Theory of Computation (I) Yijia Chen Fudan University

Size: px
Start display at page:

Download "Theory of Computation (I) Yijia Chen Fudan University"

Transcription

1 Theory of Computation (I) Yijia Chen Fudan University

2 Instructor Yijia Chen Homepage:

3 Textbook Introduction to the Theory of Computation Michael Sipser, MIT Third Edition, 2012.

4 Part One. Automata and Languages

5 Regular Languages

6 Finite automata Definition A (deterministic) finite automaton (DFA) is a 5-tuple ( Q, Σ, δ, q 0, F ), where 1. Q is a finite set called the states, 2. Σ is a finite set called the alphabet, 3. δ : Q Σ Q is the transition function, 4. q 0 Q is the start state, and 5. F Q is the set of accept states.

7 Formal definition of computation Let M = ( Q, Σ, δ, q 0, F ) be a finite automaton and let w = w 1w 2 w n be a string with w i Σ for all i [n]. Then M accepts w if a sequence of states r 0, r 1,..., r n in Q exists with: 1. r 0 = q 0, 2. δ(r i, w i+1 ) = r i+1 for i = 0,..., n 1, and 3. r n F. We say that M recognizes A if A = { w M accepts w }.

8 Regular languages Definition A language is called regular if some finite automaton recognizes it.

9 The regular operators Definition Let A and B be languages. We define the regular operations union, concatenation, and star as follows: Union: A B = { x x A or x B }. Concatenation: A B = { xy x A and y B }. Star: A = { x 1x 2... x k k 0 and each xi A }.

10 Closure under union Theorem The class of regular languages is closed under the union operation. In other words, if A 1 and A 2 are regular languages, so is A 1 A 2.

11 Proof (1) For i [2] let M i = ( Q i, Σ i, δ i, q i, F i ) recognize Ai. We can assume without loss of generality Σ 1 = Σ 2: Let a Σ 2 Σ 1. We add δ 1(r, a) = r trap, where r trap is a new state with δ 1(r trap, w) = r trap for every w.

12 Proof (2) We construct M = ( Q, Σ, δ, q 0, F ) to recognize A 1 A 2: 1. Q = Q 1 Q 2 = { (r 1, r } 2) r 1 Q 1 and r 2 Q Σ = Σ 1 = Σ For each (r 1, r 2) Q and a Σ we let δ ( (r 1, r 2), a ) = ( δ 1(r 1, a), δ 2(r 2, a) ). 4. q 0 = (q 1, q 2). 5. F = (F 1 Q 2) (Q 1 F 2) = { (r 1, r } 2) r 1 F 1 or r 2 F 2.

13 Closure under concatenation Theorem The class of regular languages is closed under the concatenation operation. In other words, if A 1 and A 2 are regular languages, so is A 1 A 2. We prove the above theorem by nondeterministic finite automata.

14 Nondeterminism Definition A nondeterministic finite automaton (NFA) is a 5-tuple ( Q, Σ, δ, q 0, F ), where 1. Q is a finite set of states, 2. Σ is a finite alphabet, 3. δ : Q Σ ε P(Q) is the transition function, where Σ ε = Σ {ε}, 4. q 0 Q is the start state, and 5. F Q is the set of accept states.

15 Formal definition of computation Let N = ( Q, Σ, δ, q 0, F ) be an NFA and let w = y 1y 2 y m be a string with y i Σ ε for all i [m]. Then N accepts w if a sequence of states r 0, r 1,..., r m in Q exists with: 1. r 0 = q 0, 2. r i+1 δ(r i, y i+1 ) for i = 0,..., m 1, and 3. r m F.

16 Equivalence of NFAs and DFAs Theorem Every NFA has an equivalent DFA, i.e., they recognize the same language.

17 Proof (1) Let N = ( Q, Σ, δ, q 0, F ) be the NFA recognizing some language A. We construct a DFA M = ( Q, Σ, δ, q 0, F ) recognizing the same A. First assume N has no ε arrows. 1. Q = P(Q). 2. Let R Q and a Σ. Then we define 3. q 0 = {q 0}. δ (R, a) = { q Q q δ(r, a) for some r R }. 4. F = { R Q R F }.

18 Proof (2) Now we allow ε arrows. For every R Q, i.e., R Q, let E(R) = { q Q q can be reached from R by traveling along 0 and more ε arrows }. 1. Q = P(Q). 2. Let R Q and a Σ. Then we define δ (R, a) = { q Q ( ) } q E δ(r, a) for some r R. 3. q 0 = E ( {q ) 0}. 4. F = { R Q } R F.

19 Corollary A language is regular if and on if some nondeterministic finite automaton recognizes it.

20 Second proof of the closure under union For i [2] let N i = ( Q i, Σ i, δ i, q i, F i ) recognize Ai. We construct an N = ( Q, Σ, δ, q 0, F ) to recognize A 1 A 2: 1. Q = {q 0} Q 1 Q q 0 is the start state. 3. F = F 1 F For any q Q and any a Σ ε δ 1(q, a) q Q 1 δ 2(q, a) q Q 2 δ(q, a) = {q 1, q 2} q = q 0 and a = ε q = q 0 and a ε.

