Simulation of Max Stable Processes

Size: px
Start display at page:

Download "Simulation of Max Stable Processes"

Transcription

1 Simulation of Max Stable Processes Whitney Huang Department of Statistics Purdue University November 6, / 30

2 Outline 1 Max-Stable Processes 2 Unconditional Simulations 3 Conditional Simulations 4 Simulations in R 2 / 30

3 Max-Stable Processes Definition: Max-stable processes A stochastic process {Y (x)} x X is max-stable if there exist functions {a n (x)} x X > 0 and {b n (x)} x X such that { M n(x) b n (x) d } x X = {Y (x)}x X, n 1 (1) a n (x) where M n (x) = max i=1,,n Y i (x), Y 1,, Y n be the independent copies of Y Remarks: X is a finite set Y is a multivarite extreme value distribution For any fixed x X Y is Generalized Extreme Value distribution (GEV) with parameters {µ(x), σ(x), ξ(x)} 3 / 30

4 Max-Stable Processes Max-stable Processes Without loss of generality we assume each margin follow unit Fréchet distribution i.e. P(Z z) = exp( 1 z ) z > 0 this can be achieved by applying the monotone transformation Z (x) = [ 1 + ξ(x)(y (x) µ(x)) σ(x) ] 1 ξ(x) x X In such case, a n (x) = n and b n (x) = 0 x X i.e. { n i=1 Z i(x)} x X d = {nz (x)}x X, n 1 4 / 30

5 Max-Stable Processes Max-stable Processes Without loss of generality we assume each margin follow unit Fréchet distribution i.e. P(Z z) = exp( 1 z ) z > 0 this can be achieved by applying the monotone transformation Z (x) = [ 1 + ξ(x)(y (x) µ(x)) σ(x) ] 1 ξ(x) x X In such case, a n (x) = n and b n (x) = 0 x X i.e. { n i=1 Z i(x)} x X d = {nz (x)}x X, n 1 4 / 30

6 Max-Stable Processes Max-stable Processes Without loss of generality we assume each margin follow unit Fréchet distribution i.e. P(Z z) = exp( 1 z ) z > 0 this can be achieved by applying the monotone transformation Z (x) = [ 1 + ξ(x)(y (x) µ(x)) σ(x) ] 1 ξ(x) x X In such case, a n (x) = n and b n (x) = 0 x X i.e. { n i=1 Z i(x)} x X d = {nz (x)}x X, n 1 4 / 30

7 Max-Stable Processes Spectral Representations I Theorem (de Haan, 1984) Let {(ζ i, U i )} i 1 be the points of a Poisson process on (0, ] R d with intensity dλ(ζ, u) = ζ 2 dζν(du), ν a σ-finite measure on R d. Let {Z (x)} x R d be a max-stable process with unit Fréchet margins, then there exist non-negative continuous functions {f x (y) : x, y R d } such that R d f x (y) ν(dy) = 1 x R d, then {Z (x)} x R d d = ζ i f x (U i ) i 1 x R d 5 / 30

8 Max-Stable Processes Storm Interpretation de Haan s spectral representation has a storm interpretation : {ζ i } i 1 storm ferocities {U i } i 1 storm center ζ i f x (U i ) quantity of rain at x for the i th storm 6 / 30

9 Max-Stable Processes Storm Interpretation cont d de Haan s spectral representation has a storm interpretation : {ζ i } i 1 storm ferocities {U i } i 1 storm center ζ i f x (U i ) quantity of rain at x for the i th storm 7 / 30

10 Max-Stable Processes Spectral Representations II Theorem (Schlather, 2002) Let {ζ i } i 1 be the points of Poisson process on (0, ] with intensity dλ(ζ) = ζ 2 dζ and Y 1, Y 2, be independent copies of a non-negative stochastic process {Y (x)} x R d such that E[Y (x)] = 1 x R d. Suppose {ζ i } i 1 independent of Y i s. Then d {Z (x)} x R d = ζ i Y i (x) i 1 x R d is max-stable process with unit Fréchet marginals 8 / 30

11 Max-Stable Processes Schlather s spectral representation There is no storm" interpretation in Schlather s representation It allows a random shapes for the storms" since {Y (x)} x R d is a stochastic process 9 / 30

12 Max-Stable Processes Schlather s spectral representation cont d There is no storm" interpretation in Schlather s representation It allows a random shapes for the storms" since {Y (x)} x R d is a stochastic process 10 / 30

13 Max-Stable Processes Smith Model The first max-stable model in spatial extremes literature was introduced by R. Smith by utilizing de Haan s spectral representation: {Z (x)} x R 2 = max i 1 ζ iφ(x U i ; 0, Σ), x R 2 where φ( ; 0, Σ) is the bivariate normal density with mean 0 and covariance matrix Σ 11 / 30

14 Max-Stable Processes Schlather Model The second model in spatial extremes literature was due to M. Schlather: {Z (x)} x R 2 = max ζ i 2[Yi (x)] +, x R 2 i 1 where {Y i (x)} x R 2 i is the independent copies of a standard Gaussian Process with correlation function ρ 12 / 30

