Trial division, Pollard s p 1, Pollard s ρ, and Fermat s method. Christopher Koch 1. April 8, 2014

Size: px
Start display at page:

Download "Trial division, Pollard s p 1, Pollard s ρ, and Fermat s method. Christopher Koch 1. April 8, 2014"

Transcription

1 Iteger Divisio Algorithm ad Cogruece Iteger Trial divisio,,, ad with itegers mod Iverses mod Multiplicatio ad GCD Iteger Christopher Koch 1 1 Departmet of Computer Sciece ad Egieerig CSE489/589 Algorithms i CS & IT New Mexico Tech April 8, 2014 Floyd s cycle-fidig

2 Iteger Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger Floyd s cycle-fidig Itro to modular arithmetic Euler s theorem ad Fermat s little theorem Trial divisio method Floyd s cycle-fidig algorithm method (Mote Carlo factorizatio) Covetio a, b, c, d, m, are itegers, p, q are primes

3 Iteger Divisio Algorithm ad Cogruece with itegers mod a b (a divides b) if b is a multiple of a. quotiet ad remaider uique i iteger divisio Cogruece modulo : a b (mod ) iff (a b). Iverses mod Multiplicatio ad GCD Iteger Floyd s cycle-fidig

4 Iteger Divisio Algorithm ad Cogruece with itegers mod Iverses mod Residue classes Cogruece modulo is a equivalece relatio o itegers. Equivalece classes: oe for each remaider Called residue classes mod [a] = {x x a (mod )}. Multiplicatio ad GCD Iteger Floyd s cycle-fidig

5 Iteger Divisio Algorithm ad Cogruece : set of residue classes mod : Z/Z = {[r] r Z}. How to do arithmetic i mod? What is [3] 4 + [1] 4? with itegers mod Iverses mod Multiplicatio ad GCD Iteger Floyd s cycle-fidig

6 Iteger mod Divisio Algorithm ad Cogruece with itegers mod Defiitio Let Z + ad a, b Z. The, [a] + [b] = [a + b] [a] [b] = [a b] Iverses mod Multiplicatio ad GCD Iteger Floyd s cycle-fidig Similarly, [a] [b] = [a] + [ b] = [a b].

7 Iteger Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger gcd(a, b) is the greatest commo divisor of a ad b a, b are called coprime or relatively prime if gcd(a, b) = 1. a is called a totative of b ad vice versa. Bézout s idetity: If gcd(, m) = d, the there exist k, l s.t. k + ml = d. ϕ() couts the umber totatives less tha : ϕ() = {c 1 c < ad gcd(c, ) = 1}. We have ϕ(m) = ϕ()ϕ(m). Floyd s cycle-fidig

8 Iteger Iverses mod Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger Notice: o divisio i mod! Divisio is usually defied as multiplicatio by the multiplicative iverse. Multiplicative iverse of [a] is [b] such that [a] [b] = [1] ; i.e. ab 1 (mod ). Floyd s cycle-fidig

9 Iteger Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger Theorem [a] Z/Z has a multiplicative iverse if ad oly if gcd(a, ) = 1. Drawig from previous example: gcd(4, 2) = 2, while gcd(4, 7) = 1. That meas that every elemet except 0 i Z/pZ has a iverse, sice a prime is coprime to every elemet below it. Bézout s idetity agai: gcd(m, ) = 1, the m[m 1 ] + [ 1 ] m = 1. Floyd s cycle-fidig

10 Iteger Euler s ad Fermat s Theorems Divisio Algorithm ad Cogruece Theorem (Euler, Euler totiet, Euler-Fermat) Let a, be coprime. The, with itegers mod Iverses mod Multiplicatio ad GCD Iteger Floyd s cycle-fidig a ϕ() 1 Corollary (Fermat) Uless a is a multiple of p, a p 1 1 (mod ). (mod p).

11 Iteger Multiplicatio ad GCD Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger Floyd s cycle-fidig Covetio We will deote the cost of multiplicatio by M () ad the cost of the GCD by G() for -digit umbers. Schoolbook multiplicatio: M () O( 2 ). Schöhage-Strasse: M () O( lg lg lg ). Euclidea GCD: G() O( 2 ). Schöhage s GCD: G() O(M () lg ). expoetiatio (a k where c = max(lg a, lg b). mod b): O(M (c) lg k),

12 Iteger Divisio Algorithm ad Cogruece with itegers mod Iteger Theorem (Fudametal Theorem of ) Let be a iteger. The there exist uique primes p 1, p 2,, p k ot ecessarily distict such that = p 1 p 2 p k. Iverses mod Multiplicatio ad GCD Iteger I essece, every iteger ca be factored uiquely ito primes. For example, 20 = FTA guaratees existece of that factorizatio, but how do you fid it? Floyd s cycle-fidig Covetio I the followig slides, every big O is give i terms of iput values istead of iput legth.