21 Closure under concatenation Theorem The class of regular languages is closed under the concatenation operation.

22 Proof For i [2] let N i = ( Q i, Σ i, δ i, q i, F i ) recognize Ai. We construct an N = ( Q, Σ, δ, q 1, F 2 ) to recognize A1 A 2: 1. Q = Q 1 Q The start state q 1 is the same as the start state of N The accept states F 2 are the same as the accept states of N For any q Q and any a Σ ε δ 1(q, a) q Q 1 F 1 δ 1(q, a) q F 1 and a ε δ(q, a) = δ 1(q, a) {q 2} q F 1 and a = ε δ 2(q, a) q Q 2.

23 Closure under star Theorem The class of regular languages is closed under the star operation.

24 Proof Let N 1 = ( Q 1, Σ, δ 1, q 1, F 1 ) recognize Ai. We construct an N = ( Q, Σ, δ, q 0, F ) to recognize A 1 : 1. Q = {q 0} Q The start state q 0 is the new start state. 3. F = {q 0} F For any q Q and any a Σ ε δ 1(q, a) q Q 1 F 1 δ 1(q, a) q F 1 and a ε δ(q, a) = δ 1(q, a) {q 1} q F 1 and a = ε {q 1} q = q 0 and a = ε q = q 0 and a ε.

25 Regular expression Definition We say that R is a regular expression if R is 1. a for some a Σ, 2. ε, 3., 4. (R 1 R 2), where R 1 and R 2 are regular expressions, 5. (R 1 R 2), where R 1 and R 2 are regular expressions, 6. (R 1 ), where R 1 is a regular expressions. We often write R 1R 2 instead of (R 1 R 2) if no confusion arises.

26 Language defined by regular expressions regular expression R language L(R) a {a} ε {ε} (R 1 R 2) L(R 1) L(R 2) (R 1 R 2) L(R 1) L(R 2) (R1 ) L(R 1)

27 Equivalence with finite automata Theorem A language is regular if and only if some regular expression describes it.

28 The languages defined by regular expressions are regular 1. R = a: Let N = ( {q 1, q 2}, Σ, δ, q 1, {q 2} ), where δ(q 1, a) = {q 2} and δ(r, b) = for all r q 1 or b a. 2. R = ε: Let N = ( {q 1}, Σ, δ, q 1, {q 1} ), where δ(r, b) = for all r and b. 3. R = : Let N = ( {q 1}, Σ, δ, q 1, ), where δ(r, b) = for all r and b. 4. R = R 1 R 2: L(R) = L(R 1) L(R 2). 5. R = R 1 R 2: L(R) = L(R 1) L(R 2). 6. R = R 1 : L(R) = L(R 1).

Finite Automata and Regular languages

Finite Automata and Regular languages Finite Automata and Regular languages Huan Long Shanghai Jiao Tong University Acknowledgements Part of the slides comes from a similar course in Fudan University given by Prof. Yijia Chen. http://basics.sjtu.edu.cn/

More information

Theory of Computation (II) Yijia Chen Fudan University

Theory of Computation (II) Yijia Chen Fudan University Theory of Computation (II) Yijia Chen Fudan University Review A language L is a subset of strings over an alphabet Σ. Our goal is to identify those languages that can be recognized by one of the simplest

More information

COM364 Automata Theory Lecture Note 2 - Nondeterminism

COM364 Automata Theory Lecture Note 2 - Nondeterminism COM364 Automata Theory Lecture Note 2 - Nondeterminism Kurtuluş Küllü March 2018 The FA we saw until now were deterministic FA (DFA) in the sense that for each state and input symbol there was exactly

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 5-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY NON-DETERMINISM and REGULAR OPERATIONS THURSDAY JAN 6 UNION THEOREM The union of two regular languages is also a regular language Regular Languages Are

More information

CS 154. Finite Automata, Nondeterminism, Regular Expressions

CS 154. Finite Automata, Nondeterminism, Regular Expressions CS 54 Finite Automata, Nondeterminism, Regular Expressions Read string left to right The DFA accepts a string if the process ends in a double circle A DFA is a 5-tuple M = (Q, Σ, δ, q, F) Q is the set

More information

Theory of Languages and Automata

Theory of Languages and Automata Theory of Languages and Automata Chapter 1- Regular Languages & Finite State Automaton Sharif University of Technology Finite State Automaton We begin with the simplest model of Computation, called finite

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministic Finite Automata Not A DFA Does not have exactly one transition from every state on every symbol: Two transitions from q 0 on a No transition from q 1 (on either a or b) Though not a DFA,

More information

Closure under the Regular Operations

Closure under the Regular Operations September 7, 2013 Application of NFA Now we use the NFA to show that collection of regular languages is closed under regular operations union, concatenation, and star Earlier we have shown this closure