15 Unconditional Simulations Recall the spectral representation: Z (x) = max i 1 ζ iy i (x), x X R 2 In order to simulate Z (x) x X we need to simulate Points of Poisson process with intensity ζ 2 dζ on (0, ] Y (x) at some fixed locations We need infinite number of these! 13 / 30

16 Unconditional Simulations Recall the spectral representation: Z (x) = max i 1 ζ iy i (x), x X R 2 In order to simulate Z (x) x X we need to simulate Points of Poisson process with intensity ζ 2 dζ on (0, ] Y (x) at some fixed locations We need infinite number of these! 13 / 30

17 Unconditional Simulations Recall the spectral representation: Z (x) = max i 1 ζ iy i (x), x X R 2 In order to simulate Z (x) x X we need to simulate Points of Poisson process with intensity ζ 2 dζ on (0, ] Y (x) at some fixed locations We need infinite number of these! 13 / 30

18 Unconditional Simulations Recall the spectral representation: Z (x) = max i 1 ζ iy i (x), x X R 2 In order to simulate Z (x) x X we need to simulate Points of Poisson process with intensity ζ 2 dζ on (0, ] Y (x) at some fixed locations We need infinite number of these! 13 / 30

19 Unconditional Simulations Notice that the points of Poisson process with intensity ζ 2 dζ on (0, ] can be simulated as a strictly decreasing sequence by { } d 1 i.i.d. {ζ i } i 1 = i j=1 E, E i Exp(1) i It implies that if {Y (x)} x X is uniformly bounded by C (0, ) then ζ i Y i (x) will not contribute to Z (x) for i i 0 we only need to simulate i 0 (finite number) of these! i 1 14 / 30

20 Unconditional Simulations 15 / 30

21 Unconditional Simulations 16 / 30

22 Unconditional Simulations 17 / 30

23 Unconditional Simulations 18 / 30

24 Conditional Simulations Goal: Given {Z (x 1 ) = z 1,, Z (x n ) = z n } want to get the (regular) conditional distribution of Z (x) x X It plays an important role for interpolating the spatial extremal surface If {Z (x)} x X is a Gaussian process, then the conditional simulation can be thought as the interpolation of spatial mean surface Other than Gaussian process, the conditional distribution is difficult 19 / 30

25 Conditional Simulations Max-Linear Approximation for Max-Stable Processes Approximate {Z (x)} x X with a Max-Linear models {Z (x)} x X p a i,j Z j := A Z Z j i.i.d. α-fréchet, a i,j deterministic (known) such that a i,j 0 j=1 Max-Linear models approximate arbitrary max-stable processes with p sufficiently large 20 / 30

26 Conditional Simulations Conditional sampling for Max-Linear models Wang & Stoev, 2011 derive the explicit formula of conditional distribution for max-linear models The structure of max-linear models imposes some constraints, namely z i Z j min i=1,,n a i,j := ẑ j, inequality constraints Z J = ẑ J for some J {1,, p}, hitting constraints 21 / 30

27 Conditional Simulations A Toy Example on Max-Linear models Suppose n = p = 3 and z 1 = Z 1 i.e. z 2 = Z 1 Z2 z 3 = Z 1 Z2 Z3 A = / 30

28 Conditional Simulations A Toy Example cont d (i) If z = (z 1, z 2, z 3 ) T = (1, 2, 3) T Z = (1, 2, 3) T The hitting constraints hold for Z 1, Z 2, and Z 3, hence J = (1, 2, 3), (ii) If z = (z 1, z 2, z 3 ) T = (1, 1, 3) T Z = (Z 1 = 1, Z 2 1, Z 3 = 3) T The hitting constraints hold for Z 1, Z 3, while the inequality constraint hold for Z 2 i.e. 0 < Z 2 1, hence J = (1, 3) 23 / 30

29 Conditional Simulations Algorithm 1 Compute ẑ j, j = 1,, p 2 Determine all hitting scenarios J, and the distribution of Z J for each hitting scenarios 3 Sample the conditional distribution from the mixture distribution of each hitting scenarios Remarks: To identify all hitting scenarios is NP-hard By the max-linear structure, with probability 1, the hitting scenarios has a nice structure which leads to an efficient algorithm 24 / 30

30 Simulations in R Package SpatialExtremes SpatialExtremes is a R package written by M. Ribatet Statistical models for spatial extremes based on latent variables, on copulas and on max-stable processes are implemented It also provides unconditional/conditional simulations on max-stable processes 25 / 30

31 Simulations in R rmaxstab: Unconditional simulations on max-stable processes (a) Smith Model (b) Schlather Model 26 / 30

32 Z Z Simulations in R x y x y 27 / 30

33 Simulations in R condrmaxlin: Conditional sampling for Max-Linear models Figure: Four conditional simulations for Smith model, p = / 30

