Linear Independence. Linear Algebra MATH Linear Algebra LI or LD Chapter 1, Section 7 1 / 1

Size: px
Start display at page:

Download "Linear Independence. Linear Algebra MATH Linear Algebra LI or LD Chapter 1, Section 7 1 / 1"

Transcription

1 Linear Independence Linear Algebra MATH 76 Linear Algebra LI or LD Chapter, Section 7 /

2 Linear Combinations and Span Suppose s, s,..., s p are scalars and v, v,..., v p are vectors (all in the same space R n ). We call s v + s v + + s p v p a linear combination of the vectors v, v,..., v p. We always have the trivial linear combination v + v + + v p =. Here we want to know when there is a non-trivial LC of v, v,..., v p that equals. This means that s v + s v + + s p v p = and some scalar s j. Linear Algebra LI or LD Chapter, Section 7 /

3 The span of v, v,..., v p Span{ v, v,..., v p } = { w w = s v + s v + + s p v p, s j scalars } The span of a single vector is a line. Except when this is not true. The span of a two vectors is: a line if the two vectors are parallel a plane if the two vectors are not parallel except when this is not true What is the span of 7 vectors? It depends.... Linear Algebra LI or LD Chapter, Section 7 /

4 Linear Dependence The vectors v, v,..., v p are linearly dependent if there is a non-trivial LC of them that equals : that is, if there are scalars s, s,..., s p so that s v + s v + + s p v p =, and (at least) one of the scalars is non-zero. Linearly dependent vectors carry redundant information. Vectors that are not LD are said to be linearly independent. Linearly independent vectors carry NO redundant information. Linear Algebra LI or LD Chapter, Section 7 4 /

5 Example three vectors in R Are the vectors 4 LD or LI? Notice that + = 4. Thus + 4 =. So the three vectors are LD. This means that Span{ 4 } = Span{ } which is a plane in R. Linear Algebra LI or LD Chapter, Section 7 5 /

6 Example three vectors in R Are the vectors 7 LD or LI? Well, + 5 = 7, so =. Therefore, the three vectors are LD. This means that Span{ 7 } = Span{ } which is a plane in R. Linear Algebra LI or LD Chapter, Section 7 6 /

7 Example three vectors in R Are the vectors LD or LI? Since + =, we get + =. So the three vectors are LD. This means that Span{ } = Span{ } which is a plane in R. Linear Algebra LI or LD Chapter, Section 7 7 /

8 Example three vectors in R 4 Are the vectors v = v = v = 6 LD or LI? Easy to see that v = v v, so v v v = and therefore v, v, v are LD. Also, Span { } { } v, v, v = Span v, v which is a -plane in R 4. But what if we had five (or fifteen) vectors? Let A = [ ] v v v be the matrix with columns given by v, v, v. Recall that A x is the LC of the columns of A given by x A x = A x = x v + x v + x v. x See that there is a non-trivial LC x v + x v + x v = if and only if there is a non-trivial (i.e., non-zero) solution to A x =. Linear Algebra LI or LD Chapter, Section 7 8 /

9 Example three vectors in R 4 (continued) We row reduce A to get 6 R R R 4 R R + R R 4 R Since the last column has no row leader, we know that x is a free variable. Thus x = t (with t any scalar), x = t and x = t. There are infinitely many solutions to A x =, and all but one of these is non-trivial. Thus, there are infinitely many non-trival LCs s v + s v + s v =. Linear Algebra LI or LD Chapter, Section 7 9 /

10 Linearly Dependent Vectors Suppose the vectors v, w are LD. This means there are scalars s, t such that s v + t w = and s, t are NOT both zero. Assume s. Then we can write v = (t/s) w. Thus v is a scalar multiple of w; i.e., v is a LC of w. Suppose v is a LC of v, v,..., v p. This means there are scalars s, s,..., s p so that v = s v + s v + + s p v p. Then v ( s v + s v + + s p v p ) =. so we see that v, v, v,..., v p are LD. If some v j is an LC of the other vectors, then v, v, v,..., v p are LD. Converse true too! Linear Algebra LI or LD Chapter, Section 7 /

11 A useful Fact too many vectors are always LD If p > n, then any set of p vectors in R n is LD. Any 5 vectors in R 4 are LD. Any vectors in R 7 are LD. Why? Just look at REF of appropriate coefficient matrix! Linear Algebra LI or LD Chapter, Section 7 /