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation 1/19/2016 LECTURE 3 Last time: DFAs and NFAs Operations on languages Today: Nondeterminism Equivalence of NFAs and DFAs Closure properties of regular languages Sofya Raskhodnikova

More information

September 7, Formal Definition of a Nondeterministic Finite Automaton

September 7, Formal Definition of a Nondeterministic Finite Automaton Formal Definition of a Nondeterministic Finite Automaton September 7, 2014 A comment first The formal definition of an NFA is similar to that of a DFA. Both have states, an alphabet, transition function,

More information

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism,

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism, CS 54, Lecture 2: Finite Automata, Closure Properties Nondeterminism, Why so Many Models? Streaming Algorithms 0 42 Deterministic Finite Automata Anatomy of Deterministic Finite Automata transition: for

More information

CS 530: Theory of Computation Based on Sipser (second edition): Notes on regular languages(version 1.1)

CS 530: Theory of Computation Based on Sipser (second edition): Notes on regular languages(version 1.1) CS 530: Theory of Computation Based on Sipser (second edition): Notes on regular languages(version 1.1) Definition 1 (Alphabet) A alphabet is a finite set of objects called symbols. Definition 2 (String)

More information

Lecture 3: Nondeterministic Finite Automata

Lecture 3: Nondeterministic Finite Automata Lecture 3: Nondeterministic Finite Automata September 5, 206 CS 00 Theory of Computation As a recap of last lecture, recall that a deterministic finite automaton (DFA) consists of (Q, Σ, δ, q 0, F ) where

More information

Inf2A: Converting from NFAs to DFAs and Closure Properties

Inf2A: Converting from NFAs to DFAs and Closure Properties 1/43 Inf2A: Converting from NFAs to DFAs and Stuart Anderson School of Informatics University of Edinburgh October 13, 2009 Starter Questions 2/43 1 Can you devise a way of testing for any FSM M whether

More information

CS 455/555: Finite automata

CS 455/555: Finite automata CS 455/555: Finite automata Stefan D. Bruda Winter 2019 AUTOMATA (FINITE OR NOT) Generally any automaton Has a finite-state control Scans the input one symbol at a time Takes an action based on the currently

More information

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova.

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova. Introduction to the Theory of Computation Automata 1VO + 1PS Lecturer: Dr. Ana Sokolova http://cs.uni-salzburg.at/~anas/ Setup and Dates Lectures and Instructions 23.10. 3.11. 17.11. 24.11. 1.12. 11.12.

More information

Recitation 2 - Non Deterministic Finite Automata (NFA) and Regular OctoberExpressions

Recitation 2 - Non Deterministic Finite Automata (NFA) and Regular OctoberExpressions Recitation 2 - Non Deterministic Finite Automata (NFA) and Regular Expressions Orit Moskovich Gal Rotem Tel Aviv University October 28, 2015 Recitation 2 - Non Deterministic Finite Automata (NFA) and Regular

More information

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova.

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova. Introduction to the Theory of Computation Automata 1VO + 1PS Lecturer: Dr. Ana Sokolova http://cs.uni-salzburg.at/~anas/ Setup and Dates Lectures Tuesday 10:45 pm - 12:15 pm Instructions Tuesday 12:30

More information

Equivalence of DFAs and NFAs

Equivalence of DFAs and NFAs CS 172: Computability and Complexity Equivalence of DFAs and NFAs It s a tie! DFA NFA Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: L.von Ahn, L. Blum, M. Blum What we ll do today Prove that DFAs

More information

Chapter Five: Nondeterministic Finite Automata

Chapter Five: Nondeterministic Finite Automata Chapter Five: Nondeterministic Finite Automata From DFA to NFA A DFA has exactly one transition from every state on every symbol in the alphabet. By relaxing this requirement we get a related but more

More information

UNIT-II. NONDETERMINISTIC FINITE AUTOMATA WITH ε TRANSITIONS: SIGNIFICANCE. Use of ε-transitions. s t a r t. ε r. e g u l a r

UNIT-II. NONDETERMINISTIC FINITE AUTOMATA WITH ε TRANSITIONS: SIGNIFICANCE. Use of ε-transitions. s t a r t. ε r. e g u l a r Syllabus R9 Regulation UNIT-II NONDETERMINISTIC FINITE AUTOMATA WITH ε TRANSITIONS: In the automata theory, a nondeterministic finite automaton (NFA) or nondeterministic finite state machine is a finite

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 2 January 5, 2018 January 5, 2018 CS21 Lecture 2 1 Outline Finite Automata Nondeterministic Finite Automata Closure under regular operations NFA, FA equivalence

More information

September 11, Second Part of Regular Expressions Equivalence with Finite Aut

September 11, Second Part of Regular Expressions Equivalence with Finite Aut Second Part of Regular Expressions Equivalence with Finite Automata September 11, 2013 Lemma 1.60 If a language is regular then it is specified by a regular expression Proof idea: For a given regular language