34 Simulations in R 29 / 30

35 References de Haan, L. A spectral representation for max-stable processes The Annals of Probability, , 1984 Schlather, M. Models for stationary max-stable random fields Extremes, 5(1), 33:44, 2002 Smith, R. L. Max-stable processes and spatial extremes Unpublished manuscript, 1990 Wang, Y. & Stoev, S. A. Conditional sampling for spectrally discrete max-stable random fields Adv. Appl. Prob., 43, , / 30

Conditional Sampling for Max Stable Random Fields

Conditional Sampling for Max Stable Random Fields Conditional Sampling for Max Stable Random Fields Yizao Wang Department of Statistics, the University of Michigan April 30th, 0 th GSPC at Duke University, Durham, North Carolina Joint work with Stilian

More information

Max stable Processes & Random Fields: Representations, Models, and Prediction

Max stable Processes & Random Fields: Representations, Models, and Prediction Max stable Processes & Random Fields: Representations, Models, and Prediction Stilian Stoev University of Michigan, Ann Arbor March 2, 2011 Based on joint works with Yizao Wang and Murad S. Taqqu. 1 Preliminaries

More information

Extreme Value Analysis and Spatial Extremes

Extreme Value Analysis and Spatial Extremes Extreme Value Analysis and Department of Statistics Purdue University 11/07/2013 Outline Motivation 1 Motivation 2 Extreme Value Theorem and 3 Bayesian Hierarchical Models Copula Models Max-stable Models

More information

Modelling spatial extremes using max-stable processes

Modelling spatial extremes using max-stable processes Chapter 1 Modelling spatial extremes using max-stable processes Abstract This chapter introduces the theory related to the statistical modelling of spatial extremes. The presented modelling strategy heavily

More information

Max-stable processes: Theory and Inference

Max-stable processes: Theory and Inference 1/39 Max-stable processes: Theory and Inference Mathieu Ribatet Institute of Mathematics, EPFL Laboratory of Environmental Fluid Mechanics, EPFL joint work with Anthony Davison and Simone Padoan 2/39 Outline

More information

The Poisson storm process Extremal coefficients and simulation

The Poisson storm process Extremal coefficients and simulation The Poisson storm process Extremal coefficients and simulation C. Lantuéjoul 1, J.N. Bacro 2 and L. Bel 3 1 MinesParisTech 2 Université de Montpellier II 3 AgroParisTech 1 Storm process Introduced by Smith

More information

Max-stable processes and annual maximum snow depth

Max-stable processes and annual maximum snow depth Max-stable processes and annual maximum snow depth Juliette Blanchet blanchet@slf.ch 6th International Conference on Extreme Value Analysis June 23-26, 2009 Outline Motivation Max-stable process - Schlather

More information

Joint Gaussian Graphical Model Review Series I

Joint Gaussian Graphical Model Review Series I Joint Gaussian Graphical Model Review Series I Probability Foundations Beilun Wang Advisor: Yanjun Qi 1 Department of Computer Science, University of Virginia http://jointggm.org/ June 23rd, 2017 Beilun

More information

Covariance. Lecture 20: Covariance / Correlation & General Bivariate Normal. Covariance, cont. Properties of Covariance

Covariance. Lecture 20: Covariance / Correlation & General Bivariate Normal. Covariance, cont. Properties of Covariance Covariance Lecture 0: Covariance / Correlation & General Bivariate Normal Sta30 / Mth 30 We have previously discussed Covariance in relation to the variance of the sum of two random variables Review Lecture

More information

The extremal elliptical model: Theoretical properties and statistical inference

The extremal elliptical model: Theoretical properties and statistical inference 1/25 The extremal elliptical model: Theoretical properties and statistical inference Thomas OPITZ Supervisors: Jean-Noel Bacro, Pierre Ribereau Institute of Mathematics and Modeling in Montpellier (I3M)

More information

Models for Spatial Extremes. Dan Cooley Department of Statistics Colorado State University. Work supported in part by NSF-DMS

Models for Spatial Extremes. Dan Cooley Department of Statistics Colorado State University. Work supported in part by NSF-DMS Models for Spatial Extremes Dan Cooley Department of Statistics Colorado State University Work supported in part by NSF-DMS 0905315 Outline 1. Introduction Statistics for Extremes Climate and Weather 2.

More information

Statistical modelling of spatial extremes using the SpatialExtremes package

Statistical modelling of spatial extremes using the SpatialExtremes package Statistical modelling of spatial extremes using the SpatialExtremes package M. Ribatet University of Montpellier TheSpatialExtremes package Mathieu Ribatet 1 / 39 Rationale for thespatialextremes package

More information

A User s Guide to the SpatialExtremes Package

A User s Guide to the SpatialExtremes Package A User s Guide to the SpatialExtremes Package Mathieu Ribatet Copyright 2009 Chair of Statistics École Polytechnique Fédérale de Lausanne Switzerland Contents Introduction 1 1 An Introduction to Max-Stable

More information

arxiv:math/ v1 [math.st] 16 May 2006

arxiv:math/ v1 [math.st] 16 May 2006 The Annals of Statistics 006 Vol 34 No 46 68 DOI: 04/009053605000000886 c Institute of Mathematical Statistics 006 arxiv:math/0605436v [mathst] 6 May 006 SPATIAL EXTREMES: MODELS FOR THE STATIONARY CASE

