0, f(x 0 )), (x 1, f(x 1 )),...,(x n, f(x n ))} which we wish to interpolate using a polynomial...

More information

NEW BOUNDS FOR TRUNCATION-TYPE ERRORS ON REGULAR SAMPLING EXPANSIONS

NEW BOUNDS FOR TRUNCATION-TYPE ERRORS ON REGULAR SAMPLING EXPANSIONS NEW BOUNDS FOR TRUNCATION-TYPE ERRORS ON REGULAR SAMPLING EXPANSIONS Nikolaos D. Atreas Department of Mathematics, Aristotle University of Thessaloniki, 54006, Greece, e-mail:natreas@auth.gr Abstract We

More information

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES INTRODUCTION TO REAL ANALYSIS II MATH 433 BLECHER NOTES. As in earlier classnotes. As in earlier classnotes (Fourier series) 3. Fourier series (continued) (NOTE: UNDERGRADS IN THE CLASS ARE NOT RESPONSIBLE

More information

Application of modified Leja sequences to polynomial interpolation

Application of modified Leja sequences to polynomial interpolation Special Issue for the years of the Padua points, Volume 8 5 Pages 66 74 Application of modified Leja sequences to polynomial interpolation L. P. Bos a M. Caliari a Abstract We discuss several applications

More information

Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces Reproducing Kernel Hilbert Spaces Lorenzo Rosasco 9.520 Class 03 February 11, 2009 About this class Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert

More information

Measure Theory and Lebesgue Integration. Joshua H. Lifton

Measure Theory and Lebesgue Integration. Joshua H. Lifton Measure Theory and Lebesgue Integration Joshua H. Lifton Originally published 31 March 1999 Revised 5 September 2004 bstract This paper originally came out of my 1999 Swarthmore College Mathematics Senior

More information

Overlapping additive Schwarz preconditioners for interpolation on the unit sphere by spherical radial basis functions

Overlapping additive Schwarz preconditioners for interpolation on the unit sphere by spherical radial basis functions Overlapping additive Schwarz preconditioners for interpolation on the unit sphere by spherical radial basis functions Q. T. Le Gia T. Tran I. H. Sloan October, 008 Abstract We present an overlapping domain

More information

The Finite Spectrum of Sturm-Liouville Operator With δ-interactions

The Finite Spectrum of Sturm-Liouville Operator With δ-interactions Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Applications and Applied Mathematics: An International Journal (AAM) Vol. 3, Issue (June 08), pp. 496 507 The Finite Spectrum of Sturm-Liouville

More information

Consistency Estimates for gfd Methods and Selection of Sets of Influence

Consistency Estimates for gfd Methods and Selection of Sets of Influence Consistency Estimates for gfd Methods and Selection of Sets of Influence Oleg Davydov University of Giessen, Germany Localized Kernel-Based Meshless Methods for PDEs ICERM / Brown University 7 11 August

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (997) 76: 479 488 Numerische Mathematik c Springer-Verlag 997 Electronic Edition Exponential decay of C cubic splines vanishing at two symmetric points in each knot interval Sang Dong Kim,,

More information

Chapter One. The Calderón-Zygmund Theory I: Ellipticity

Chapter One. The Calderón-Zygmund Theory I: Ellipticity Chapter One The Calderón-Zygmund Theory I: Ellipticity Our story begins with a classical situation: convolution with homogeneous, Calderón- Zygmund ( kernels on R n. Let S n 1 R n denote the unit sphere

More information

Wiener Measure and Brownian Motion

Wiener Measure and Brownian Motion Chapter 16 Wiener Measure and Brownian Motion Diffusion of particles is a product of their apparently random motion. The density u(t, x) of diffusing particles satisfies the diffusion equation (16.1) u

More information

Microlocal Methods in X-ray Tomography

Microlocal Methods in X-ray Tomography Microlocal Methods in X-ray Tomography Plamen Stefanov Purdue University Lecture I: Euclidean X-ray tomography Mini Course, Fields Institute, 2012 Plamen Stefanov (Purdue University ) Microlocal Methods

More information

Properties of Entire Functions

Properties of Entire Functions Properties of Entire Functions Generalizing Results to Entire Functions Our main goal is still to show that every entire function can be represented as an everywhere convergent power series in z. So far