13 Iteger Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger Floyd s cycle-fidig 1: TrialDivisio() 2: D () 3: for all p i primes( ) do 4: while mod p = 0 do 5: apped(d, p) 6: /p 7: if > 1 the 8: apped(d, ) 9: retur D How ofte does for-loop execute? Prime-coutig fuctio π(m). How ofte does while execute? I total, at most log p () lg (sice lg 2 lg p for all p 1)

14 Iteger : Aalysis Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger Theorem (Prime umber theorem) lim x π(x) x/ l(x) = 1. This implies π(x) O ( x l x ). The, for a iteger to be factored, trial divisio is O (π ( ) lg()m (lg )) = O ( M (lg )). Floyd s cycle-fidig

15 Iteger method Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger Floyd s cycle-fidig 1: PollardP-1(, B) 2: K primes p B p log p () 3: m (2 K 1) mod modular expoetiatio 4: g gcd (m, ) 5: if g = 1 the 6: either icrease B ad 7: retur PollardP-1(, B) 8: or retur failure 9: else 10: retur g g must be a divisor of

16 Iteger : Why does it work? Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger Corollary (Fermat s little theorem) For a < p, a p 1 1 (mod p). That is, p (a p 1 1). Assume p is a prime divisor of. That meas that gcd(a p 1 1, ) p. The precedig also works if the expoet is a multiple of some p 1, i.e. a K 1 where K is a multiple of p 1. Goal: choose K such that it is likely to be the multiple of some p 1 for a prime divisor p. Floyd s cycle-fidig

17 Iteger : Aalysis Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger The exp ad modular exp ca be combied: 1: K 2 2: for all p i primes(b) do 3: pc p 4: while pc < do 5: K K p (mod ) 6: pc pc p 7: g gcd(k 1, ) Floyd s cycle-fidig

18 Iteger : Aalysis Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger Floyd s cycle-fidig log p () multiplicatios ad mod exps. p Each mod exp is O(lg(p)M (lg )) Each mult M (lg ). The, log p () lg(p)m (lg ) = lg()m (lg ) p p The, we have O(G(lg ) + π(b) lg()m (lg )). The, complexity of oe iteratio of is O(π(B) lg()m (lg )).

19 Iteger Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Defiitio A sequece {X i } i 0 is cosidered periodic if there exists a such that X m+a = X m for all m 0 Ultimately periodic if for all m M (some startig value) Iteger Floyd s cycle-fidig

20 Iteger Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger Floyd s cycle-fidig Let f Z/Z Z/Z. Cosider a sequece {X i } i 0 where X i Z/Z ad X m+1 = f (X m ). The sequece is ultimately periodic. Proof: Assume X 0, X 1,, X m 1 distict for some m ad X m is ot. m by Pidgeohole The, X m = X µ for some 0 µ m 1. Let λ = m µ (period) By iductio, we eed to show that X +λ = X for all µ.

21 Iteger Floyd s cycle-fidig algorithm Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger Iput: fuctio f ad start-value x 0 1: FloydCycle(f, x 0 ) 2: x f (x 0 ), y f (f (x 0 )) 3: while x y do 4: x f (x) 5: y f (f (y)) Floyd s cycle-fidig

22 Iteger method Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger 1: PollardRho(f, ) 2: x 2, y 2, g 1 3: while g = 1 do 4: x f (x) Pollard used f (x) = x 2 1 (mod ) 5: y f (f (y)) 6: g gcd( x y, ) 7: if g = the 8: retur failure 9: else 10: retur g g must be a divisor of Floyd s cycle-fidig

23 Iteger : Why does it work? Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger Floyd s cycle-fidig Let p prime. Wat p (x y) so that gcd( x y, ) p. p (x y) meas x y (mod p). Whe a cycle mod p is foud, we fid a factor. Whe does that happe? For the birthday paradox to work, we eed to expect that f is a uiform fuctio: Every remaider has a equal probability of beig chose. This is a cojecture, but empirical data approximately supports it

24 Iteger Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger How may people eed to be i a room so that there is a probability of m that two of them have the same birthday? How may radom variables do we eed to draw from f such that two of them have the same remaider mod p with probability m? (X i X j (mod p)) Of course, 0 < m < 1. Origial birthday paradox: m = 0.5 Floyd s cycle-fidig

25 Iteger Assume every evet equally likely. Divisio Algorithm ad Cogruece P(X i r) = 1 p Assume the evets are idepedet. with itegers mod Iverses mod P(X i r ad X j r) = P(X i r)p(x j r) = 1 p 2 Multiplicatio ad GCD Iteger Floyd s cycle-fidig Probability that oce X i is chose, X j will have same birthday: P(X i X j ) = 1 p Complemet: probability that all remaiders are differet.

26 Iteger Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger Floyd s cycle-fidig Let A i be the evet that X i / X j for all 0 j < i. The, the evet that choosig λ radom variables yields distict remaiders is B λ = λ 1 A i = B λ 1 A λ 1 i=0 By def of coditioal probability: The, P(B λ ) = P(B λ 1 )P(A λ 1 B λ 1 ) P(A i B i ) = p i p, sice for A i, i remaiders are already occupied ad p i remaiders are left.

27 Iteger Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger Floyd s cycle-fidig Expadig, we have (sice P(B 1 ) = P(A 0 ) = 1) P(B λ ) = = λ 1 i=0 λ 1 i=0 P(A i B i ) = λ 1 p i i=0 p (1 i p ) = p! (p λ)!p λ Usig the approximatio 1 x e x (Taylor series), λ 1 P(B λ ) 1 i=1 e i/p = e λ 1 i=1 i/p = e (λ2 λ)/2p Now, we wat P(B λ ) 1 m. Notice that this gets us the media for m = 0.5!