More information

Extreme value statistics: from one dimension to many. Lecture 1: one dimension Lecture 2: many dimensions

Extreme value statistics: from one dimension to many. Lecture 1: one dimension Lecture 2: many dimensions Extreme value statistics: from one dimension to many Lecture 1: one dimension Lecture 2: many dimensions The challenge for extreme value statistics right now: to go from 1 or 2 dimensions to 50 or more

More information

CRPS M-ESTIMATION FOR MAX-STABLE MODELS WORKING MANUSCRIPT DO NOT DISTRIBUTE. By Robert A. Yuen and Stilian Stoev University of Michigan

CRPS M-ESTIMATION FOR MAX-STABLE MODELS WORKING MANUSCRIPT DO NOT DISTRIBUTE. By Robert A. Yuen and Stilian Stoev University of Michigan arxiv: math.pr/ CRPS M-ESTIMATION FOR MAX-STABLE MODELS WORKING MANUSCRIPT DO NOT DISTRIBUTE By Robert A. Yuen and Stilian Stoev University of Michigan Max-stable random fields provide canonical models

More information

Estimation of spatial max-stable models using threshold exceedances

Estimation of spatial max-stable models using threshold exceedances Estimation of spatial max-stable models using threshold exceedances arxiv:1205.1107v1 [stat.ap] 5 May 2012 Jean-Noel Bacro I3M, Université Montpellier II and Carlo Gaetan DAIS, Università Ca Foscari -

More information

Modelling Multivariate Peaks-over-Thresholds using Generalized Pareto Distributions

Modelling Multivariate Peaks-over-Thresholds using Generalized Pareto Distributions Modelling Multivariate Peaks-over-Thresholds using Generalized Pareto Distributions Anna Kiriliouk 1 Holger Rootzén 2 Johan Segers 1 Jennifer L. Wadsworth 3 1 Université catholique de Louvain (BE) 2 Chalmers

More information

Max stable processes: representations, ergodic properties and some statistical applications

Max stable processes: representations, ergodic properties and some statistical applications Max stable processes: representations, ergodic properties and some statistical applications Stilian Stoev University of Michigan, Ann Arbor Oberwolfach March 21, 2008 The focus Let X = {X t } t R be a

More information

Bivariate generalized Pareto distribution

Bivariate generalized Pareto distribution Bivariate generalized Pareto distribution in practice Eötvös Loránd University, Budapest, Hungary Minisymposium on Uncertainty Modelling 27 September 2011, CSASC 2011, Krems, Austria Outline Short summary

More information

Conditional simulations of max-stable processes

Conditional simulations of max-stable processes Conditional simulations of max-stable processes C. Dombry, F. Éyi-Minko, M. Ribatet Laboratoire de Mathématiques et Application, Université de Poitiers Institut de Mathématiques et de Modélisation, Université

More information

Random Vectors 1. STA442/2101 Fall See last slide for copyright information. 1 / 30

Random Vectors 1. STA442/2101 Fall See last slide for copyright information. 1 / 30 Random Vectors 1 STA442/2101 Fall 2017 1 See last slide for copyright information. 1 / 30 Background Reading: Renscher and Schaalje s Linear models in statistics Chapter 3 on Random Vectors and Matrices

More information

Reliability Theory of Dynamic Loaded Structures (cont.) Calculation of Out-Crossing Frequencies Approximations to the Failure Probability.

Reliability Theory of Dynamic Loaded Structures (cont.) Calculation of Out-Crossing Frequencies Approximations to the Failure Probability. Outline of Reliability Theory of Dynamic Loaded Structures (cont.) Calculation of Out-Crossing Frequencies Approximations to the Failure Probability. Poisson Approximation. Upper Bound Solution. Approximation

More information

Extremogram and ex-periodogram for heavy-tailed time series

Extremogram and ex-periodogram for heavy-tailed time series Extremogram and ex-periodogram for heavy-tailed time series 1 Thomas Mikosch University of Copenhagen Joint work with Richard A. Davis (Columbia) and Yuwei Zhao (Ulm) 1 Zagreb, June 6, 2014 1 2 Extremal

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Bivariate Paired Numerical Data

Bivariate Paired Numerical Data Bivariate Paired Numerical Data Pearson s correlation, Spearman s ρ and Kendall s τ, tests of independence University of California, San Diego Instructor: Ery Arias-Castro http://math.ucsd.edu/~eariasca/teaching.html

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as L30-1 EEL 5544 Noise in Linear Systems Lecture 30 OTHER TRANSFORMS For a continuous, nonnegative RV X, the Laplace transform of X is X (s) = E [ e sx] = 0 f X (x)e sx dx. For a nonnegative RV, the Laplace

More information

Gauge Plots. Gauge Plots JAPANESE BEETLE DATA MAXIMUM LIKELIHOOD FOR SPATIALLY CORRELATED DISCRETE DATA JAPANESE BEETLE DATA

Gauge Plots. Gauge Plots JAPANESE BEETLE DATA MAXIMUM LIKELIHOOD FOR SPATIALLY CORRELATED DISCRETE DATA JAPANESE BEETLE DATA JAPANESE BEETLE DATA 6 MAXIMUM LIKELIHOOD FOR SPATIALLY CORRELATED DISCRETE DATA Gauge Plots TuscaroraLisa Central Madsen Fairways, 996 January 9, 7 Grubs Adult Activity Grub Counts 6 8 Organic Matter

More information

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline.