More information

CPS 220 Theory of Computation REGULAR LANGUAGES

CPS 220 Theory of Computation REGULAR LANGUAGES CPS 22 Theory of Computation REGULAR LANGUAGES Introduction Model (def) a miniature representation of a thing; sometimes a facsimile Iraq village mockup for the Marines Scientific modelling - the process

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministic Finite Automata Lecture 6 Section 2.2 Robb T. Koether Hampden-Sydney College Mon, Sep 5, 2016 Robb T. Koether (Hampden-Sydney College) Nondeterministic Finite Automata Mon, Sep 5, 2016

More information

Computer Sciences Department

Computer Sciences Department 1 Reference Book: INTRODUCTION TO THE THEORY OF COMPUTATION, SECOND EDITION, by: MICHAEL SIPSER 3 objectives Finite automaton Infinite automaton Formal definition State diagram Regular and Non-regular

More information

CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata (cont )

CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata (cont ) CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata (cont ) Sungjin Im University of California, Merced 2-3-214 Example II A ɛ B ɛ D F C E Example II A ɛ B ɛ D F C E NFA accepting

More information

CSE 105 Theory of Computation Professor Jeanne Ferrante

CSE 105 Theory of Computation  Professor Jeanne Ferrante CSE 105 Theory of Computation http://www.jflap.org/jflaptmp/ Professor Jeanne Ferrante 1 Today s agenda NFA Review and Design NFA s Equivalence to DFA s Another Closure Property proof for Regular Languages

More information

Lecture 1: Finite State Automaton

Lecture 1: Finite State Automaton Lecture 1: Finite State Automaton Instructor: Ketan Mulmuley Scriber: Yuan Li January 6, 2015 1 Deterministic Finite Automaton Informally, a deterministic finite automaton (DFA) has finite number of s-

More information

Chap. 1.2 NonDeterministic Finite Automata (NFA)

Chap. 1.2 NonDeterministic Finite Automata (NFA) Chap. 1.2 NonDeterministic Finite Automata (NFA) DFAs: exactly 1 new state for any state & next char NFA: machine may not work same each time More than 1 transition rule for same state & input Any one

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY REVIEW for MIDTERM 1 THURSDAY Feb 6 Midterm 1 will cover everything we have seen so far The PROBLEMS will be from Sipser, Chapters 1, 2, 3 It will be

More information

Automata Theory. Lecture on Discussion Course of CS120. Runzhe SJTU ACM CLASS

Automata Theory. Lecture on Discussion Course of CS120. Runzhe SJTU ACM CLASS Automata Theory Lecture on Discussion Course of CS2 This Lecture is about Mathematical Models of Computation. Why Should I Care? - Ways of thinking. - Theory can drive practice. - Don t be an Instrumentalist.

More information

Lecture 4 Nondeterministic Finite Accepters

Lecture 4 Nondeterministic Finite Accepters Lecture 4 Nondeterministic Finite Accepters COT 4420 Theory of Computation Section 2.2, 2.3 Nondeterminism A nondeterministic finite automaton can go to several states at once. Transitions from one state

More information

Theory of Computation p.1/?? Theory of Computation p.2/?? Unknown: Implicitly a Boolean variable: true if a word is

Theory of Computation p.1/?? Theory of Computation p.2/?? Unknown: Implicitly a Boolean variable: true if a word is Abstraction of Problems Data: abstracted as a word in a given alphabet. Σ: alphabet, a finite, non-empty set of symbols. Σ : all the words of finite length built up using Σ: Conditions: abstracted as a

More information

CS 154, Lecture 3: DFA NFA, Regular Expressions

CS 154, Lecture 3: DFA NFA, Regular Expressions CS 154, Lecture 3: DFA NFA, Regular Expressions Homework 1 is coming out Deterministic Finite Automata Computation with finite memory Non-Deterministic Finite Automata Computation with finite memory and

More information

Automata: a short introduction

Automata: a short introduction ILIAS, University of Luxembourg Discrete Mathematics II May 2012 What is a computer? Real computers are complicated; We abstract up to an essential model of computation; We begin with the simplest possible

More information

INF Introduction and Regular Languages. Daniel Lupp. 18th January University of Oslo. Department of Informatics. Universitetet i Oslo

INF Introduction and Regular Languages. Daniel Lupp. 18th January University of Oslo. Department of Informatics. Universitetet i Oslo INF28 1. Introduction and Regular Languages Daniel Lupp Universitetet i Oslo 18th January 218 Department of Informatics University of Oslo INF28 Lecture :: 18th January 1 / 33 Details on the Course consists

More information

Non-deterministic Finite Automata (NFAs)

Non-deterministic Finite Automata (NFAs) Algorithms & Models of Computation CS/ECE 374, Fall 27 Non-deterministic Finite Automata (NFAs) Part I NFA Introduction Lecture 4 Thursday, September 7, 27 Sariel Har-Peled (UIUC) CS374 Fall 27 / 39 Sariel

More information

Computational Models Lecture 2 1

Computational Models Lecture 2 1 Computational Models Lecture 2 1 Handout Mode Iftach Haitner. Tel Aviv University. October 30, 2017 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice Herlihy, Brown University.