28 Iteger Thus, Divisio Algorithm ad Cogruece with itegers mod Iverses mod The, e (λ2 λ)/2p 1 m λ 2 λ + 2p l(1 m) 0 λ p l(1 m) Multiplicatio ad GCD Iteger The, i, we fid a cycle mod p with probability 1 2 after approximately l(2)p p iteratios. I fact, we always fid a cycle mod p i θ( p) steps. Floyd s cycle-fidig

29 Iteger Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger Floyd s cycle-fidig Differet aalysis due to Kuth: mea istead of media. E[λ] = p+1 λ=1 P(B λ ) = 1 + p λ=1 Defie the Ramauja Q fuctio: The, Q() = k=1 P(B λ ) = 1 +! ( k)! k E[λ] = 1 + Q(p) The Q fuctio ca be approximated by πp Q(p) p p λ=1 p! (p λ)!p λ

30 Iteger Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger must be odd. 1: Fermat() 2: a 3: b a 2 4: while b is ot a square do 5: a a + 1 6: b a 2 7: retur a b or a + b Floyd s cycle-fidig

31 Iteger Fermat s: Why does it work? Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger Every odd iteger is the differece of two squares = a 2 b 2 = (a + b)(a b) We hope that 1 < a + b < (or equivaletly same for a b) Rearrage: b 2 = a 2. Try values for a util b 2 is a square. Worst case: is prime. O() steps. Works best whe prime factor is close to square-root of. Floyd s cycle-fidig

32 Iteger Fermat s: A Improvemet Divisio Algorithm ad Cogruece Is there a way to kow whe values of a make b 2 a square? with itegers mod Iverses mod Multiplicatio ad GCD Iteger Floyd s cycle-fidig

33 Iteger Fermat s: A Improvemet Divisio Algorithm ad Cogruece with itegers mod Iverses mod Multiplicatio ad GCD Iteger Is there a way to kow whe values of a make b 2 a square? Bézout s idetity agai: gcd(m, ) = 1, the m[m 1 ] + [ 1 ] m = 1. Theorem (Chiese Remaider Theorem) Let gcd(, m) = 1. The the followig system has a solutio ad every solutio is cogruet mod m: x a (mod ) x b (mod m) Floyd s cycle-fidig Solutios are x am[m 1 ] + b[ 1 ] m (mod m).

SOLVED EXAMPLES

SOLVED EXAMPLES Prelimiaries Chapter PELIMINAIES Cocept of Divisibility: A o-zero iteger t is said to be a divisor of a iteger s if there is a iteger u such that s tu I this case we write t s (i) 6 as ca be writte as

More information

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play.

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play. Number Theory Math 5840 otes. Sectio 1: Axioms. I umber theory we will geerally be workig with itegers, though occasioally fractios ad irratioals will come ito play. Notatio: Z deotes the set of all itegers

More information

CSE 1400 Applied Discrete Mathematics Number Theory and Proofs

CSE 1400 Applied Discrete Mathematics Number Theory and Proofs CSE 1400 Applied Discrete Mathematics Number Theory ad Proofs Departmet of Computer Scieces College of Egieerig Florida Tech Sprig 01 Problems for Number Theory Backgroud Number theory is the brach of

More information

Primality Test. Rong-Jaye Chen

Primality Test. Rong-Jaye Chen Primality Test Rog-Jaye Che OUTLINE [1] Modular Arithmetic Algorithms [2] Quadratic Residues [3] Primality Testig p2. [1] Modular Arithmetic Algorithms 1. The itegers a divides b a b a{ 1, b} If b has

More information

MATH 304: MIDTERM EXAM SOLUTIONS

MATH 304: MIDTERM EXAM SOLUTIONS MATH 304: MIDTERM EXAM SOLUTIONS [The problems are each worth five poits, except for problem 8, which is worth 8 poits. Thus there are 43 possible poits.] 1. Use the Euclidea algorithm to fid the greatest

More information

International Baccalaureate LECTURE NOTES MATHEMATICS HL FURTHER MATHEMATICS HL Christos Nikolaidis TOPIC NUMBER THEORY

International Baccalaureate LECTURE NOTES MATHEMATICS HL FURTHER MATHEMATICS HL Christos Nikolaidis TOPIC NUMBER THEORY Iteratioal Baccalaureate LECTURE NOTES MATHEMATICS HL FURTHER MATHEMATICS HL TOPIC NUMBER THEORY METHODS OF PROOF. Couterexample - Cotradictio - Pigeohole Priciple Strog mathematical iductio 2 DIVISIBILITY....

More information

1 Summary: Binary and Logic

1 Summary: Binary and Logic 1 Summary: Biary ad Logic Biary Usiged Represetatio : each 1-bit is a power of two, the right-most is for 2 0 : 0110101 2 = 2 5 + 2 4 + 2 2 + 2 0 = 32 + 16 + 4 + 1 = 53 10 Usiged Rage o bits is [0...2

More information

Math 609/597: Cryptography 1

Math 609/597: Cryptography 1 Math 609/597: Cryptography 1 The Solovay-Strasse Primality Test 12 October, 1993 Burt Roseberg Revised: 6 October, 2000 1 Itroductio We describe the Solovay-Strasse primality test. There is quite a bit

More information

Summary: Congruences. j=1. 1 Here we use the Mathematica syntax for the function. In Maple worksheets, the function

Summary: Congruences. j=1. 1 Here we use the Mathematica syntax for the function. In Maple worksheets, the function Summary: Cogrueces j whe divided by, ad determiig the additive order of a iteger mod. As described i the Prelab sectio, cogrueces ca be thought of i terms of coutig with rows, ad for some questios this

More information

The Structure of Z p when p is Prime

The Structure of Z p when p is Prime LECTURE 13 The Structure of Z p whe p is Prime Theorem 131 If p > 1 is a iteger, the the followig properties are equivalet (1) p is prime (2) For ay [0] p i Z p, the equatio X = [1] p has a solutio i Z

More information

The structure of finite rings. The multiplicative residues. Modular exponentiation. and finite exponentiation