12 Parallel Vectors Two vectors are parallel if and only if one is a scalar multiple of the other. Any two non-zero vectors are LI if and only if they are not parallel. Why? (a good quiz question!) Suppose we have three vectors v, v, v (say, in R 5 ) and v v v v. Are v, v, v LD or LI? Hint: it is not difficult to produce a simple example! (a good exam question ) Linear Algebra LI or LD Chapter, Section 7 /

Linear Combination. v = a 1 v 1 + a 2 v a k v k

Linear Combination. v = a 1 v 1 + a 2 v a k v k Linear Combination Definition 1 Given a set of vectors {v 1, v 2,..., v k } in a vector space V, any vector of the form v = a 1 v 1 + a 2 v 2 +... + a k v k for some scalars a 1, a 2,..., a k, is called

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra Linear Equations in Linear Algebra.7 LINEAR INDEPENDENCE LINEAR INDEPENDENCE Definition: An indexed set of vectors {v,, v p } in n is said to be linearly independent if the vector equation x x x 2 2 p

More information

MATH 152 Exam 1-Solutions 135 pts. Write your answers on separate paper. You do not need to copy the questions. Show your work!!!

MATH 152 Exam 1-Solutions 135 pts. Write your answers on separate paper. You do not need to copy the questions. Show your work!!! MATH Exam -Solutions pts Write your answers on separate paper. You do not need to copy the questions. Show your work!!!. ( pts) Find the reduced row echelon form of the matrix Solution : 4 4 6 4 4 R R

More information

The scope of the midterm exam is up to and includes Section 2.1 in the textbook (homework sets 1-4). Below we highlight some of the important items.

The scope of the midterm exam is up to and includes Section 2.1 in the textbook (homework sets 1-4). Below we highlight some of the important items. AMS 10: Review for the Midterm Exam The scope of the midterm exam is up to and includes Section 2.1 in the textbook (homework sets 1-4). Below we highlight some of the important items. Complex numbers

More information

if b is a linear combination of u, v, w, i.e., if we can find scalars r, s, t so that ru + sv + tw = 0.

if b is a linear combination of u, v, w, i.e., if we can find scalars r, s, t so that ru + sv + tw = 0. Solutions Review # Math 7 Instructions: Use the following problems to study for Exam # which will be held Wednesday Sept For a set of nonzero vectors u v w} in R n use words and/or math expressions to

More information

Row Space, Column Space, and Nullspace

Row Space, Column Space, and Nullspace Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space

More information

Math 205, Summer I, Week 3a (continued): Chapter 4, Sections 5 and 6. Week 3b. Chapter 4, [Sections 7], 8 and 9

Math 205, Summer I, Week 3a (continued): Chapter 4, Sections 5 and 6. Week 3b. Chapter 4, [Sections 7], 8 and 9 Math 205, Summer I, 2016 Week 3a (continued): Chapter 4, Sections 5 and 6. Week 3b Chapter 4, [Sections 7], 8 and 9 4.5 Linear Dependence, Linear Independence 4.6 Bases and Dimension 4.7 Change of Basis,

More information

Linear Algebra Exam 1 Spring 2007

Linear Algebra Exam 1 Spring 2007 Linear Algebra Exam 1 Spring 2007 March 15, 2007 Name: SOLUTION KEY (Total 55 points, plus 5 more for Pledged Assignment.) Honor Code Statement: Directions: Complete all problems. Justify all answers/solutions.

More information

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and 6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if (a) v 1,, v k span V and (b) v 1,, v k are linearly independent. HMHsueh 1 Natural Basis

More information

MTH 306 Spring Term 2007

MTH 306 Spring Term 2007 MTH 306 Spring Term 2007 Lesson 5 John Lee Oregon State University (Oregon State University) 1 / 12 Lesson 5 Goals: Be able to de ne linear independence and linear dependence of a set of vectors (Oregon

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 4.5 The Dimension of a Vector Space Math 233 Linear Algebra 4.5 The Dimension of a Vector Space Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ Shang-Huan

More information

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether

More information

DEPARTMENT OF MATHEMATICS

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS. Points: 4+7+4 Ma 322 Solved First Exam February 7, 207 With supplements You are given an augmented matrix of a linear system of equations. Here t is a parameter: 0 4 4 t 0 3