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline. Practitioner Course: Portfolio Optimization September 10, 2008 Before we define dependence, it is useful to define Random variables X and Y are independent iff For all x, y. In particular, F (X,Y ) (x,

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Modelling Dependent Credit Risks

Modelling Dependent Credit Risks Modelling Dependent Credit Risks Filip Lindskog, RiskLab, ETH Zürich 30 November 2000 Home page:http://www.math.ethz.ch/ lindskog E-mail:lindskog@math.ethz.ch RiskLab:http://www.risklab.ch Modelling Dependent

More information

. Find E(V ) and var(v ).

. Find E(V ) and var(v ). Math 6382/6383: Probability Models and Mathematical Statistics Sample Preliminary Exam Questions 1. A person tosses a fair coin until she obtains 2 heads in a row. She then tosses a fair die the same number

More information

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case

The largest eigenvalues of the sample covariance matrix. in the heavy-tail case The largest eigenvalues of the sample covariance matrix 1 in the heavy-tail case Thomas Mikosch University of Copenhagen Joint work with Richard A. Davis (Columbia NY), Johannes Heiny (Aarhus University)

More information

Estimating Bivariate Tail: a copula based approach

Estimating Bivariate Tail: a copula based approach Estimating Bivariate Tail: a copula based approach Elena Di Bernardino, Université Lyon 1 - ISFA, Institut de Science Financiere et d'assurances - AST&Risk (ANR Project) Joint work with Véronique Maume-Deschamps

More information

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University FEATURE EXPANSIONS FEATURE EXPANSIONS

More information

Stochastic Spectral Approaches to Bayesian Inference

Stochastic Spectral Approaches to Bayesian Inference Stochastic Spectral Approaches to Bayesian Inference Prof. Nathan L. Gibson Department of Mathematics Applied Mathematics and Computation Seminar March 4, 2011 Prof. Gibson (OSU) Spectral Approaches to

More information

Statistical Physics on Sparse Random Graphs: Mathematical Perspective

Statistical Physics on Sparse Random Graphs: Mathematical Perspective Statistical Physics on Sparse Random Graphs: Mathematical Perspective Amir Dembo Stanford University Northwestern, July 19, 2016 x 5 x 6 Factor model [DM10, Eqn. (1.4)] x 1 x 2 x 3 x 4 x 9 x8 x 7 x 10

More information

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation

A Framework for Daily Spatio-Temporal Stochastic Weather Simulation A Framework for Daily Spatio-Temporal Stochastic Weather Simulation, Rick Katz, Balaji Rajagopalan Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric

More information

Chapter 2. Discrete Distributions

Chapter 2. Discrete Distributions Chapter. Discrete Distributions Objectives ˆ Basic Concepts & Epectations ˆ Binomial, Poisson, Geometric, Negative Binomial, and Hypergeometric Distributions ˆ Introduction to the Maimum Likelihood Estimation

More information

Dependence. MFM Practitioner Module: Risk & Asset Allocation. John Dodson. September 11, Dependence. John Dodson. Outline.

Dependence. MFM Practitioner Module: Risk & Asset Allocation. John Dodson. September 11, Dependence. John Dodson. Outline. MFM Practitioner Module: Risk & Asset Allocation September 11, 2013 Before we define dependence, it is useful to define Random variables X and Y are independent iff For all x, y. In particular, F (X,Y

More information

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp

Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Handbook of Spatial Statistics Chapter 2: Continuous Parameter Stochastic Process Theory by Gneiting and Guttorp Marcela Alfaro Córdoba August 25, 2016 NCSU Department of Statistics Continuous Parameter

More information

Geostatistics of Extremes

Geostatistics of Extremes Geostatistics of Extremes Anthony Davison Joint with Mohammed Mehdi Gholamrezaee, Juliette Blanchet, Simone Padoan, Mathieu Ribatet Funding: Swiss National Science Foundation, ETH Competence Center for

More information

A Note on Hilbertian Elliptically Contoured Distributions

A Note on Hilbertian Elliptically Contoured Distributions A Note on Hilbertian Elliptically Contoured Distributions Yehua Li Department of Statistics, University of Georgia, Athens, GA 30602, USA Abstract. In this paper, we discuss elliptically contoured distribution

More information

Bayesian spatial quantile regression

Bayesian spatial quantile regression Brian J. Reich and Montserrat Fuentes North Carolina State University and David B. Dunson Duke University E-mail:reich@stat.ncsu.edu Tropospheric ozone Tropospheric ozone has been linked with several adverse

More information

Copula modeling for discrete data

Copula modeling for discrete data Copula modeling for discrete data Christian Genest & Johanna G. Nešlehová in collaboration with Bruno Rémillard McGill University and HEC Montréal ROBUST, September 11, 2016 Main question Suppose (X 1,

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

Chapter 6: Random Processes 1

Chapter 6: Random Processes 1 Chapter 6: Random Processes 1 Yunghsiang S. Han Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw 1 Modified from the lecture notes by Prof.