The structure of finite rings. The multiplicative residues. Modular exponentiation. and finite exponentiation The structure of fiite rigs ad fiite expoetiatio The multiplicative residues We have see that the fiite rig Z p is a field, that is, every o-zero elemet of Z p has a multiplicative iverse It is a covetio

More information

Solutions to Math 347 Practice Problems for the final

Solutions to Math 347 Practice Problems for the final Solutios to Math 347 Practice Problems for the fial 1) True or False: a) There exist itegers x,y such that 50x + 76y = 6. True: the gcd of 50 ad 76 is, ad 6 is a multiple of. b) The ifiimum of a set is

More information

Fermat s Little Theorem. mod 13 = 0, = }{{} mod 13 = 0. = a a a }{{} mod 13 = a 12 mod 13 = 1, mod 13 = a 13 mod 13 = a.

Fermat s Little Theorem. mod 13 = 0, = }{{} mod 13 = 0. = a a a }{{} mod 13 = a 12 mod 13 = 1, mod 13 = a 13 mod 13 = a. Departmet of Mathematical Scieces Istructor: Daiva Puciskaite Discrete Mathematics Fermat s Little Theorem 43.. For all a Z 3, calculate a 2 ad a 3. Case a = 0. 0 0 2-times Case a 0. 0 0 3-times a a 2-times

More information

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer.

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer. 6 Itegers Modulo I Example 2.3(e), we have defied the cogruece of two itegers a,b with respect to a modulus. Let us recall that a b (mod ) meas a b. We have proved that cogruece is a equivalece relatio

More information

[ 47 ] then T ( m ) is true for all n a. 2. The greatest integer function : [ ] is defined by selling [ x]

[ 47 ] then T ( m ) is true for all n a. 2. The greatest integer function : [ ] is defined by selling [ x] [ 47 ] Number System 1. Itroductio Pricile : Let { T ( ) : N} be a set of statemets, oe for each atural umber. If (i), T ( a ) is true for some a N ad (ii) T ( k ) is true imlies T ( k 1) is true for all

More information

MATH 324 Summer 2006 Elementary Number Theory Solutions to Assignment 2 Due: Thursday July 27, 2006

MATH 324 Summer 2006 Elementary Number Theory Solutions to Assignment 2 Due: Thursday July 27, 2006 MATH 34 Summer 006 Elemetary Number Theory Solutios to Assigmet Due: Thursday July 7, 006 Departmet of Mathematical ad Statistical Scieces Uiversity of Alberta Questio [p 74 #6] Show that o iteger of the

More information

Basic Sets. Functions. MTH299 - Examples. Example 1. Let S = {1, {2, 3}, 4}. Indicate whether each statement is true or false. (a) S = 4. (e) 2 S.

Basic Sets. Functions. MTH299 - Examples. Example 1. Let S = {1, {2, 3}, 4}. Indicate whether each statement is true or false. (a) S = 4. (e) 2 S. Basic Sets Example 1. Let S = {1, {2, 3}, 4}. Idicate whether each statemet is true or false. (a) S = 4 (b) {1} S (c) {2, 3} S (d) {1, 4} S (e) 2 S. (f) S = {1, 4, {2, 3}} (g) S Example 2. Compute the

More information

Arithmetic 1: Prime numbers and factorization (with Solutions)

Arithmetic 1: Prime numbers and factorization (with Solutions) Bachelor of Ecole Polytechique Computatioal Mathematics, year 2, semester 1 Arithmetic 1: Prime umbers ad factorizatio (with Solutios) P. Tchebychev (Russia, 1821-1894). Amog may thigs, he was the rst

More information

Mathematical Foundation. CSE 6331 Algorithms Steve Lai

Mathematical Foundation. CSE 6331 Algorithms Steve Lai Mathematical Foudatio CSE 6331 Algorithms Steve Lai Complexity of Algorithms Aalysis of algorithm: to predict the ruig time required by a algorithm. Elemetary operatios: arithmetic & boolea operatios:

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

Square-Congruence Modulo n

Square-Congruence Modulo n Square-Cogruece Modulo Abstract This paper is a ivestigatio of a equivalece relatio o the itegers that was itroduced as a exercise i our Discrete Math class. Part I - Itro Defiitio Two itegers are Square-Cogruet

More information

11. FINITE FIELDS. Example 1: The following tables define addition and multiplication for a field of order 4.

11. FINITE FIELDS. Example 1: The following tables define addition and multiplication for a field of order 4. 11. FINITE FIELDS 11.1. A Field With 4 Elemets Probably the oly fiite fields which you ll kow about at this stage are the fields of itegers modulo a prime p, deoted by Z p. But there are others. Now although

More information

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467a: Crytograhy ad Comuter Security Notes 16 (rev. 1 Professor M. J. Fischer November 3, 2008 68 Legedre Symbol Lecture Notes 16 ( Let be a odd rime,

More information

Recurrence Relations

Recurrence Relations Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial(-)); } Let t be the umber of multiplicatios eeded to calculate factorial(). The

More information

Exam 2 CMSC 203 Fall 2009 Name SOLUTION KEY Show All Work! 1. (16 points) Circle T if the corresponding statement is True or F if it is False.