More information

Math 301 Test I. M. Randall Holmes. September 8, 2008

Math 301 Test I. M. Randall Holmes. September 8, 2008 Math 0 Test I M. Randall Holmes September 8, 008 This exam will begin at 9:40 am and end at 0:5 am. You may use your writing instrument, a calculator, and your test paper; books, notes and neighbors to

More information

Linear Equation: a 1 x 1 + a 2 x a n x n = b. x 1, x 2,..., x n : variables or unknowns

Linear Equation: a 1 x 1 + a 2 x a n x n = b. x 1, x 2,..., x n : variables or unknowns Linear Equation: a x + a 2 x 2 +... + a n x n = b. x, x 2,..., x n : variables or unknowns a, a 2,..., a n : coefficients b: constant term Examples: x + 4 2 y + (2 5)z = is linear. x 2 + y + yz = 2 is

More information

Math 550 Notes. Chapter 2. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010

Math 550 Notes. Chapter 2. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010 Math 550 Notes Chapter 2 Jesse Crawford Department of Mathematics Tarleton State University Fall 2010 (Tarleton State University) Math 550 Chapter 2 Fall 2010 1 / 20 Linear algebra deals with finite dimensional

More information

Dr. Abdulla Eid. Section 4.2 Subspaces. Dr. Abdulla Eid. MATHS 211: Linear Algebra. College of Science

Dr. Abdulla Eid. Section 4.2 Subspaces. Dr. Abdulla Eid. MATHS 211: Linear Algebra. College of Science Section 4.2 Subspaces College of Science MATHS 211: Linear Algebra (University of Bahrain) Subspaces 1 / 42 Goal: 1 Define subspaces. 2 Subspace test. 3 Linear Combination of elements. 4 Subspace generated

More information

MATH240: Linear Algebra Exam #1 solutions 6/12/2015 Page 1

MATH240: Linear Algebra Exam #1 solutions 6/12/2015 Page 1 MATH4: Linear Algebra Exam # solutions 6//5 Page Write legibly and show all work. No partial credit can be given for an unjustified, incorrect answer. Put your name in the top right corner and sign the

More information

Math 21b: Linear Algebra Spring 2018

Math 21b: Linear Algebra Spring 2018 Math b: Linear Algebra Spring 08 Homework 8: Basis This homework is due on Wednesday, February 4, respectively on Thursday, February 5, 08. Which of the following sets are linear spaces? Check in each

More information

Carleton College, winter 2013 Math 232, Solutions to review problems and practice midterm 2 Prof. Jones 15. T 17. F 38. T 21. F 26. T 22. T 27.

Carleton College, winter 2013 Math 232, Solutions to review problems and practice midterm 2 Prof. Jones 15. T 17. F 38. T 21. F 26. T 22. T 27. Carleton College, winter 23 Math 232, Solutions to review problems and practice midterm 2 Prof. Jones Solutions to review problems: Chapter 3: 6. F 8. F. T 5. T 23. F 7. T 9. F 4. T 7. F 38. T Chapter

More information

Solution: By inspection, the standard matrix of T is: A = Where, Ae 1 = 3. , and Ae 3 = 4. , Ae 2 =

Solution: By inspection, the standard matrix of T is: A = Where, Ae 1 = 3. , and Ae 3 = 4. , Ae 2 = This is a typical assignment, but you may not be familiar with the material. You should also be aware that many schools only give two exams, but also collect homework which is usually worth a small part

More information

Elements of linear algebra

Elements of linear algebra Elements of linear algebra Elements of linear algebra A vector space S is a set (numbers, vectors, functions) which has addition and scalar multiplication defined, so that the linear combination c 1 v

More information

5) homogeneous and nonhomogeneous systems 5a) The homogeneous matrix equation, A x = 0 is always consistent.

5) homogeneous and nonhomogeneous systems 5a) The homogeneous matrix equation, A x = 0 is always consistent. 5) homogeneous and nonhomogeneous systems 5a) The homogeneous matrix equation, A x is always consistent. 5b) If A x b is also consistent, then the solution set to A x b is a translation of the solution

More information

( v 1 + v 2 ) + (3 v 1 ) = 4 v 1 + v 2. and ( 2 v 2 ) + ( v 1 + v 3 ) = v 1 2 v 2 + v 3, for instance.