More information

ON EXTREME VALUE ANALYSIS OF A SPATIAL PROCESS

ON EXTREME VALUE ANALYSIS OF A SPATIAL PROCESS REVSTAT Statistical Journal Volume 6, Number 1, March 008, 71 81 ON EXTREME VALUE ANALYSIS OF A SPATIAL PROCESS Authors: Laurens de Haan Erasmus University Rotterdam and University Lisbon, The Netherlands

More information

Tail empirical process for long memory stochastic volatility models

Tail empirical process for long memory stochastic volatility models Tail empirical process for long memory stochastic volatility models Rafa l Kulik and Philippe Soulier Carleton University, 5 May 2010 Rafa l Kulik and Philippe Soulier Quick review of limit theorems and

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics. Probability Distributions Prof. Dr. Klaus Reygers (lectures) Dr. Sebastian Neubert (tutorials) Heidelberg University WS 07/8 Gaussian g(x; µ, )= p exp (x µ) https://en.wikipedia.org/wiki/normal_distribution

More information

Supermodular ordering of Poisson arrays

Supermodular ordering of Poisson arrays Supermodular ordering of Poisson arrays Bünyamin Kızıldemir Nicolas Privault Division of Mathematical Sciences School of Physical and Mathematical Sciences Nanyang Technological University 637371 Singapore

More information

On estimating extreme tail. probabilities of the integral of. a stochastic process

On estimating extreme tail. probabilities of the integral of. a stochastic process On estimating extreme tail probabilities of the integral of a stochastic process Ana Ferreira Instituto uperior de Agronomia, UTL and CEAUL Laurens de Haan University of Tilburg, Erasmus University Rotterdam

More information

Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes

Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes TTU, October 26, 2012 p. 1/3 Karhunen-Loeve Expansion and Optimal Low-Rank Model for Spatial Processes Hao Zhang Department of Statistics Department of Forestry and Natural Resources Purdue University

More information

Concentration of Measures by Bounded Couplings

Concentration of Measures by Bounded Couplings Concentration of Measures by Bounded Couplings Subhankar Ghosh, Larry Goldstein and Ümit Işlak University of Southern California [arxiv:0906.3886] [arxiv:1304.5001] May 2013 Concentration of Measure Distributional

More information

Max-stable Processes for Threshold Exceedances in Spatial Extremes

Max-stable Processes for Threshold Exceedances in Spatial Extremes Max-stable Processes for Threshold Exceedances in Spatial Extremes Soyoung Jeon A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

Multivariate Heavy Tails, Asymptotic Independence and Beyond

Multivariate Heavy Tails, Asymptotic Independence and Beyond Multivariate Heavy Tails, endence and Beyond Sidney Resnick School of Operations Research and Industrial Engineering Rhodes Hall Cornell University Ithaca NY 14853 USA http://www.orie.cornell.edu/ sid

More information

Stable Process. 2. Multivariate Stable Distributions. July, 2006

Stable Process. 2. Multivariate Stable Distributions. July, 2006 Stable Process 2. Multivariate Stable Distributions July, 2006 1. Stable random vectors. 2. Characteristic functions. 3. Strictly stable and symmetric stable random vectors. 4. Sub-Gaussian random vectors.

More information

Lect4: Exact Sampling Techniques and MCMC Convergence Analysis

Lect4: Exact Sampling Techniques and MCMC Convergence Analysis Lect4: Exact Sampling Techniques and MCMC Convergence Analysis. Exact sampling. Convergence analysis of MCMC. First-hit time analysis for MCMC--ways to analyze the proposals. Outline of the Module Definitions

More information

conditional cdf, conditional pdf, total probability theorem?

conditional cdf, conditional pdf, total probability theorem? 6 Multiple Random Variables 6.0 INTRODUCTION scalar vs. random variable cdf, pdf transformation of a random variable conditional cdf, conditional pdf, total probability theorem expectation of a random

More information

STAT 992 Paper Review: Sure Independence Screening in Generalized Linear Models with NP-Dimensionality J.Fan and R.Song

STAT 992 Paper Review: Sure Independence Screening in Generalized Linear Models with NP-Dimensionality J.Fan and R.Song STAT 992 Paper Review: Sure Independence Screening in Generalized Linear Models with NP-Dimensionality J.Fan and R.Song Presenter: Jiwei Zhao Department of Statistics University of Wisconsin Madison April

More information

Extremogram and Ex-Periodogram for heavy-tailed time series

Extremogram and Ex-Periodogram for heavy-tailed time series Extremogram and Ex-Periodogram for heavy-tailed time series 1 Thomas Mikosch University of Copenhagen Joint work with Richard A. Davis (Columbia) and Yuwei Zhao (Ulm) 1 Jussieu, April 9, 2014 1 2 Extremal