More information

Computational Models Lecture 2 1

Computational Models Lecture 2 1 Computational Models Lecture 2 1 Handout Mode Ronitt Rubinfeld and Iftach Haitner. Tel Aviv University. March 16/18, 2015 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

CSE 105 Homework 3 Due: Monday October 23, Instructions. should be on each page of the submission.

CSE 105 Homework 3 Due: Monday October 23, Instructions. should be on each page of the submission. CSE 5 Homework 3 Due: Monday October 23, 27 Instructions Upload a single file to Gradescope for each group. should be on each page of the submission. All group members names and PIDs Your assignments in

More information

CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata

CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata Sungjin Im University of California, Merced 1-27-215 Nondeterminism Michael Rabin and Dana Scott (1959) Michael Rabin Dana

More information

Automata and Languages

Automata and Languages Automata and Languages Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Nondeterministic Finite Automata with empty moves (-NFA) Definition A nondeterministic finite automaton

More information

Nondeterministic Finite Automata. Nondeterminism Subset Construction

Nondeterministic Finite Automata. Nondeterminism Subset Construction Nondeterministic Finite Automata Nondeterminism Subset Construction 1 Nondeterminism A nondeterministic finite automaton has the ability to be in several states at once. Transitions from a state on an

More information

Deterministic Finite Automata. Non deterministic finite automata. Non-Deterministic Finite Automata (NFA) Non-Deterministic Finite Automata (NFA)

Deterministic Finite Automata. Non deterministic finite automata. Non-Deterministic Finite Automata (NFA) Non-Deterministic Finite Automata (NFA) Deterministic Finite Automata Non deterministic finite automata Automata we ve been dealing with have been deterministic For every state and every alphabet symbol there is exactly one move that the machine

More information

Finite Automata Part Two

Finite Automata Part Two Finite Automata Part Two DFAs A DFA is a Deterministic Finite Automaton A DFA is defined relative to some alphabet Σ. For each state in the DFA, there must be exactly one transition defined for each symbol

More information

Great Theoretical Ideas in Computer Science. Lecture 4: Deterministic Finite Automaton (DFA), Part 2

Great Theoretical Ideas in Computer Science. Lecture 4: Deterministic Finite Automaton (DFA), Part 2 5-25 Great Theoretical Ideas in Computer Science Lecture 4: Deterministic Finite Automaton (DFA), Part 2 January 26th, 27 Formal definition: DFA A deterministic finite automaton (DFA) M =(Q,,,q,F) M is

More information

Non-Deterministic Finite Automata

Non-Deterministic Finite Automata Slides modified Yishay Mansour on modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. p. 8 Non-Deterministic Finite Automata 0,1 0,1 0 0,ε q q 1 q 2 3 1 q 4 an NFA

More information

CISC 4090 Theory of Computation

CISC 4090 Theory of Computation 9/2/28 Stereotypical computer CISC 49 Theory of Computation Finite state machines & Regular languages Professor Daniel Leeds dleeds@fordham.edu JMH 332 Central processing unit (CPU) performs all the instructions

More information

Outline. Nondetermistic Finite Automata. Transition diagrams. A finite automaton is a 5-tuple (Q, Σ,δ,q 0,F)

Outline. Nondetermistic Finite Automata. Transition diagrams. A finite automaton is a 5-tuple (Q, Σ,δ,q 0,F) Outline Nondeterminism Regular expressions Elementary reductions http://www.cs.caltech.edu/~cs20/a October 8, 2002 1 Determistic Finite Automata A finite automaton is a 5-tuple (Q, Σ,δ,q 0,F) Q is a finite

More information

CS243, Logic and Computation Nondeterministic finite automata

CS243, Logic and Computation Nondeterministic finite automata CS243, Prof. Alvarez NONDETERMINISTIC FINITE AUTOMATA (NFA) Prof. Sergio A. Alvarez http://www.cs.bc.edu/ alvarez/ Maloney Hall, room 569 alvarez@cs.bc.edu Computer Science Department voice: (67) 552-4333

More information

Theory of Computation (IV) Yijia Chen Fudan University

Theory of Computation (IV) Yijia Chen Fudan University Theory of Computation (IV) Yijia Chen Fudan University Review language regular context-free machine DFA/ NFA PDA syntax regular expression context-free grammar Pushdown automata Definition A pushdown automaton

More information

Nondeterministic finite automata

Nondeterministic finite automata Lecture 3 Nondeterministic finite automata This lecture is focused on the nondeterministic finite automata (NFA) model and its relationship to the DFA model. Nondeterminism is an important concept in the