( v 1 + v 2 ) + (3 v 1 ) = 4 v 1 + v 2. and ( 2 v 2 ) + ( v 1 + v 3 ) = v 1 2 v 2 + v 3, for instance. 4.2. Linear Combinations and Linear Independence If we know that the vectors v 1, v 2,..., v k are are in a subspace W, then the Subspace Test gives us more vectors which must also be in W ; for instance,

More information

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve:

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve: MATH 2331 Linear Algebra Section 1.1 Systems of Linear Equations Finding the solution to a set of two equations in two variables: Example 1: Solve: x x = 3 1 2 2x + 4x = 12 1 2 Geometric meaning: Do these

More information

Exercise 2) Consider the two vectors v 1. = 1, 0, 2 T, v 2

Exercise 2) Consider the two vectors v 1. = 1, 0, 2 T, v 2 Exercise ) Consider the two vectors v,, T,, T 3. a) Sketch these two vectors as position vectors in 3, using the axes below. b) What geometric object is span v? Sketch a portion of this object onto your

More information

Lecture 6: Spanning Set & Linear Independency

Lecture 6: Spanning Set & Linear Independency Lecture 6: Elif Tan Ankara University Elif Tan (Ankara University) Lecture 6 / 0 Definition (Linear Combination) Let v, v 2,..., v k be vectors in (V,, ) a vector space. A vector v V is called a linear

More information

Solutions to Homework 5 - Math 3410

Solutions to Homework 5 - Math 3410 Solutions to Homework 5 - Math 34 (Page 57: # 489) Determine whether the following vectors in R 4 are linearly dependent or independent: (a) (, 2, 3, ), (3, 7,, 2), (, 3, 7, 4) Solution From x(, 2, 3,

More information

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix Math 34H EXAM I Do all of the problems below. Point values for each of the problems are adjacent to the problem number. Calculators may be used to check your answer but not to arrive at your answer. That

More information

Chapter 1. Vectors, Matrices, and Linear Spaces

Chapter 1. Vectors, Matrices, and Linear Spaces 1.6 Homogeneous Systems, Subspaces and Bases 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.6. Homogeneous Systems, Subspaces and Bases Note. In this section we explore the structure of the solution

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Lecture 13 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 13 1 / 8 The coordinate vector space R n We already used vectors in n dimensions

More information

Vector Spaces and SubSpaces

Vector Spaces and SubSpaces Vector Spaces and SubSpaces Linear Algebra MATH 2076 Linear Algebra Vector Spaces & SubSpaces Chapter 4, Section 1b 1 / 10 What is a Vector Space? A vector space is a bunch of objects that we call vectors

More information

Linear Algebra Quiz 4. Problem 1 (Linear Transformations): 4 POINTS Show all Work! Consider the tranformation T : R 3 R 3 given by:

Linear Algebra Quiz 4. Problem 1 (Linear Transformations): 4 POINTS Show all Work! Consider the tranformation T : R 3 R 3 given by: Page 1 This is a 60 min Quiz. Please make sure you put your name on the top right hand corner of each sheet. Remember the Honors Code will be enforced! You may use your book. NO HELP FROM ANYONE. Problem

More information

Lecture 18: Section 4.3

Lecture 18: Section 4.3 Lecture 18: Section 4.3 Shuanglin Shao November 6, 2013 Linear Independence and Linear Dependence. We will discuss linear independence of vectors in a vector space. Definition. If S = {v 1, v 2,, v r }

More information

Math 544, Exam 2 Information.

Math 544, Exam 2 Information. Math 544, Exam 2 Information. 10/12/10, LC 115, 2:00-3:15. Exam 2 will be based on: Sections 1.7, 1.9, 3.2, 3.3, 3.4; The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/544fa10/544.html)

More information

Math 2030 Assignment 5 Solutions

Math 2030 Assignment 5 Solutions Math 030 Assignment 5 Solutions Question 1: Which of the following sets of vectors are linearly independent? If the set is linear dependent, find a linear dependence relation for the vectors (a) {(1, 0,

More information

is Use at most six elementary row operations. (Partial

is Use at most six elementary row operations. (Partial MATH 235 SPRING 2 EXAM SOLUTIONS () (6 points) a) Show that the reduced row echelon form of the augmented matrix of the system x + + 2x 4 + x 5 = 3 x x 3 + x 4 + x 5 = 2 2x + 2x 3 2x 4 x 5 = 3 is. Use

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.9 THE MATRIX OF A LINEAR TRANSFORMATION THE MATRIX OF A LINEAR TRANSFORMATION Theorem 10: Let T: R n R m be a linear transformation. Then there exists a unique matrix

