Finite Automata and Regular languages

Size: px
Start display at page:

Download "Finite Automata and Regular languages"

Transcription

1 Finite Automata and Regular languages Huan Long Shanghai Jiao Tong University

2 Acknowledgements Part of the slides comes from a similar course in Fudan University given by Prof. Yijia Chen. chen/ chen/teaching/toc/ Textbook Introduction to the theory of computation Michael Sipser, MIT Third edition, 2012

3 Outline Finite automata and regular language Nondeterminism automata Equivalence of DFA and NFA Regular expression Pumping lemma for regular languages Some decision problems related to FA

4 Finite Automata Definition A deterministic finite automata (DFA) is a 5-tuple (Q, Σ, δ, q 0, F ) where 1. Q is a finite set called the states, 2. Σ is a finite set called the alphabet, 3. δ : Q Σ Q is the transition function, 4. q 0 Q is the start state, 5. F Q is the set of accept states.

5 Computation by DFA Let M = (Q, Σ, δ, q 0, F ) be a DFA and let w = w 1 w 2 w n be a string with w i Σ for all i [n]. Then M accepts w if there exists a sequence of states r 0, r 1,..., r n in Q such that: 1. r 0 = q 0, 2. δ(r i, w i+1 ) = r i+1 for i = 0,..., n 1, 3. r n F. For a set A, we say that M recognizes A if A = {l M accepts l}

6 Regular languages Definition A language is called regular if some finite automata recognizes it.

7 The regular operators Definition Let A and B be languages. We define the following three regular operations: Union: A B = {x x A x B} Concatenation: A B = {xy x A y B} Kleene star: A = {x 1 x 2... x k k 0 x i A}

8 Nondeterminism Definition A nondeterministic finite automata (NFA) is a 5-tuple (Q, Σ, δ, q 0, F ) where 1. Q is a finite set called the states, 2. Σ is a finite set called the alphabet, 3. δ : Q Σ ɛ P(Q) is the transition function, where Σ ɛ = Σ {ɛ}, 4. q 0 Q is the start state, 5. F Q is the set of accept states.

9 Computation by NFA Let N = (Q, Σ, δ, q 0, F ) be a NFA and let w = y 1 y 2 y m be a string with y i Σ ɛ for all i [m]. Then N accepts w if there exists a sequence of states r 0, r 1,..., r n in Q such that: 1. r 0 = q 0, 2. r i+1 δ(r i, y i+1 ) for i = 0,..., m 1, 3. r n F.

10 Equivalence of NFAs and DFAs Theorem Every NFA has an equivalent DFA, i.e., they recognize the same language.

11 Proof (1) NFA: N = (Q, Σ, δ, q 0, F ) Main idea: view a NFA as occupying a set of states at any moment. Step 1: For any state q Q, compute its silently reachable class E(q): initially set E(q) = {q}; repeat E (q) = E(q) x E(q), if y δ(x, ɛ) y E(q), E(q) = E(q) {y} until E(q) = E (q) return E(q).

12 Proof (2) Step 2: build the equivalent DFA NFA: N = (Q, Σ, δ, q 0, F ) DFA: M = (Q, Σ, δ, q 0, F ) 1. Q = P(Q); 2. Let R Q and a Σ, define δ (R, a) = {E(q) q Q ( r R)(q σ(r, a))} ; 3. q 0 = {q 0}; 4. F = {R Q R F }.

13 Corollary A language is regular if and only if some NFA recognizes it.

14 Recall: regular operators Definition Let A and B be languages. We define the following three regular operations: Union: A B = {x x A x B} Concatenation: A B = {xy x A y B} Kleene star: A = {x 1 x 2... x k k 0 x i A}

15 Closure under the regular operators Theorem The class of regular languages is closed under the,, operations. Proof. Let N 1 = (Q 1, Σ 1, δ 1, q 1, F 1 ) recognize A 1, N 2 = (Q 2, Σ 2, δ 2, q 2, F 2 ) recognize A 2 ; We will build NFAs which recognize A 1 A 2, A 1 A 2, A 1 respectively.