More information

Introduction to Languages and Computation

Introduction to Languages and Computation Introduction to Languages and Computation George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 400 George Voutsadakis (LSSU) Languages and Computation July 2014

More information

Examples of Regular Expressions. Finite Automata vs. Regular Expressions. Example of Using flex. Application

Examples of Regular Expressions. Finite Automata vs. Regular Expressions. Example of Using flex. Application Examples of Regular Expressions 1. 0 10, L(0 10 ) = {w w contains exactly a single 1} 2. Σ 1Σ, L(Σ 1Σ ) = {w w contains at least one 1} 3. Σ 001Σ, L(Σ 001Σ ) = {w w contains the string 001 as a substring}

More information

CS:4330 Theory of Computation Spring Regular Languages. Finite Automata and Regular Expressions. Haniel Barbosa

CS:4330 Theory of Computation Spring Regular Languages. Finite Automata and Regular Expressions. Haniel Barbosa CS:4330 Theory of Computation Spring 2018 Regular Languages Finite Automata and Regular Expressions Haniel Barbosa Readings for this lecture Chapter 1 of [Sipser 1996], 3rd edition. Sections 1.1 and 1.3.

More information

acs-04: Regular Languages Regular Languages Andreas Karwath & Malte Helmert Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages Regular Languages Andreas Karwath & Malte Helmert Informatik Theorie II (A) WS2009/10 Regular Languages Andreas Karwath & Malte Helmert 1 Overview Deterministic finite automata Regular languages Nondeterministic finite automata Closure operations Regular expressions Nonregular languages

More information

Fooling Sets and. Lecture 5

Fooling Sets and. Lecture 5 Fooling Sets and Introduction to Nondeterministic Finite Automata Lecture 5 Proving that a language is not regular Given a language, we saw how to prove it is regular (union, intersection, concatenation,

More information

CS 154. Finite Automata vs Regular Expressions, Non-Regular Languages

CS 154. Finite Automata vs Regular Expressions, Non-Regular Languages CS 154 Finite Automata vs Regular Expressions, Non-Regular Languages Deterministic Finite Automata Computation with finite memory Non-Deterministic Finite Automata Computation with finite memory and guessing

More information

Computational Models - Lecture 1 1

Computational Models - Lecture 1 1 Computational Models - Lecture 1 1 Handout Mode Ronitt Rubinfeld and Iftach Haitner. Tel Aviv University. February 29/ March 02, 2016 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames

More information

Closure under the Regular Operations

Closure under the Regular Operations Closure under the Regular Operations Application of NFA Now we use the NFA to show that collection of regular languages is closed under regular operations union, concatenation, and star Earlier we have

More information

Incorrect reasoning about RL. Equivalence of NFA, DFA. Epsilon Closure. Proving equivalence. One direction is easy:

Incorrect reasoning about RL. Equivalence of NFA, DFA. Epsilon Closure. Proving equivalence. One direction is easy: Incorrect reasoning about RL Since L 1 = {w w=a n, n N}, L 2 = {w w = b n, n N} are regular, therefore L 1 L 2 = {w w=a n b n, n N} is regular If L 1 is a regular language, then L 2 = {w R w L 1 } is regular,

More information

Harvard CS 121 and CSCI E-207 Lecture 4: NFAs vs. DFAs, Closure Properties

Harvard CS 121 and CSCI E-207 Lecture 4: NFAs vs. DFAs, Closure Properties Harvard CS 121 and CSCI E-207 Lecture 4: NFAs vs. DFAs, Closure Properties Salil Vadhan September 13, 2012 Reading: Sipser, 1.2. How to simulate NFAs? NFA accepts w if there is at least one accepting computational

More information

UNIT-III REGULAR LANGUAGES

UNIT-III REGULAR LANGUAGES Syllabus R9 Regulation REGULAR EXPRESSIONS UNIT-III REGULAR LANGUAGES Regular expressions are useful for representing certain sets of strings in an algebraic fashion. In arithmetic we can use the operations

More information

CS 154 Formal Languages and Computability Assignment #2 Solutions

CS 154 Formal Languages and Computability Assignment #2 Solutions CS 154 Formal Languages and Computability Assignment #2 Solutions Department of Computer Science San Jose State University Spring 2016 Instructor: Ron Mak www.cs.sjsu.edu/~mak Assignment #2: Question 1

More information

C2.1 Regular Grammars

C2.1 Regular Grammars Theory of Computer Science March 22, 27 C2. Regular Languages: Finite Automata Theory of Computer Science C2. Regular Languages: Finite Automata Malte Helmert University of Basel March 22, 27 C2. Regular

More information

Unit 6. Non Regular Languages The Pumping Lemma. Reading: Sipser, chapter 1

Unit 6. Non Regular Languages The Pumping Lemma. Reading: Sipser, chapter 1 Unit 6 Non Regular Languages The Pumping Lemma Reading: Sipser, chapter 1 1 Are all languages regular? No! Most of the languages are not regular! Why? A finite automaton has limited memory. How can we