Exam 2 CMSC 203 Fall 2009 Name SOLUTION KEY Show All Work! 1. (16 points) Circle T if the corresponding statement is True or F if it is False. 1 (1 poits) Circle T if the correspodig statemet is True or F if it is False T F For ay positive iteger,, GCD(, 1) = 1 T F Every positive iteger is either prime or composite T F If a b mod p, the (a/p)

More information

18.440, March 9, Stirling s formula

18.440, March 9, Stirling s formula Stirlig s formula 8.44, March 9, 9 The factorial fuctio! is importat i evaluatig biomial, hypergeometric, ad other probabilities. If is ot too large,! ca be computed directly, by calculators or computers.

More information

Analysis of Algorithms. Introduction. Contents

Analysis of Algorithms. Introduction. Contents Itroductio The focus of this module is mathematical aspects of algorithms. Our mai focus is aalysis of algorithms, which meas evaluatig efficiecy of algorithms by aalytical ad mathematical methods. We

More information

Properties and Tests of Zeros of Polynomial Functions

Properties and Tests of Zeros of Polynomial Functions Properties ad Tests of Zeros of Polyomial Fuctios The Remaider ad Factor Theorems: Sythetic divisio ca be used to fid the values of polyomials i a sometimes easier way tha substitutio. This is show by

More information

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory 1. Graph Theory Prove that there exist o simple plaar triagulatio T ad two distict adjacet vertices x, y V (T ) such that x ad y are the oly vertices of T of odd degree. Do ot use the Four-Color Theorem.

More information

Complex Numbers Solutions

Complex Numbers Solutions Complex Numbers Solutios Joseph Zoller February 7, 06 Solutios. (009 AIME I Problem ) There is a complex umber with imagiary part 64 ad a positive iteger such that Fid. [Solutio: 697] 4i + + 4i. 4i 4i

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Lesson 10: Limits and Continuity

Lesson 10: Limits and Continuity www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals

More information

[ 11 ] z of degree 2 as both degree 2 each. The degree of a polynomial in n variables is the maximum of the degrees of its terms.

[ 11 ] z of degree 2 as both degree 2 each. The degree of a polynomial in n variables is the maximum of the degrees of its terms. [ 11 ] 1 1.1 Polyomial Fuctios 1 Algebra Ay fuctio f ( x) ax a1x... a1x a0 is a polyomial fuctio if ai ( i 0,1,,,..., ) is a costat which belogs to the set of real umbers ad the idices,, 1,...,1 are atural

More information

Homework 1 Solutions. The exercises are from Foundations of Mathematical Analysis by Richard Johnsonbaugh and W.E. Pfaffenberger.

Homework 1 Solutions. The exercises are from Foundations of Mathematical Analysis by Richard Johnsonbaugh and W.E. Pfaffenberger. Homewor 1 Solutios Math 171, Sprig 2010 Hery Adams The exercises are from Foudatios of Mathematical Aalysis by Richard Johsobaugh ad W.E. Pfaffeberger. 2.2. Let h : X Y, g : Y Z, ad f : Z W. Prove that

More information

Injections, Surjections, and the Pigeonhole Principle

Injections, Surjections, and the Pigeonhole Principle Ijectios, Surjectios, ad the Pigeohole Priciple 1 (10 poits Here we will come up with a sloppy boud o the umber of parethesisestigs (a (5 poits Describe a ijectio from the set of possible ways to est pairs

More information

Bertrand s Postulate

Bertrand s Postulate Bertrad s Postulate Lola Thompso Ross Program July 3, 2009 Lola Thompso (Ross Program Bertrad s Postulate July 3, 2009 1 / 33 Bertrad s Postulate I ve said it oce ad I ll say it agai: There s always a

More information

CS / MCS 401 Homework 3 grader solutions

CS / MCS 401 Homework 3 grader solutions CS / MCS 401 Homework 3 grader solutios assigmet due July 6, 016 writte by Jāis Lazovskis maximum poits: 33 Some questios from CLRS. Questios marked with a asterisk were ot graded. 1 Use the defiitio of

More information

3.2.4 Integer and Number Theoretical Functions

3.2.4 Integer and Number Theoretical Functions 418 3. Advaced Mathematics i Mathematica 3.2.4 Iteger ad Number Theoretical Fuctios Mod[k, ] k modulo (positive remaider from dividig k by ) Quotiet[m, ] the quotiet of m ad (iteger part of m/) GCD[ 1,

More information

and each factor on the right is clearly greater than 1. which is a contradiction, so n must be prime.

and each factor on the right is clearly greater than 1. which is a contradiction, so n must be prime. MATH 324 Summer 200 Elemetary Number Theory Solutios to Assigmet 2 Due: Wedesday July 2, 200 Questio [p 74 #6] Show that o iteger of the form 3 + is a prime, other tha 2 = 3 + Solutio: If 3 + is a prime,

More information

Fourier Analysis, Stein and Shakarchi Chapter 8 Dirichlet s Theorem

Fourier Analysis, Stein and Shakarchi Chapter 8 Dirichlet s Theorem Fourier Aalysis, Stei ad Shakarchi Chapter 8 Dirichlet s Theorem 208.05.05 Abstract Durig the course Aalysis II i NTU 208 Sprig, this solutio file is latexed by the teachig assistat Yug-Hsiag Huag with

More information

A Probabilistic Analysis of Quicksort

A Probabilistic Analysis of Quicksort A Probabilistic Aalysis of Quicsort You are assumed to be familiar with Quicsort. I each iteratio this sortig algorithm chooses a pivot ad the, by performig comparisios with the pivot, splits the remaider

More information

Induction: Solutions

Induction: Solutions Writig Proofs Misha Lavrov Iductio: Solutios Wester PA ARML Practice March 6, 206. Prove that a 2 2 chessboard with ay oe square removed ca always be covered by shaped tiles. Solutio : We iduct o. For