16 I. Closure under union : A 1 A 2 is regular N 1 = (Q 1, Σ 1, δ 1, q 1, F 1 ) recognize A 1, N 2 = (Q 2, Σ 2, δ 2, q 2, F 2 ) recognize A 2 ; Define the NFA as: 1. Q = {q 0 } Q 1 Q 2 ; 2. q 0 is the new start state; 3. F = F 1 F 2 ; 4. For any q Q and any a Σ ɛ {q 1, q 2 } q = q 0 a = ɛ q = q δ(q, a) = 0 a ɛ δ 1 (q, a) q Q 1 δ 2 (q, a) q Q 2

17 II. Closure under concatenation : A 1 A 2 is regular N 1 = (Q 1, Σ 1, δ 1, q 1, F 1 ) recognize A 1, N 2 = (Q 2, Σ 2, δ 2, q 2, F 2 ) recognize A 2 ; Define the NFA as: 1. Q = Q 1 Q 2 ; 2. the start state is q 1 ; 3. the set of accept states is F 2 ; 4. For any q Q and any a Σ ɛ δ 1 (q, a) q Q 1 F 1 δ δ(q, a) = 1 (q, a) q F 1 a ɛ δ 1 (q, a) {q 2 } q F 1 a = ɛ δ 2 (q, a) q Q 2

18 III. Closure under Kleene star : A 1 is regular N 1 = (Q 1, Σ, δ 1, q 1, F 1 ) recognize A 1 ; Define the NFA as: 1. Q = {q 0 } Q 1 ; 2. the new start state is q 0 ; 3. F = {q 0 } F 1 ; 4. For any q Q and any a Σ ɛ δ 1 (q, a) q Q 1 F 1 δ 1 (q, a) q F 1 a ɛ δ(q, a) = δ 1 (q, a) {q 1 } q F 1 a = ɛ {q 1 } q = q 0 a = ɛ q = q 0 a ɛ

19 Regular expression Given alphabet Σ, we say that R is a regular expression if R is 1. a for some a Σ, 2. ɛ, 3., 4. (R 1 R 2 ), where R 1 and R 2 are regular expressions, 5. (R 1 R 2 ), where R 1 and R 2 are regular expressions, 6. (R 1 ), where R 1 is a regular expression. Sometimes, we use R 1 R 2 instead of (R 1 R 2 ) if no confusion arises.

20 Other closure property Given N = (Q, Σ, δ, q, F ) the set of language recognized by N is A, then Complement: A = Σ A Intersection: A B = {x x A x B} Lemma The class of regular languages is closed under complementation and intersection. Proof. w.l.o.g, N is a DFA, then N = (Q, Σ, δ, q, Q F ) will recognize A. A B = A B.

21 Language defined by regular expressions regular expression R language L(R) a {a} ɛ {ɛ} (R 1 R 2 ) L(R 1 ) L(R 2 ) (R 1 R 2 ) L(R 1 ) L(R 2 ) (R1 ) L(R 1)

22 Equivalence with finite automata Theorem A language is regular if and only if some regular expression describes it. Proof. Only if: build the NFAs; (relatively easy) If: Automata = regular expressions. Sketch: (Dynamic programming) R(i, j, k) = R(i, j, k 1) R(i, k, k 1)R(k, k, k 1) R(k, j, k 1) L(M) = {R(1, j, n) q j F }.

23 Languages need counting L 1 = {l {0, 1} l has an equal number of 0s and 1s}. L 2 = {l {0, 1} l has an equal number of occurrences of 01 and 10 as substrings}. L 2 is regular; L 1 is or is not regular? It is not regular!

24 The pumping lemma for regular languages Lemma If A is a regular language, then there is a number p (i.e., the pumping length where if s is any string in A of length at least p, then s my be divided into three pieces, s = xyz, satisfying the following conditions: 1. y > 0, 2. xy p, 3. for each i 0, we have xy i z A. Any string xyz in A can be pumped along y.

25 Proof Pigeonhole principle Let M = (Q, Σ, δ, q 1, F ) be a DFA recognizing A and p = Q. Let s = s 1 s 2 s n be a string in A with n p. Let r 1,, r n+1 be the sequence of states that M enters while processing s, i.e., r i+1 = δ(r i, s i ) for i [n]. Among the first p + 1 states in the sequence, two must be the same, say r j and r k with j < k p + 1. Define x = s 1 s j 1, y = s j s k 1, z = s k s n.

26 Example (1) The language L = {0 n 1 n n 0} is not regular. Proof. If it is regular, choose p be the pumping length and consider s = 0 p 1 p.by the Pumping lemma, s = xyz with xy i z L for all i 0. As xy p and y > 0, y = 0 i for some i > 0. But then xz = a n i b n L. Contradicting the lemma.