More information

Lecture 9: Vector Algebra

Lecture 9: Vector Algebra Lecture 9: Vector Algebra Linear combination of vectors Geometric interpretation Interpreting as Matrix-Vector Multiplication Span of a set of vectors Vector Spaces and Subspaces Linearly Independent/Dependent

More information

Math 54 HW 4 solutions

Math 54 HW 4 solutions Math 54 HW 4 solutions 2.2. Section 2.2 (a) False: Recall that performing a series of elementary row operations A is equivalent to multiplying A by a series of elementary matrices. Suppose that E,...,

More information

1. TRUE or FALSE. 2. Find the complete solution set to the system:

1. TRUE or FALSE. 2. Find the complete solution set to the system: TRUE or FALSE (a A homogenous system with more variables than equations has a nonzero solution True (The number of pivots is going to be less than the number of columns and therefore there is a free variable

More information

Linear Algebra Math 221

Linear Algebra Math 221 Linear Algebra Math 221 Open Book Exam 1 Open Notes 3 Sept, 24 Calculators Permitted Show all work (except #4) 1 2 3 4 2 1. (25 pts) Given A 1 2 1, b 2 and c 4. 1 a) (7 pts) Bring matrix A to echelon form.

More information

Final Exam Practice Problems Answers Math 24 Winter 2012

Final Exam Practice Problems Answers Math 24 Winter 2012 Final Exam Practice Problems Answers Math 4 Winter 0 () The Jordan product of two n n matrices is defined as A B = (AB + BA), where the products inside the parentheses are standard matrix product. Is the

More information

Rank and Nullity. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Rank and Nullity. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Rank and Nullity MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Objectives We have defined and studied the important vector spaces associated with matrices (row space,

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

Lecture 03. Math 22 Summer 2017 Section 2 June 26, 2017

Lecture 03. Math 22 Summer 2017 Section 2 June 26, 2017 Lecture 03 Math 22 Summer 2017 Section 2 June 26, 2017 Just for today (10 minutes) Review row reduction algorithm (40 minutes) 1.3 (15 minutes) Classwork Review row reduction algorithm Review row reduction

More information

Sept. 3, 2013 Math 3312 sec 003 Fall 2013

Sept. 3, 2013 Math 3312 sec 003 Fall 2013 Sept. 3, 2013 Math 3312 sec 003 Fall 2013 Section 1.8: Intro to Linear Transformations Recall that the product Ax is a linear combination of the columns of A turns out to be a vector. If the columns of

More information

The definition of a vector space (V, +, )

The definition of a vector space (V, +, ) The definition of a vector space (V, +, ) 1. For any u and v in V, u + v is also in V. 2. For any u and v in V, u + v = v + u. 3. For any u, v, w in V, u + ( v + w) = ( u + v) + w. 4. There is an element

More information

MATH 2050 Assignment 6 Fall 2018 Due: Thursday, November 1. x + y + 2z = 2 x + y + z = c 4x + 2z = 2

MATH 2050 Assignment 6 Fall 2018 Due: Thursday, November 1. x + y + 2z = 2 x + y + z = c 4x + 2z = 2 MATH 5 Assignment 6 Fall 8 Due: Thursday, November [5]. For what value of c does have a solution? Is it unique? x + y + z = x + y + z = c 4x + z = Writing the system as an augmented matrix, we have c R

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information

Practice Exam. 2x 1 + 4x 2 + 2x 3 = 4 x 1 + 2x 2 + 3x 3 = 1 2x 1 + 3x 2 + 4x 3 = 5

Practice Exam. 2x 1 + 4x 2 + 2x 3 = 4 x 1 + 2x 2 + 3x 3 = 1 2x 1 + 3x 2 + 4x 3 = 5 Practice Exam. Solve the linear system using an augmented matrix. State whether the solution is unique, there are no solutions or whether there are infinitely many solutions. If the solution is unique,

More information

Linear Algebra MATH20F Midterm 1

Linear Algebra MATH20F Midterm 1 University of California San Diego NAME TA: Linear Algebra Wednesday, October st, 9 :am - :5am No aids are allowed Be sure to write all row operations used Remember that you can often check your answers

More information

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

More information

Math 2114 Common Final Exam May 13, 2015 Form A

Math 2114 Common Final Exam May 13, 2015 Form A Math 4 Common Final Exam May 3, 5 Form A Instructions: Using a # pencil only, write your name and your instructor s name in the blanks provided. Write your student ID number and your CRN in the blanks