More information

1. ARITHMETIC OPERATIONS IN OBSERVER'S MATHEMATICS

1. ARITHMETIC OPERATIONS IN OBSERVER'S MATHEMATICS 1. ARITHMETIC OPERATIONS IN OBSERVER'S MATHEMATICS We cosider a ite well-ordered system of observers, where each observer sees the real umbers as the set of all iite decimal fractios. The observers are

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

The multiplicative structure of finite field and a construction of LRC

The multiplicative structure of finite field and a construction of LRC IERG6120 Codig for Distributed Storage Systems Lecture 8-06/10/2016 The multiplicative structure of fiite field ad a costructio of LRC Lecturer: Keeth Shum Scribe: Zhouyi Hu Notatios: We use the otatio

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Zeros of Polynomials

Zeros of Polynomials Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

More information

(ii) Two-permutations of {a, b, c}. Answer. (B) P (3, 3) = 3! (C) 3! = 6, and there are 6 items in (A). ... Answer.

(ii) Two-permutations of {a, b, c}. Answer. (B) P (3, 3) = 3! (C) 3! = 6, and there are 6 items in (A). ... Answer. SOLUTIONS Homewor 5 Due /6/19 Exercise. (a Cosider the set {a, b, c}. For each of the followig, (A list the objects described, (B give a formula that tells you how may you should have listed, ad (C verify

More information

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018 CSE 353 Discrete Computatioal Structures Sprig 08 Sequeces, Mathematical Iductio, ad Recursio (Chapter 5, Epp) Note: some course slides adopted from publisher-provided material Overview May mathematical

More information

Wrap of Number Theory & Midterm Review. Recall: Fundamental Theorem of Arithmetic

Wrap of Number Theory & Midterm Review. Recall: Fundamental Theorem of Arithmetic Wrap of Number Theory & Midterm Review F Primes, GCD, ad LCM (Sectio 3.5 i text) F Midterm Review Sectios.-.7 Propositioal logic Predicate logic Rules of iferece ad proofs Sectios.-.3 Sets ad Set operatios

More information

(I.C) THE DISTRIBUTION OF PRIMES

(I.C) THE DISTRIBUTION OF PRIMES I.C) THE DISTRIBUTION OF PRIMES I the last sectio we showed via a Euclid-ispired, algebraic argumet that there are ifiitely may primes of the form p = 4 i.e. 4 + 3). I fact, this is true for primes of

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Desig ad Aalysis of Algorithms Probabilistic aalysis ad Radomized algorithms Referece: CLRS Chapter 5 Topics: Hirig problem Idicatio radom variables Radomized algorithms Huo Hogwei 1 The hirig problem

More information

The 4-Nicol Numbers Having Five Different Prime Divisors

The 4-Nicol Numbers Having Five Different Prime Divisors 1 2 3 47 6 23 11 Joural of Iteger Sequeces, Vol. 14 (2011), Article 11.7.2 The 4-Nicol Numbers Havig Five Differet Prime Divisors Qiao-Xiao Ji ad Mi Tag 1 Departmet of Mathematics Ahui Normal Uiversity

More information

Intensive Algorithms Lecture 11. DFT and DP. Lecturer: Daniel A. Spielman February 20, f(n) O(g(n) log c g(n)).

Intensive Algorithms Lecture 11. DFT and DP. Lecturer: Daniel A. Spielman February 20, f(n) O(g(n) log c g(n)). Itesive Algorithms Lecture 11 DFT ad DP Lecturer: Daiel A. Spielma February 20, 2018 11.1 Itroductio The purpose of this lecture is to lear how use the Discrete Fourier Trasform to save space i Dyamic

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

Lecture 9: Pseudo-random generators against space bounded computation,

Lecture 9: Pseudo-random generators against space bounded computation, Lecture 9: Pseudo-radom geerators agaist space bouded computatio, Primality Testig Topics i Pseudoradomess ad Complexity (Sprig 2018) Rutgers Uiversity Swastik Kopparty Scribes: Harsha Tirumala, Jiyu Zhag

More information

Unit 4: Polynomial and Rational Functions

Unit 4: Polynomial and Rational Functions 48 Uit 4: Polyomial ad Ratioal Fuctios Polyomial Fuctios A polyomial fuctio y px ( ) is a fuctio of the form p( x) ax + a x + a x +... + ax + ax+ a 1 1 1 0 where a, a 1,..., a, a1, a0are real costats ad

More information

CS161 Handout 05 Summer 2013 July 10, 2013 Mathematical Terms and Identities

CS161 Handout 05 Summer 2013 July 10, 2013 Mathematical Terms and Identities CS161 Hadout 05 Summer 2013 July 10, 2013 Mathematical Terms ad Idetities Thaks to Ady Nguye ad Julie Tibshirai for their advice o this hadout. This hadout covers mathematical otatio ad idetities that

More information

LECTURE NOTES, 11/10/04

LECTURE NOTES, 11/10/04 18.700 LECTURE NOTES, 11/10/04 Cotets 1. Direct sum decompositios 1 2. Geeralized eigespaces 3 3. The Chiese remaider theorem 5 4. Liear idepedece of geeralized eigespaces 8 1. Direct sum decompositios

More information

Lecture 4: Unique-SAT, Parity-SAT, and Approximate Counting

Lecture 4: Unique-SAT, Parity-SAT, and Approximate Counting Advaced Complexity Theory Sprig 206 Lecture 4: Uique-SAT, Parity-SAT, ad Approximate Coutig Prof. Daa Moshkovitz Scribe: Aoymous Studet Scribe Date: Fall 202 Overview I this lecture we begi talkig about