27 Example (2) The language L = {w w has an equal number of 0s and 1s} is not regular. Proof. If it is regular, then L 0 1 would also be regular. However, this latter language is precisely the language in Example (1), which is not regular.

28 Problems from formal language theory Decision Problems Acceptance: does a given string belong to a given language? Emptiness: is a given language empty? Equality: are given two languages equal?

29 Language Problems concerning FA Theorem The following three problems: Acceptance: Given a DFA (NFA) A and a string w, does A accept w? Emptiness: Given a DFA (NFA) A is the language L(A) empty? Equality: Given two DFA (NFA) A and B is L(A) equal to L(B)? The corresponding decision problems are all decidable. Proof.

Theory of Computation (I) Yijia Chen Fudan University

Theory of Computation (I) Yijia Chen Fudan University Theory of Computation (I) Yijia Chen Fudan University Instructor Yijia Chen Homepage: http://basics.sjtu.edu.cn/~chen Email: yijiachen@fudan.edu.cn Textbook Introduction to the Theory of Computation Michael

More information

CS 455/555: Finite automata

CS 455/555: Finite automata CS 455/555: Finite automata Stefan D. Bruda Winter 2019 AUTOMATA (FINITE OR NOT) Generally any automaton Has a finite-state control Scans the input one symbol at a time Takes an action based on the currently

More information

Theory of Computation (II) Yijia Chen Fudan University

Theory of Computation (II) Yijia Chen Fudan University Theory of Computation (II) Yijia Chen Fudan University Review A language L is a subset of strings over an alphabet Σ. Our goal is to identify those languages that can be recognized by one of the simplest

More information

CS 530: Theory of Computation Based on Sipser (second edition): Notes on regular languages(version 1.1)

CS 530: Theory of Computation Based on Sipser (second edition): Notes on regular languages(version 1.1) CS 530: Theory of Computation Based on Sipser (second edition): Notes on regular languages(version 1.1) Definition 1 (Alphabet) A alphabet is a finite set of objects called symbols. Definition 2 (String)

More information

CS 154. Finite Automata, Nondeterminism, Regular Expressions

CS 154. Finite Automata, Nondeterminism, Regular Expressions CS 54 Finite Automata, Nondeterminism, Regular Expressions Read string left to right The DFA accepts a string if the process ends in a double circle A DFA is a 5-tuple M = (Q, Σ, δ, q, F) Q is the set

More information

Closure under the Regular Operations

Closure under the Regular Operations September 7, 2013 Application of NFA Now we use the NFA to show that collection of regular languages is closed under regular operations union, concatenation, and star Earlier we have shown this closure

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 5-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY NON-DETERMINISM and REGULAR OPERATIONS THURSDAY JAN 6 UNION THEOREM The union of two regular languages is also a regular language Regular Languages Are

More information

Inf2A: Converting from NFAs to DFAs and Closure Properties

Inf2A: Converting from NFAs to DFAs and Closure Properties 1/43 Inf2A: Converting from NFAs to DFAs and Stuart Anderson School of Informatics University of Edinburgh October 13, 2009 Starter Questions 2/43 1 Can you devise a way of testing for any FSM M whether

More information

T (s, xa) = T (T (s, x), a). The language recognized by M, denoted L(M), is the set of strings accepted by M. That is,

T (s, xa) = T (T (s, x), a). The language recognized by M, denoted L(M), is the set of strings accepted by M. That is, Recall A deterministic finite automaton is a five-tuple where S is a finite set of states, M = (S, Σ, T, s 0, F ) Σ is an alphabet the input alphabet, T : S Σ S is the transition function, s 0 S is the

More information

Lecture 3: Nondeterministic Finite Automata

Lecture 3: Nondeterministic Finite Automata Lecture 3: Nondeterministic Finite Automata September 5, 206 CS 00 Theory of Computation As a recap of last lecture, recall that a deterministic finite automaton (DFA) consists of (Q, Σ, δ, q 0, F ) where

More information

3515ICT: Theory of Computation. Regular languages

3515ICT: Theory of Computation. Regular languages 3515ICT: Theory of Computation Regular languages Notation and concepts concerning alphabets, strings and languages, and identification of languages with problems (H, 1.5). Regular expressions (H, 3.1,