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture : Null and Column Spaces Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./8 Announcements Study Guide posted HWK posted Math 9Applied

More information

Linear Independence x

Linear Independence x Linear Independence A consistent system of linear equations with matrix equation Ax = b, where A is an m n matrix, has a solution set whose graph in R n is a linear object, that is, has one of only n +

More information

1 Invariant subspaces

1 Invariant subspaces MATH 2040 Linear Algebra II Lecture Notes by Martin Li Lecture 8 Eigenvalues, eigenvectors and invariant subspaces 1 In previous lectures we have studied linear maps T : V W from a vector space V to another

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 4.3 Linearly Independent Sets; Bases Math 233 Linear Algebra 4.3 Linearly Independent Sets; Bases Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math233

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 2. Linear Transformations Math 4377/638 Advanced Linear Algebra 2. Linear Transformations, Null Spaces and Ranges Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/

More information

Rank, Homogenous Systems, Linear Independence

Rank, Homogenous Systems, Linear Independence Sept 11,1 Rank, Homogenous Systems, Linear Independence If (A B) is a linear system represented as an augmented matrix then A is called the COEFFICIENT MATRIX and B is (usually) called the RIGHT HAND SIDE

More information

Math 415 Exam I. Name: Student ID: Calculators, books and notes are not allowed!

Math 415 Exam I. Name: Student ID: Calculators, books and notes are not allowed! Math 415 Exam I Calculators, books and notes are not allowed! Name: Student ID: Score: Math 415 Exam I (20pts) 1. Let A be a square matrix satisfying A 2 = 2A. Find the determinant of A. Sol. From A 2

More information

Vector space and subspace

Vector space and subspace Vector space and subspace Math 112, week 8 Goals: Vector space, subspace, span. Null space, column space. Linearly independent, bases. Suggested Textbook Readings: Sections 4.1, 4.2, 4.3 Week 8: Vector

More information

Dependence and independence

Dependence and independence Roberto s Notes on Linear Algebra Chapter 7: Subspaces Section 1 Dependence and independence What you need to now already: Basic facts and operations involving Euclidean vectors. Matrices determinants

More information

Name: Final Exam MATH 3320

Name: Final Exam MATH 3320 Name: Final Exam MATH 3320 Directions: Make sure to show all necessary work to receive full credit. If you need extra space please use the back of the sheet with appropriate labeling. (1) State the following

More information

Kevin James. MTHSC 3110 Section 4.3 Linear Independence in Vector Sp

Kevin James. MTHSC 3110 Section 4.3 Linear Independence in Vector Sp MTHSC 3 Section 4.3 Linear Independence in Vector Spaces; Bases Definition Let V be a vector space and let { v. v 2,..., v p } V. If the only solution to the equation x v + x 2 v 2 + + x p v p = is the

More information

6. The scalar multiple of u by c, denoted by c u is (also) in V. (closure under scalar multiplication)

6. The scalar multiple of u by c, denoted by c u is (also) in V. (closure under scalar multiplication) Definition: A subspace of a vector space V is a subset H of V which is itself a vector space with respect to the addition and scalar multiplication in V. As soon as one verifies a), b), c) below for H,

More information

Linear Algebra- Final Exam Review

Linear Algebra- Final Exam Review Linear Algebra- Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.

More information

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Midterm 1 Review Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Summary This Midterm Review contains notes on sections 1.1 1.5 and 1.7 in your

More information

MA 242 LINEAR ALGEBRA C1, Solutions to First Midterm Exam

MA 242 LINEAR ALGEBRA C1, Solutions to First Midterm Exam MA 242 LINEAR ALGEBRA C Solutions to First Midterm Exam Prof Nikola Popovic October 2 9:am - :am Problem ( points) Determine h and k such that the solution set of x + = k 4x + h = 8 (a) is empty (b) contains

More information

Math 221 Midterm Fall 2017 Section 104 Dijana Kreso

Math 221 Midterm Fall 2017 Section 104 Dijana Kreso The University of British Columbia Midterm October 5, 017 Group B Math 1: Matrix Algebra Section 104 (Dijana Kreso) Last Name: Student Number: First Name: Section: Format: 50 min long exam. Total: 5 marks.