More information

Lecture 2: April 3, 2013

Lecture 2: April 3, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 2: April 3, 203 Scribe: Shubhedu Trivedi Coi tosses cotiued We retur to the coi tossig example from the last lecture agai: Example. Give,

More information

Optimally Sparse SVMs

Optimally Sparse SVMs A. Proof of Lemma 3. We here prove a lower boud o the umber of support vectors to achieve geeralizatio bouds of the form which we cosider. Importatly, this result holds ot oly for liear classifiers, but

More information

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis Recursive Algorithms Recurreces Computer Sciece & Egieerig 35: Discrete Mathematics Christopher M Bourke cbourke@cseuledu A recursive algorithm is oe i which objects are defied i terms of other objects

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

TEACHER CERTIFICATION STUDY GUIDE

TEACHER CERTIFICATION STUDY GUIDE COMPETENCY 1. ALGEBRA SKILL 1.1 1.1a. ALGEBRAIC STRUCTURES Kow why the real ad complex umbers are each a field, ad that particular rigs are ot fields (e.g., itegers, polyomial rigs, matrix rigs) Algebra

More information

1. Hilbert s Grand Hotel. The Hilbert s Grand Hotel has infinite many rooms numbered 1, 2, 3, 4

1. Hilbert s Grand Hotel. The Hilbert s Grand Hotel has infinite many rooms numbered 1, 2, 3, 4 . Hilbert s Grad Hotel The Hilbert s Grad Hotel has ifiite may rooms umbered,,,.. Situatio. The Hotel is full ad a ew guest arrives. Ca the mager accommodate the ew guest? - Yes, he ca. There is a simple

More information

Discrete Math Class 5 ( )

Discrete Math Class 5 ( ) Discrete Math 37110 - Class 5 (2016-10-11 Istructor: László Babai Notes tae by Jacob Burroughs Revised by istructor 5.1 Fermat s little Theorem Theorem 5.1 (Fermat s little Theorem. If p is prime ad gcd(a,

More information

4. Partial Sums and the Central Limit Theorem

4. Partial Sums and the Central Limit Theorem 1 of 10 7/16/2009 6:05 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 4. Partial Sums ad the Cetral Limit Theorem The cetral limit theorem ad the law of large umbers are the two fudametal theorems

More information

On Some Properties of Digital Roots

On Some Properties of Digital Roots Advaces i Pure Mathematics, 04, 4, 95-30 Published Olie Jue 04 i SciRes. http://www.scirp.org/joural/apm http://dx.doi.org/0.436/apm.04.46039 O Some Properties of Digital Roots Ilha M. Izmirli Departmet

More information

Test One (Answer Key)

Test One (Answer Key) CS395/Ma395 (Sprig 2005) Test Oe Name: Page 1 Test Oe (Aswer Key) CS395/Ma395: Aalysis of Algorithms This is a closed book, closed otes, 70 miute examiatio. It is worth 100 poits. There are twelve (12)

More information

CS 330 Discussion - Probability

CS 330 Discussion - Probability CS 330 Discussio - Probability March 24 2017 1 Fudametals of Probability 11 Radom Variables ad Evets A radom variable X is oe whose value is o-determiistic For example, suppose we flip a coi ad set X =

More information

Joe Holbrook Memorial Math Competition

Joe Holbrook Memorial Math Competition Joe Holbrook Memorial Math Competitio 8th Grade Solutios October 5, 07. Sice additio ad subtractio come before divisio ad mutiplicatio, 5 5 ( 5 ( 5. Now, sice operatios are performed right to left, ( 5

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Factoring Algorithms and Other Attacks on the RSA 1/12

Factoring Algorithms and Other Attacks on the RSA 1/12 Factorig Algorithms ad Other Attacks o the RSA T-79550 Cryptology Lecture 8 April 8, 008 Kaisa Nyberg Factorig Algorithms ad Other Attacks o the RSA / The Pollard p Algorithm Let B be a positive iteger

More information

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) =

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) = AN INTRODUCTION TO SCHRÖDER AND UNKNOWN NUMBERS NICK DUFRESNE Abstract. I this article we will itroduce two types of lattice paths, Schröder paths ad Ukow paths. We will examie differet properties of each,

More information

Quantum Computing Lecture 7. Quantum Factoring

Quantum Computing Lecture 7. Quantum Factoring Quatum Computig Lecture 7 Quatum Factorig Maris Ozols Quatum factorig A polyomial time quatum algorithm for factorig umbers was published by Peter Shor i 1994. Polyomial time meas that the umber of gates

More information

x c the remainder is Pc ().

x c the remainder is Pc (). Algebra, Polyomial ad Ratioal Fuctios Page 1 K.Paulk Notes Chapter 3, Sectio 3.1 to 3.4 Summary Sectio Theorem Notes 3.1 Zeros of a Fuctio Set the fuctio to zero ad solve for x. The fuctio is zero at these

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Radom Models Tusheg Zhag February 14, 013 1 Radom Walks Let me describe the model. Radom walks are used to describe the motio of a movig particle (object). Suppose that a particle (object) moves alog the

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

Section 5.1 The Basics of Counting

Section 5.1 The Basics of Counting 1 Sectio 5.1 The Basics of Coutig Combiatorics, the study of arragemets of objects, is a importat part of discrete mathematics. I this chapter, we will lear basic techiques of coutig which has a lot of