More information

COM364 Automata Theory Lecture Note 2 - Nondeterminism

COM364 Automata Theory Lecture Note 2 - Nondeterminism COM364 Automata Theory Lecture Note 2 - Nondeterminism Kurtuluş Küllü March 2018 The FA we saw until now were deterministic FA (DFA) in the sense that for each state and input symbol there was exactly

More information

Computer Sciences Department

Computer Sciences Department 1 Reference Book: INTRODUCTION TO THE THEORY OF COMPUTATION, SECOND EDITION, by: MICHAEL SIPSER 3 objectives Finite automaton Infinite automaton Formal definition State diagram Regular and Non-regular

More information

CISC 4090: Theory of Computation Chapter 1 Regular Languages. Section 1.1: Finite Automata. What is a computer? Finite automata

CISC 4090: Theory of Computation Chapter 1 Regular Languages. Section 1.1: Finite Automata. What is a computer? Finite automata CISC 4090: Theory of Computation Chapter Regular Languages Xiaolan Zhang, adapted from slides by Prof. Werschulz Section.: Finite Automata Fordham University Department of Computer and Information Sciences

More information

Unit 6. Non Regular Languages The Pumping Lemma. Reading: Sipser, chapter 1

Unit 6. Non Regular Languages The Pumping Lemma. Reading: Sipser, chapter 1 Unit 6 Non Regular Languages The Pumping Lemma Reading: Sipser, chapter 1 1 Are all languages regular? No! Most of the languages are not regular! Why? A finite automaton has limited memory. How can we

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation 1/19/2016 LECTURE 3 Last time: DFAs and NFAs Operations on languages Today: Nondeterminism Equivalence of NFAs and DFAs Closure properties of regular languages Sofya Raskhodnikova

More information

Theory of Languages and Automata

Theory of Languages and Automata Theory of Languages and Automata Chapter 1- Regular Languages & Finite State Automaton Sharif University of Technology Finite State Automaton We begin with the simplest model of Computation, called finite

More information

Theory of Computation p.1/?? Theory of Computation p.2/?? Unknown: Implicitly a Boolean variable: true if a word is

Theory of Computation p.1/?? Theory of Computation p.2/?? Unknown: Implicitly a Boolean variable: true if a word is Abstraction of Problems Data: abstracted as a word in a given alphabet. Σ: alphabet, a finite, non-empty set of symbols. Σ : all the words of finite length built up using Σ: Conditions: abstracted as a

More information

Non-deterministic Finite Automata (NFAs)

Non-deterministic Finite Automata (NFAs) Algorithms & Models of Computation CS/ECE 374, Fall 27 Non-deterministic Finite Automata (NFAs) Part I NFA Introduction Lecture 4 Thursday, September 7, 27 Sariel Har-Peled (UIUC) CS374 Fall 27 / 39 Sariel

More information

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism,

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism, CS 54, Lecture 2: Finite Automata, Closure Properties Nondeterminism, Why so Many Models? Streaming Algorithms 0 42 Deterministic Finite Automata Anatomy of Deterministic Finite Automata transition: for

More information

Closure Properties of Regular Languages. Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism

Closure Properties of Regular Languages. Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism Closure Properties of Regular Languages Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism Closure Properties Recall a closure property is a statement

More information

Computational Theory

Computational Theory Computational Theory Finite Automata and Regular Languages Curtis Larsen Dixie State University Computing and Design Fall 2018 Adapted from notes by Russ Ross Adapted from notes by Harry Lewis Curtis Larsen

More information

Sri vidya college of engineering and technology

Sri vidya college of engineering and technology Unit I FINITE AUTOMATA 1. Define hypothesis. The formal proof can be using deductive proof and inductive proof. The deductive proof consists of sequence of statements given with logical reasoning in order

More information

September 7, Formal Definition of a Nondeterministic Finite Automaton

September 7, Formal Definition of a Nondeterministic Finite Automaton Formal Definition of a Nondeterministic Finite Automaton September 7, 2014 A comment first The formal definition of an NFA is similar to that of a DFA. Both have states, an alphabet, transition function,

More information

CS 154, Lecture 3: DFA NFA, Regular Expressions

CS 154, Lecture 3: DFA NFA, Regular Expressions CS 154, Lecture 3: DFA NFA, Regular Expressions Homework 1 is coming out Deterministic Finite Automata Computation with finite memory Non-Deterministic Finite Automata Computation with finite memory and