More information

Classes and conversions

Classes and conversions Classes and conversions Regular expressions Syntax: r = ε a r r r + r r Semantics: The language L r of a regular expression r is inductively defined as follows: L =, L ε = {ε}, L a = a L r r = L r L r

More information

Theory of Computation Lecture 1. Dr. Nahla Belal

Theory of Computation Lecture 1. Dr. Nahla Belal Theory of Computation Lecture 1 Dr. Nahla Belal Book The primary textbook is: Introduction to the Theory of Computation by Michael Sipser. Grading 10%: Weekly Homework. 30%: Two quizzes and one exam. 20%:

More information

CS 121, Section 2. Week of September 16, 2013

CS 121, Section 2. Week of September 16, 2013 CS 121, Section 2 Week of September 16, 2013 1 Concept Review 1.1 Overview In the past weeks, we have examined the finite automaton, a simple computational model with limited memory. We proved that DFAs,

More information

CISC 4090: Theory of Computation Chapter 1 Regular Languages. Section 1.1: Finite Automata. What is a computer? Finite automata

CISC 4090: Theory of Computation Chapter 1 Regular Languages. Section 1.1: Finite Automata. What is a computer? Finite automata CISC 4090: Theory of Computation Chapter Regular Languages Xiaolan Zhang, adapted from slides by Prof. Werschulz Section.: Finite Automata Fordham University Department of Computer and Information Sciences

More information

T (s, xa) = T (T (s, x), a). The language recognized by M, denoted L(M), is the set of strings accepted by M. That is,

T (s, xa) = T (T (s, x), a). The language recognized by M, denoted L(M), is the set of strings accepted by M. That is, Recall A deterministic finite automaton is a five-tuple where S is a finite set of states, M = (S, Σ, T, s 0, F ) Σ is an alphabet the input alphabet, T : S Σ S is the transition function, s 0 S is the

More information

C2.1 Regular Grammars

C2.1 Regular Grammars Theory of Computer Science March 6, 26 C2. Regular Languages: Finite Automata Theory of Computer Science C2. Regular Languages: Finite Automata Malte Helmert University of Basel March 6, 26 C2. Regular

More information

HKN CS/ECE 374 Midterm 1 Review. Nathan Bleier and Mahir Morshed

HKN CS/ECE 374 Midterm 1 Review. Nathan Bleier and Mahir Morshed HKN CS/ECE 374 Midterm 1 Review Nathan Bleier and Mahir Morshed For the most part, all about strings! String induction (to some extent) Regular languages Regular expressions (regexps) Deterministic finite

More information

Nondeterminism and Epsilon Transitions

Nondeterminism and Epsilon Transitions Nondeterminism and Epsilon Transitions Mridul Aanjaneya Stanford University June 28, 22 Mridul Aanjaneya Automata Theory / 3 Challenge Problem Question Prove that any square with side length a power of

More information

CSC236 Week 10. Larry Zhang

CSC236 Week 10. Larry Zhang CSC236 Week 10 Larry Zhang 1 Today s Topic Deterministic Finite Automata (DFA) 2 Recap of last week We learned a lot of terminologies alphabet string length of string union concatenation Kleene star language

More information

Automata and Formal Languages - CM0081 Non-Deterministic Finite Automata

Automata and Formal Languages - CM0081 Non-Deterministic Finite Automata Automata and Formal Languages - CM81 Non-Deterministic Finite Automata Andrés Sicard-Ramírez Universidad EAFIT Semester 217-2 Non-Deterministic Finite Automata (NFA) Introduction q i a a q j a q k The

More information

2017/08/29 Chapter 1.2 in Sipser Ø Announcement:

2017/08/29 Chapter 1.2 in Sipser Ø Announcement: Nondeterministic Human-aware Finite Robo.cs Automata 2017/08/29 Chapter 1.2 in Sipser Ø Announcement: q Piazza registration: http://piazza.com/asu/fall2017/cse355 q First poll will be posted on Piazza

More information

Context-Free Languages

Context-Free Languages CS:4330 Theory of Computation Spring 2018 Context-Free Languages Pushdown Automata Haniel Barbosa Readings for this lecture Chapter 2 of [Sipser 1996], 3rd edition. Section 2.2. Finite automaton 1 / 13

More information

Sri vidya college of engineering and technology

Sri vidya college of engineering and technology Unit I FINITE AUTOMATA 1. Define hypothesis. The formal proof can be using deductive proof and inductive proof. The deductive proof consists of sequence of statements given with logical reasoning in order

More information

TDDD65 Introduction to the Theory of Computation

TDDD65 Introduction to the Theory of Computation TDDD65 Introduction to the Theory of Computation Lecture 2 Gustav Nordh, IDA gustav.nordh@liu.se 2012-08-31 Outline - Lecture 2 Closure properties of regular languages Regular expressions Equivalence of