More information

Fall 2016 MATH*1160 Final Exam

Fall 2016 MATH*1160 Final Exam Fall 2016 MATH*1160 Final Exam Last name: (PRINT) First name: Student #: Instructor: M. R. Garvie Dec 16, 2016 INSTRUCTIONS: 1. The exam is 2 hours long. Do NOT start until instructed. You may use blank

More information

Span & Linear Independence (Pop Quiz)

Span & Linear Independence (Pop Quiz) Span & Linear Independence (Pop Quiz). Consider the following vectors: v = 2, v 2 = 4 5, v 3 = 3 2, v 4 = Is the set of vectors S = {v, v 2, v 3, v 4 } linearly independent? Solution: Notice that the number

More information

Chapter 1 Vector Spaces

Chapter 1 Vector Spaces Chapter 1 Vector Spaces Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 110 Linear Algebra Vector Spaces Definition A vector space V over a field

More information

Tues Feb Vector spaces and subspaces. Announcements: Warm-up Exercise:

Tues Feb Vector spaces and subspaces. Announcements: Warm-up Exercise: Math 2270-004 Week 7 notes We will not necessarily finish the material from a given day's notes on that day. We may also add or subtract some material as the week progresses, but these notes represent

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 9: Characterizations of Invertible Matrices Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/ Announcements Review for Exam 1

More information

VECTORS [PARTS OF 1.3] 5-1

VECTORS [PARTS OF 1.3] 5-1 VECTORS [PARTS OF.3] 5- Vectors and the set R n A vector of dimension n is an ordered list of n numbers Example: v = [ ] 2 0 ; w = ; z = v is in R 3, w is in R 2 and z is in R? 0. 4 In R 3 the R stands

More information

which are not all zero. The proof in the case where some vector other than combination of the other vectors in S is similar.

which are not all zero. The proof in the case where some vector other than combination of the other vectors in S is similar. It follows that S is linearly dependent since the equation is satisfied by which are not all zero. The proof in the case where some vector other than combination of the other vectors in S is similar. is

More information

Summer Session Practice Final Exam

Summer Session Practice Final Exam Math 2F Summer Session 25 Practice Final Exam Time Limit: Hours Name (Print): Teaching Assistant This exam contains pages (including this cover page) and 9 problems. Check to see if any pages are missing.

More information

1. Determine by inspection which of the following sets of vectors is linearly independent. 3 3.

1. Determine by inspection which of the following sets of vectors is linearly independent. 3 3. 1. Determine by inspection which of the following sets of vectors is linearly independent. (a) (d) 1, 3 4, 1 { [ [,, 1 1] 3]} (b) 1, 4 5, (c) 3 6 (e) 1, 3, 4 4 3 1 4 Solution. The answer is (a): v 1 is

More information

Solutions to Math 51 First Exam April 21, 2011

Solutions to Math 51 First Exam April 21, 2011 Solutions to Math 5 First Exam April,. ( points) (a) Give the precise definition of a (linear) subspace V of R n. (4 points) A linear subspace V of R n is a subset V R n which satisfies V. If x, y V then

More information

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers. Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 1: Inner Products, Length, Orthogonality Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/ Motivation Not all linear systems have

More information

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA

MATH 3321 Sample Questions for Exam 3. 3y y, C = Perform the indicated operations, if possible: (a) AC (b) AB (c) B + AC (d) CBA MATH 33 Sample Questions for Exam 3. Find x and y so that x 4 3 5x 3y + y = 5 5. x = 3/7, y = 49/7. Let A = 3 4, B = 3 5, C = 3 Perform the indicated operations, if possible: a AC b AB c B + AC d CBA AB

More information

Spring 2015 Midterm 1 03/04/15 Lecturer: Jesse Gell-Redman

Spring 2015 Midterm 1 03/04/15 Lecturer: Jesse Gell-Redman Math 0 Spring 05 Midterm 03/04/5 Lecturer: Jesse Gell-Redman Time Limit: 50 minutes Name (Print): Teaching Assistant This exam contains pages (including this cover page) and 5 problems. Check to see if

More information

Spring 2014 Midterm 1 02/26/14 Lecturer: Jesus Martinez Garcia

Spring 2014 Midterm 1 02/26/14 Lecturer: Jesus Martinez Garcia Math 0 Spring 04 Midterm 0/6/4 Lecturer: Jesus Martinez Garcia Time Limit: 50 minutes Name (Print: Teaching Assistant This exam contains 9 pages (including this cover page and 4 problems Check to see if

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.7 LINEAR INDEPENDENCE LINEAR INDEPENDENCE Definition: An indexed set of vectors {v 1,, v p } in n is said to be linearly independent if the vector equation x x x

More information

MATH 300, Second Exam REVIEW SOLUTIONS. NOTE: You may use a calculator for this exam- You only need something that will perform basic arithmetic.