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministic Finite Automata Not A DFA Does not have exactly one transition from every state on every symbol: Two transitions from q 0 on a No transition from q 1 (on either a or b) Though not a DFA,

More information

Automata Theory. Lecture on Discussion Course of CS120. Runzhe SJTU ACM CLASS

Automata Theory. Lecture on Discussion Course of CS120. Runzhe SJTU ACM CLASS Automata Theory Lecture on Discussion Course of CS2 This Lecture is about Mathematical Models of Computation. Why Should I Care? - Ways of thinking. - Theory can drive practice. - Don t be an Instrumentalist.

More information

CS243, Logic and Computation Nondeterministic finite automata

CS243, Logic and Computation Nondeterministic finite automata CS243, Prof. Alvarez NONDETERMINISTIC FINITE AUTOMATA (NFA) Prof. Sergio A. Alvarez http://www.cs.bc.edu/ alvarez/ Maloney Hall, room 569 alvarez@cs.bc.edu Computer Science Department voice: (67) 552-4333

More information

CS 154. Finite Automata vs Regular Expressions, Non-Regular Languages

CS 154. Finite Automata vs Regular Expressions, Non-Regular Languages CS 154 Finite Automata vs Regular Expressions, Non-Regular Languages Deterministic Finite Automata Computation with finite memory Non-Deterministic Finite Automata Computation with finite memory and guessing

More information

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova.

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova. Introduction to the Theory of Computation Automata 1VO + 1PS Lecturer: Dr. Ana Sokolova http://cs.uni-salzburg.at/~anas/ Setup and Dates Lectures and Instructions 23.10. 3.11. 17.11. 24.11. 1.12. 11.12.

More information

UNIT-III REGULAR LANGUAGES

UNIT-III REGULAR LANGUAGES Syllabus R9 Regulation REGULAR EXPRESSIONS UNIT-III REGULAR LANGUAGES Regular expressions are useful for representing certain sets of strings in an algebraic fashion. In arithmetic we can use the operations

More information

Automata: a short introduction

Automata: a short introduction ILIAS, University of Luxembourg Discrete Mathematics II May 2012 What is a computer? Real computers are complicated; We abstract up to an essential model of computation; We begin with the simplest possible

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY REVIEW for MIDTERM 1 THURSDAY Feb 6 Midterm 1 will cover everything we have seen so far The PROBLEMS will be from Sipser, Chapters 1, 2, 3 It will be

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2018 http://cseweb.ucsd.edu/classes/sp18/cse105-ab/ Today's learning goals Sipser Ch 4.1 Explain what it means for a problem to be decidable. Justify the use of encoding.

More information

Computational Models - Lecture 3 1

Computational Models - Lecture 3 1 Computational Models - Lecture 3 1 Handout Mode Iftach Haitner and Yishay Mansour. Tel Aviv University. March 13/18, 2013 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

Uses of finite automata

Uses of finite automata Chapter 2 :Finite Automata 2.1 Finite Automata Automata are computational devices to solve language recognition problems. Language recognition problem is to determine whether a word belongs to a language.

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Ch 4.1 Explain what it means for a problem to be decidable. Justify the use of encoding.

More information

CSE 105 Theory of Computation Professor Jeanne Ferrante

CSE 105 Theory of Computation  Professor Jeanne Ferrante CSE 105 Theory of Computation http://www.jflap.org/jflaptmp/ Professor Jeanne Ferrante 1 Today s agenda NFA Review and Design NFA s Equivalence to DFA s Another Closure Property proof for Regular Languages

More information

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova.

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova. Introduction to the Theory of Computation Automata 1VO + 1PS Lecturer: Dr. Ana Sokolova http://cs.uni-salzburg.at/~anas/ Setup and Dates Lectures Tuesday 10:45 pm - 12:15 pm Instructions Tuesday 12:30

More information

TDDD65 Introduction to the Theory of Computation

TDDD65 Introduction to the Theory of Computation TDDD65 Introduction to the Theory of Computation Lecture 2 Gustav Nordh, IDA gustav.nordh@liu.se 2012-08-31 Outline - Lecture 2 Closure properties of regular languages Regular expressions Equivalence of

More information

Before we show how languages can be proven not regular, first, how would we show a language is regular?