More information

The Poisson Channel with Side Information

The Poisson Channel with Side Information The Poisson Channel with Side Information Shraga Bross School of Enginerring Bar-Ilan University, Israel brosss@macs.biu.ac.il Amos Lapidoth Ligong Wang Signal and Information Processing Laboratory ETH

More information

arxiv: v2 [math.pr] 21 Apr 2017

arxiv: v2 [math.pr] 21 Apr 2017 Spectral tail processes and max-stable approximations of multivariate regularly varying time series arxiv:1704.06179v2 [math.pr] 21 Apr 2017 Anja Janßen April 24, 2017 Abstract A regularly varying time

More information

Clustering. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, / 26

Clustering. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, / 26 Clustering Professor Ameet Talwalkar Professor Ameet Talwalkar CS26 Machine Learning Algorithms March 8, 217 1 / 26 Outline 1 Administration 2 Review of last lecture 3 Clustering Professor Ameet Talwalkar

More information

Probability Space. J. McNames Portland State University ECE 538/638 Stochastic Signals Ver

Probability Space. J. McNames Portland State University ECE 538/638 Stochastic Signals Ver Stochastic Signals Overview Definitions Second order statistics Stationarity and ergodicity Random signal variability Power spectral density Linear systems with stationary inputs Random signal memory Correlation

More information

Communication Theory II

Communication Theory II Communication Theory II Lecture 8: Stochastic Processes Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt March 5 th, 2015 1 o Stochastic processes What is a stochastic process? Types:

More information

The Multivariate Normal Distribution 1

The Multivariate Normal Distribution 1 The Multivariate Normal Distribution 1 STA 302 Fall 2014 1 See last slide for copyright information. 1 / 37 Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ 2 and t distributions 2

More information

Threshold estimation in marginal modelling of spatially-dependent non-stationary extremes

Threshold estimation in marginal modelling of spatially-dependent non-stationary extremes Threshold estimation in marginal modelling of spatially-dependent non-stationary extremes Philip Jonathan Shell Technology Centre Thornton, Chester philip.jonathan@shell.com Paul Northrop University College

More information

1: PROBABILITY REVIEW

1: PROBABILITY REVIEW 1: PROBABILITY REVIEW Marek Rutkowski School of Mathematics and Statistics University of Sydney Semester 2, 2016 M. Rutkowski (USydney) Slides 1: Probability Review 1 / 56 Outline We will review the following

More information

Introduction to Normal Distribution

Introduction to Normal Distribution Introduction to Normal Distribution Nathaniel E. Helwig Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities) Updated 17-Jan-2017 Nathaniel E. Helwig (U of Minnesota) Introduction

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

Neighbourhoods of Randomness and Independence

Neighbourhoods of Randomness and Independence Neighbourhoods of Randomness and Independence C.T.J. Dodson School of Mathematics, Manchester University Augment information geometric measures in spaces of distributions, via explicit geometric representations

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables Joint Probability Density Let X and Y be two random variables. Their joint distribution function is F ( XY x, y) P X x Y y. F XY ( ) 1, < x

More information

Assessing the dependence of high-dimensional time series via sample autocovariances and correlations

Assessing the dependence of high-dimensional time series via sample autocovariances and correlations Assessing the dependence of high-dimensional time series via sample autocovariances and correlations Johannes Heiny University of Aarhus Joint work with Thomas Mikosch (Copenhagen), Richard Davis (Columbia),

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4. (*. Let independent variables X,..., X n have U(0, distribution. Show that for every x (0,, we have P ( X ( < x and P ( X (n > x as n. Ex. 4.2 (**. By using induction or otherwise,

More information

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017 Put your solution to each problem on a separate sheet of paper. Problem 1. (5106) Let X 1, X 2,, X n be a sequence of i.i.d. observations from a

More information

The Multivariate Gaussian Distribution

The Multivariate Gaussian Distribution The Multivariate Gaussian Distribution Chuong B. Do October, 8 A vector-valued random variable X = T X X n is said to have a multivariate normal or Gaussian) distribution with mean µ R n and covariance

More information

Lecture 6: Linear models and Gauss-Markov theorem

Lecture 6: Linear models and Gauss-Markov theorem Lecture 6: Linear models and Gauss-Markov theorem Linear model setting Results in simple linear regression can be extended to the following general linear model with independently observed response variables

More information

Conditional simulation of max-stable processes

Conditional simulation of max-stable processes Biometrika (1),,, pp. 1 1 3 4 5 6 7 C 7 Biometrika Trust Printed in Great Britain Conditional simulation of ma-stable processes BY C. DOMBRY, F. ÉYI-MINKO, Laboratoire de Mathématiques et Application,

More information

Marshall-Olkin Bivariate Exponential Distribution: Generalisations and Applications

Marshall-Olkin Bivariate Exponential Distribution: Generalisations and Applications CHAPTER 6 Marshall-Olkin Bivariate Exponential Distribution: Generalisations and Applications 6.1 Introduction Exponential distributions have been introduced as a simple model for statistical analysis