MATH 300, Second Exam REVIEW SOLUTIONS. NOTE: You may use a calculator for this exam- You only need something that will perform basic arithmetic. MATH 300, Second Exam REVIEW SOLUTIONS NOTE: You may use a calculator for this exam- You only need something that will perform basic arithmetic. [ ] [ ] 2 2. Let u = and v =, Let S be the parallelegram

More information

SYMBOL EXPLANATION EXAMPLE

SYMBOL EXPLANATION EXAMPLE MATH 4310 PRELIM I REVIEW Notation These are the symbols we have used in class, leading up to Prelim I, and which I will use on the exam SYMBOL EXPLANATION EXAMPLE {a, b, c, } The is the way to write the

More information

DEPARTMENT OF MATHEMATICS

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS Ma322 - EXAM #2 Spring 22 March 29, 22 Answer: Included answers DO NOT TURN THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO. Be sure to show all work and justify all your answers.

More information

MATH 1553, SPRING 2018 SAMPLE MIDTERM 1: THROUGH SECTION 1.5

MATH 1553, SPRING 2018 SAMPLE MIDTERM 1: THROUGH SECTION 1.5 MATH 553, SPRING 28 SAMPLE MIDTERM : THROUGH SECTION 5 Name Section Please read all instructions carefully before beginning You have 5 minutes to complete this exam There are no aids of any kind (calculators,

More information

MATH10212 Linear Algebra B Homework Week 4

MATH10212 Linear Algebra B Homework Week 4 MATH22 Linear Algebra B Homework Week 4 Students are strongly advised to acquire a copy of the Textbook: D. C. Lay Linear Algebra and its Applications. Pearson, 26. ISBN -52-2873-4. Normally, homework

More information

Family Feud Review. Linear Algebra. October 22, 2013

Family Feud Review. Linear Algebra. October 22, 2013 Review Linear Algebra October 22, 2013 Question 1 Let A and B be matrices. If AB is a 4 7 matrix, then determine the dimensions of A and B if A has 19 columns. Answer 1 Answer A is a 4 19 matrix, while

More information

MATH 1553 PRACTICE FINAL EXAMINATION

MATH 1553 PRACTICE FINAL EXAMINATION MATH 553 PRACTICE FINAL EXAMINATION Name Section 2 3 4 5 6 7 8 9 0 Total Please read all instructions carefully before beginning. The final exam is cumulative, covering all sections and topics on the master

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Math 7, Professor Ramras Linear Algebra Practice Problems () Consider the following system of linear equations in the variables x, y, and z, in which the constants a and b are real numbers. x y + z = a

More information

Math 2174: Practice Midterm 1

Math 2174: Practice Midterm 1 Math 74: Practice Midterm Show your work and explain your reasoning as appropriate. No calculators. One page of handwritten notes is allowed for the exam, as well as one blank page of scratch paper.. Consider

More information

Review Solutions for Exam 1

Review Solutions for Exam 1 Definitions Basic Theorems. Finish the definition: Review Solutions for Exam (a) A linear combination of vectors {v,..., v n } is: any vector of the form c v + c v + + c n v n (b) A set of vectors {v,...,

More information

Announcements August 31

Announcements August 31 Announcements August 31 Homeworks 1.1 and 1.2 are due Friday. The first quiz is on Friday, during recitation. Quizzes mostly test your understanding of the homework. There will generally be a quiz every

More information

Math 3A Winter 2016 Midterm

Math 3A Winter 2016 Midterm Math 3A Winter 016 Midterm Name Signature UCI ID # E-mail address There are 7 problems for a total of 115 points. Present your work as clearly as possible. Partial credit will be awarded, and you must

More information

Vector Spaces. (1) Every vector space V has a zero vector 0 V

Vector Spaces. (1) Every vector space V has a zero vector 0 V Vector Spaces 1. Vector Spaces A (real) vector space V is a set which has two operations: 1. An association of x, y V to an element x+y V. This operation is called vector addition. 2. The association of

More information

MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian.

MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian. MATH 304 Linear Algebra Lecture 10: Linear independence. Wronskian. Spanning set Let S be a subset of a vector space V. Definition. The span of the set S is the smallest subspace W V that contains S. If

More information