More information

CS 133 : Automata Theory and Computability

CS 133 : Automata Theory and Computability CS 133 : Automata Theory and Computability Lecture Slides 1 Regular Languages and Finite Automata Nestine Hope S. Hernandez Algorithms and Complexity Laboratory Department of Computer Science University

More information

Finite Automata and Regular Languages (part III)

Finite Automata and Regular Languages (part III) Finite Automata and Regular Languages (part III) Prof. Dan A. Simovici UMB 1 / 1 Outline 2 / 1 Nondeterministic finite automata can be further generalized by allowing transitions between states without

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 6 CHAPTER 2 FINITE AUTOMATA 2. Nondeterministic Finite Automata NFA 3. Finite Automata and Regular Expressions 4. Languages

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Section 1.1 Construct finite automata using algorithms from closure arguments Determine

More information

CSCI 2670 Introduction to Theory of Computing

CSCI 2670 Introduction to Theory of Computing CSCI 267 Introduction to Theory of Computing Agenda Last class Reviewed syllabus Reviewed material in Chapter of Sipser Assigned pages Chapter of Sipser Questions? This class Begin Chapter Goal for the

More information

Applied Computer Science II Chapter 1 : Regular Languages

Applied Computer Science II Chapter 1 : Regular Languages Applied Computer Science II Chapter 1 : Regular Languages Prof. Dr. Luc De Raedt Institut für Informatik Albert-Ludwigs Universität Freiburg Germany Overview Deterministic finite automata Regular languages

More information

Critical CS Questions

Critical CS Questions Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. p. 1 Critical CS Questions What is a computer? And What is a Computation? real computers too complex for any

More information

Languages. Non deterministic finite automata with ε transitions. First there was the DFA. Finite Automata. Non-Deterministic Finite Automata (NFA)

Languages. Non deterministic finite automata with ε transitions. First there was the DFA. Finite Automata. Non-Deterministic Finite Automata (NFA) Languages Non deterministic finite automata with ε transitions Recall What is a language? What is a class of languages? Finite Automata Consists of A set of states (Q) A start state (q o ) A set of accepting

More information

Theory of Computation

Theory of Computation Theory of Computation COMP363/COMP6363 Prerequisites: COMP4 and COMP 6 (Foundations of Computing) Textbook: Introduction to Automata Theory, Languages and Computation John E. Hopcroft, Rajeev Motwani,

More information

CS 208: Automata Theory and Logic

CS 208: Automata Theory and Logic CS 28: Automata Theory and Logic b a a start A x(la(x) y(x < y) L b (y)) B b Department of Computer Science and Engineering, Indian Institute of Technology Bombay of 32 Nondeterminism Alternation 2 of

More information

CS 154 Introduction to Automata and Complexity Theory

CS 154 Introduction to Automata and Complexity Theory CS 154 Introduction to Automata and Complexity Theory cs154.stanford.edu 1 INSTRUCTORS & TAs Ryan Williams Cody Murray Lera Nikolaenko Sunny Rajan 2 Textbook 3 Homework / Problem Sets Homework will be

More information

Lecture 17: Language Recognition

Lecture 17: Language Recognition Lecture 17: Language Recognition Finite State Automata Deterministic and Non-Deterministic Finite Automata Regular Expressions Push-Down Automata Turing Machines Modeling Computation When attempting to

More information

Computational Theory

Computational Theory Computational Theory Finite Automata and Regular Languages Curtis Larsen Dixie State University Computing and Design Fall 2018 Adapted from notes by Russ Ross Adapted from notes by Harry Lewis Curtis Larsen

More information

Formal Models in NLP

Formal Models in NLP Formal Models in NLP Finite-State Automata Nina Seemann Universität Stuttgart Institut für Maschinelle Sprachverarbeitung Pfaffenwaldring 5b 70569 Stuttgart May 15, 2012 Nina Seemann (IMS) Formal Models

More information

Finite Automata. Seungjin Choi

Finite Automata. Seungjin Choi Finite Automata Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr 1 / 28 Outline

More information

Nondeterminism. September 7, Nondeterminism

Nondeterminism. September 7, Nondeterminism September 7, 204 Introduction is a useful concept that has a great impact on the theory of computation Introduction is a useful concept that has a great impact on the theory of computation So far in our

More information

Clarifications from last time. This Lecture. Last Lecture. CMSC 330: Organization of Programming Languages. Finite Automata.

Clarifications from last time. This Lecture. Last Lecture. CMSC 330: Organization of Programming Languages. Finite Automata. CMSC 330: Organization of Programming Languages Last Lecture Languages Sets of strings Operations on languages Finite Automata Regular expressions Constants Operators Precedence CMSC 330 2 Clarifications

More information

Theory of Computation (IX) Yijia Chen Fudan University

Theory of Computation (IX) Yijia Chen Fudan University Theory of Computation (IX) Yijia Chen Fudan University Review The Definition of Algorithm Polynomials and their roots A polynomial is a sum of terms, where each term is a product of certain variables and

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Section 1.1 Design an automaton that recognizes a given language. Specify each of

More information