More information

Exercises 1 Sets and functions

Exercises 1 Sets and functions Exercises 1 Sets ad fuctios HU Wei September 6, 018 1 Basics Set theory ca be made much more rigorous ad built upo a set of Axioms. But we will cover oly some heuristic ideas. For those iterested studets,

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

On a Smarandache problem concerning the prime gaps

On a Smarandache problem concerning the prime gaps O a Smaradache problem cocerig the prime gaps Felice Russo Via A. Ifate 7 6705 Avezzao (Aq) Italy felice.russo@katamail.com Abstract I this paper, a problem posed i [] by Smaradache cocerig the prime gaps

More information

MT5821 Advanced Combinatorics

MT5821 Advanced Combinatorics MT5821 Advaced Combiatorics 1 Coutig subsets I this sectio, we cout the subsets of a -elemet set. The coutig umbers are the biomial coefficiets, familiar objects but there are some ew thigs to say about

More information

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018)

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018) Radomized Algorithms I, Sprig 08, Departmet of Computer Sciece, Uiversity of Helsiki Homework : Solutios Discussed Jauary 5, 08). Exercise.: Cosider the followig balls-ad-bi game. We start with oe black

More information

Basic Sets. MTH299 - Examples. Example 1. Let S = {1, {2, 3}, 4}. Indicate whether each statement is true or false. (a) S = 4

Basic Sets. MTH299 - Examples. Example 1. Let S = {1, {2, 3}, 4}. Indicate whether each statement is true or false. (a) S = 4 Basic Sets Example 1. Let S = {1, {, 3}, 4}. Idicate whether each statemet is true or false. (a) S = 4 False. Note that the elemets of S are 1, the set {, 3}, ad 4. Thus S = 3. (b) {1} S False. While 1

More information

CS166 Handout 02 Spring 2018 April 3, 2018 Mathematical Terms and Identities

CS166 Handout 02 Spring 2018 April 3, 2018 Mathematical Terms and Identities CS166 Hadout 02 Sprig 2018 April 3, 2018 Mathematical Terms ad Idetities Thaks to Ady Nguye ad Julie Tibshirai for their advice o this hadout. This hadout covers mathematical otatio ad idetities that may

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

Math 299 Supplement: Real Analysis Nov 2013

Math 299 Supplement: Real Analysis Nov 2013 Math 299 Supplemet: Real Aalysis Nov 203 Algebra Axioms. I Real Aalysis, we work withi the axiomatic system of real umbers: the set R alog with the additio ad multiplicatio operatios +,, ad the iequality

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

CS:3330 (Prof. Pemmaraju ): Assignment #1 Solutions. (b) For n = 3, we will have 3 men and 3 women with preferences as follows: m 1 : w 3 > w 1 > w 2

CS:3330 (Prof. Pemmaraju ): Assignment #1 Solutions. (b) For n = 3, we will have 3 men and 3 women with preferences as follows: m 1 : w 3 > w 1 > w 2 Shiyao Wag CS:3330 (Prof. Pemmaraju ): Assigmet #1 Solutios Problem 1 (a) Cosider iput with me m 1, m,..., m ad wome w 1, w,..., w with the followig prefereces: All me have the same prefereces for wome:

More information

CSE 4095/5095 Topics in Big Data Analytics Spring 2017; Homework 1 Solutions

CSE 4095/5095 Topics in Big Data Analytics Spring 2017; Homework 1 Solutions CSE 09/09 Topics i ig Data Aalytics Sprig 2017; Homework 1 Solutios Note: Solutios to problems,, ad 6 are due to Marius Nicolae. 1. Cosider the followig algorithm: for i := 1 to α log e do Pick a radom

More information

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n Review of Power Series, Power Series Solutios A power series i x - a is a ifiite series of the form c (x a) =c +c (x a)+(x a) +... We also call this a power series cetered at a. Ex. (x+) is cetered at

More information

Math 4400/6400 Homework #7 solutions

Math 4400/6400 Homework #7 solutions MATH 4400 problems. Math 4400/6400 Homewor #7 solutios 1. Let p be a prime umber. Show that the order of 1 + p modulo p 2 is exactly p. Hit: Expad (1 + p) p by the biomial theorem, ad recall from MATH

More information

IP Reference guide for integer programming formulations.

IP Reference guide for integer programming formulations. IP Referece guide for iteger programmig formulatios. by James B. Orli for 15.053 ad 15.058 This documet is iteded as a compact (or relatively compact) guide to the formulatio of iteger programs. For more

More information

1 Approximating Integrals using Taylor Polynomials

1 Approximating Integrals using Taylor Polynomials Seughee Ye Ma 8: Week 7 Nov Week 7 Summary This week, we will lear how we ca approximate itegrals usig Taylor series ad umerical methods. Topics Page Approximatig Itegrals usig Taylor Polyomials. Defiitios................................................

More information

Polynomial and Rational Functions. Polynomial functions and Their Graphs. Polynomial functions and Their Graphs. Examples

Polynomial and Rational Functions. Polynomial functions and Their Graphs. Polynomial functions and Their Graphs. Examples Polomial ad Ratioal Fuctios Polomial fuctios ad Their Graphs Math 44 Precalculus Polomial ad Ratioal Fuctios Polomial Fuctios ad Their Graphs Polomial fuctios ad Their Graphs A Polomial of degree is a

More information

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values EulerPhi Notatios Traditioal ame Euler totiet fuctio Traditioal otatio Φ Mathematica StadardForm otatio EulerPhi Primary defiitio 3.06.02.000.0 Φ gcd,k, ; For oegative iteger, the Euler totiet fuctio Φ

More information