More information

MGA Tutorial, September 08, 2004 Construction of Wavelets. Jan-Olov Strömberg

MGA Tutorial, September 08, 2004 Construction of Wavelets. Jan-Olov Strömberg MGA Tutorial, September 08, 2004 Construction of Wavelets Jan-Olov Strömberg Department of Mathematics Royal Institute of Technology (KTH) Stockholm, Sweden Department of Numerical Analysis and Computer

More information

1.5 Approximate Identities

1.5 Approximate Identities 38 1 The Fourier Transform on L 1 (R) which are dense subspaces of L p (R). On these domains, P : D P L p (R) and M : D M L p (R). Show, however, that P and M are unbounded even when restricted to these

More information

LOCAL TIMES OF RANKED CONTINUOUS SEMIMARTINGALES

LOCAL TIMES OF RANKED CONTINUOUS SEMIMARTINGALES LOCAL TIMES OF RANKED CONTINUOUS SEMIMARTINGALES ADRIAN D. BANNER INTECH One Palmer Square Princeton, NJ 8542, USA adrian@enhanced.com RAOUF GHOMRASNI Fakultät II, Institut für Mathematik Sekr. MA 7-5,

More information

NEWMAN S INEQUALITY FOR INCREASING EXPONENTIAL SUMS

NEWMAN S INEQUALITY FOR INCREASING EXPONENTIAL SUMS NEWMAN S INEQUALITY FOR INCREASING EXPONENTIAL SUMS Tamás Erdélyi Dedicated to the memory of George G Lorentz Abstract Let Λ n := {λ 0 < λ < < λ n } be a set of real numbers The collection of all linear

More information

1. Fourier Transform (Continuous time) A finite energy signal is a signal f(t) for which. f(t) 2 dt < Scalar product: f(t)g(t)dt

1. Fourier Transform (Continuous time) A finite energy signal is a signal f(t) for which. f(t) 2 dt < Scalar product: f(t)g(t)dt 1. Fourier Transform (Continuous time) 1.1. Signals with finite energy A finite energy signal is a signal f(t) for which Scalar product: f(t) 2 dt < f(t), g(t) = 1 2π f(t)g(t)dt The Hilbert space of all

More information

MATH 409 Advanced Calculus I Lecture 16: Mean value theorem. Taylor s formula.

MATH 409 Advanced Calculus I Lecture 16: Mean value theorem. Taylor s formula. MATH 409 Advanced Calculus I Lecture 16: Mean value theorem. Taylor s formula. Points of local extremum Let f : E R be a function defined on a set E R. Definition. We say that f attains a local maximum

More information

Chapter 3 Continuous Functions

Chapter 3 Continuous Functions Continuity is a very important concept in analysis. The tool that we shall use to study continuity will be sequences. There are important results concerning the subsets of the real numbers and the continuity

More information

M412 Assignment 9 Solutions

M412 Assignment 9 Solutions M4 Assignment 9 Solutions. [ pts] Use separation of variables to show that solutions to the quarter-plane problem can be written in the form u t u xx ; t>,

More information

Periodic solutions of weakly coupled superlinear systems

Periodic solutions of weakly coupled superlinear systems Periodic solutions of weakly coupled superlinear systems Alessandro Fonda and Andrea Sfecci Abstract By the use of a higher dimensional version of the Poincaré Birkhoff theorem, we are able to generalize

More information

LECTURE 3 Functional spaces on manifolds

LECTURE 3 Functional spaces on manifolds LECTURE 3 Functional spaces on manifolds The aim of this section is to introduce Sobolev spaces on manifolds (or on vector bundles over manifolds). These will be the Banach spaces of sections we were after

More information

FORMAL GROUPS OF CERTAIN Q-CURVES OVER QUADRATIC FIELDS

FORMAL GROUPS OF CERTAIN Q-CURVES OVER QUADRATIC FIELDS Sairaiji, F. Osaka J. Math. 39 (00), 3 43 FORMAL GROUPS OF CERTAIN Q-CURVES OVER QUADRATIC FIELDS FUMIO SAIRAIJI (Received March 4, 000) 1. Introduction Let be an elliptic curve over Q. We denote by ˆ

More information

An Overview of the Martingale Representation Theorem

An Overview of the Martingale Representation Theorem An Overview of the Martingale Representation Theorem Nuno Azevedo CEMAPRE - ISEG - UTL nazevedo@iseg.utl.pt September 3, 21 Nuno Azevedo (CEMAPRE - ISEG - UTL) LXDS Seminar September 3, 21 1 / 25 Background

More information