More information

Joint Probability Distributions and Random Samples (Devore Chapter Five)

Joint Probability Distributions and Random Samples (Devore Chapter Five) Joint Probability Distributions and Random Samples (Devore Chapter Five) 1016-345-01: Probability and Statistics for Engineers Spring 2013 Contents 1 Joint Probability Distributions 2 1.1 Two Discrete

More information

Risk Aggregation with Dependence Uncertainty

Risk Aggregation with Dependence Uncertainty Introduction Extreme Scenarios Asymptotic Behavior Challenges Risk Aggregation with Dependence Uncertainty Department of Statistics and Actuarial Science University of Waterloo, Canada Seminar at ETH Zurich

More information

Fast Direct Methods for Gaussian Processes

Fast Direct Methods for Gaussian Processes Fast Direct Methods for Gaussian Processes Mike O Neil Departments of Mathematics New York University oneil@cims.nyu.edu December 12, 2015 1 Collaborators This is joint work with: Siva Ambikasaran Dan

More information

ECON 3150/4150, Spring term Lecture 6

ECON 3150/4150, Spring term Lecture 6 ECON 3150/4150, Spring term 2013. Lecture 6 Review of theoretical statistics for econometric modelling (II) Ragnar Nymoen University of Oslo 31 January 2013 1 / 25 References to Lecture 3 and 6 Lecture

More information

Simulation of multivariate distributions with fixed marginals and correlations

Simulation of multivariate distributions with fixed marginals and correlations Simulation of multivariate distributions with fixed marginals and correlations Mark Huber and Nevena Marić June 24, 2013 Abstract Consider the problem of drawing random variates (X 1,..., X n ) from a

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information

Overview of Extreme Value Theory. Dr. Sawsan Hilal space

Overview of Extreme Value Theory. Dr. Sawsan Hilal space Overview of Extreme Value Theory Dr. Sawsan Hilal space Maths Department - University of Bahrain space November 2010 Outline Part-1: Univariate Extremes Motivation Threshold Exceedances Part-2: Bivariate

More information

ELEMENTS OF PROBABILITY THEORY

ELEMENTS OF PROBABILITY THEORY ELEMENTS OF PROBABILITY THEORY Elements of Probability Theory A collection of subsets of a set Ω is called a σ algebra if it contains Ω and is closed under the operations of taking complements and countable

More information

Gaussian processes for inference in stochastic differential equations

Gaussian processes for inference in stochastic differential equations Gaussian processes for inference in stochastic differential equations Manfred Opper, AI group, TU Berlin November 6, 2017 Manfred Opper, AI group, TU Berlin (TU Berlin) inference in SDE November 6, 2017

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 218 Outlines Overview Introduction Linear Algebra Probability Linear Regression 1

More information

Discrete solid-on-solid models

Discrete solid-on-solid models Discrete solid-on-solid models University of Alberta 2018 COSy, University of Manitoba - June 7 Discrete processes, stochastic PDEs, deterministic PDEs Table: Deterministic PDEs Heat-diffusion equation

More information

A PRACTICAL WAY FOR ESTIMATING TAIL DEPENDENCE FUNCTIONS

A PRACTICAL WAY FOR ESTIMATING TAIL DEPENDENCE FUNCTIONS Statistica Sinica 20 2010, 365-378 A PRACTICAL WAY FOR ESTIMATING TAIL DEPENDENCE FUNCTIONS Liang Peng Georgia Institute of Technology Abstract: Estimating tail dependence functions is important for applications

More information

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014.

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014. Clustering K-means Machine Learning CSE546 Carlos Guestrin University of Washington November 4, 2014 1 Clustering images Set of Images [Goldberger et al.] 2 1 K-means Randomly initialize k centers µ (0)

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

ESTIMATING BIVARIATE TAIL

ESTIMATING BIVARIATE TAIL Elena DI BERNARDINO b joint work with Clémentine PRIEUR a and Véronique MAUME-DESCHAMPS b a LJK, Université Joseph Fourier, Grenoble 1 b Laboratoire SAF, ISFA, Université Lyon 1 Framework Goal: estimating

More information

E[X n ]= dn dt n M X(t). ). What is the mgf? Solution. Found this the other day in the Kernel matching exercise: 1 M X (t) =

E[X n ]= dn dt n M X(t). ). What is the mgf? Solution. Found this the other day in the Kernel matching exercise: 1 M X (t) = Chapter 7 Generating functions Definition 7.. Let X be a random variable. The moment generating function is given by M X (t) =E[e tx ], provided that the expectation exists for t in some neighborhood of

More information

Sequential Monte Carlo Samplers for Applications in High Dimensions

Sequential Monte Carlo Samplers for Applications in High Dimensions Sequential Monte Carlo Samplers for Applications in High Dimensions Alexandros Beskos National University of Singapore KAUST, 26th February 2014 Joint work with: Dan Crisan, Ajay Jasra, Nik Kantas, Alex

More information