Before we show how languages can be proven not regular, first, how would we show a language is regular? CS35 Proving Languages not to be Regular Before we show how languages can be proven not regular, first, how would we show a language is regular? Although regular languages and automata are quite powerful

More information

CPS 220 Theory of Computation REGULAR LANGUAGES

CPS 220 Theory of Computation REGULAR LANGUAGES CPS 22 Theory of Computation REGULAR LANGUAGES Introduction Model (def) a miniature representation of a thing; sometimes a facsimile Iraq village mockup for the Marines Scientific modelling - the process

More information

What we have done so far

What we have done so far What we have done so far DFAs and regular languages NFAs and their equivalence to DFAs Regular expressions. Regular expressions capture exactly regular languages: Construct a NFA from a regular expression.

More information

The Pumping Lemma and Closure Properties

The Pumping Lemma and Closure Properties The Pumping Lemma and Closure Properties Mridul Aanjaneya Stanford University July 5, 2012 Mridul Aanjaneya Automata Theory 1/ 27 Tentative Schedule HW #1: Out (07/03), Due (07/11) HW #2: Out (07/10),

More information

Regular Languages. Problem Characterize those Languages recognized by Finite Automata.

Regular Languages. Problem Characterize those Languages recognized by Finite Automata. Regular Expressions Regular Languages Fundamental Question -- Cardinality Alphabet = Σ is finite Strings = Σ is countable Languages = P(Σ ) is uncountable # Finite Automata is countable -- Q Σ +1 transition

More information

GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I

GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I Internal Examination 2017-18 B.Tech III Year VI Semester Sub: Theory of Computation (6CS3A) Time: 1 Hour 30 min. Max Marks: 40 Note: Attempt all three

More information

Equivalence of DFAs and NFAs

Equivalence of DFAs and NFAs CS 172: Computability and Complexity Equivalence of DFAs and NFAs It s a tie! DFA NFA Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: L.von Ahn, L. Blum, M. Blum What we ll do today Prove that DFAs

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 3.3, 4.1 State and use the Church-Turing thesis. Give examples of decidable problems.

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 2 January 5, 2018 January 5, 2018 CS21 Lecture 2 1 Outline Finite Automata Nondeterministic Finite Automata Closure under regular operations NFA, FA equivalence

More information

Chapter Five: Nondeterministic Finite Automata

Chapter Five: Nondeterministic Finite Automata Chapter Five: Nondeterministic Finite Automata From DFA to NFA A DFA has exactly one transition from every state on every symbol in the alphabet. By relaxing this requirement we get a related but more

More information

UNIT-II. NONDETERMINISTIC FINITE AUTOMATA WITH ε TRANSITIONS: SIGNIFICANCE. Use of ε-transitions. s t a r t. ε r. e g u l a r

UNIT-II. NONDETERMINISTIC FINITE AUTOMATA WITH ε TRANSITIONS: SIGNIFICANCE. Use of ε-transitions. s t a r t. ε r. e g u l a r Syllabus R9 Regulation UNIT-II NONDETERMINISTIC FINITE AUTOMATA WITH ε TRANSITIONS: In the automata theory, a nondeterministic finite automaton (NFA) or nondeterministic finite state machine is a finite

More information

Properties of Regular Languages. BBM Automata Theory and Formal Languages 1

Properties of Regular Languages. BBM Automata Theory and Formal Languages 1 Properties of Regular Languages BBM 401 - Automata Theory and Formal Languages 1 Properties of Regular Languages Pumping Lemma: Every regular language satisfies the pumping lemma. A non-regular language

More information

acs-04: Regular Languages Regular Languages Andreas Karwath & Malte Helmert Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages Regular Languages Andreas Karwath & Malte Helmert Informatik Theorie II (A) WS2009/10 Regular Languages Andreas Karwath & Malte Helmert 1 Overview Deterministic finite automata Regular languages Nondeterministic finite automata Closure operations Regular expressions Nonregular languages

More information

Incorrect reasoning about RL. Equivalence of NFA, DFA. Epsilon Closure. Proving equivalence. One direction is easy:

Incorrect reasoning about RL. Equivalence of NFA, DFA. Epsilon Closure. Proving equivalence. One direction is easy: Incorrect reasoning about RL Since L 1 = {w w=a n, n N}, L 2 = {w w = b n, n N} are regular, therefore L 1 L 2 = {w w=a n b n, n N} is regular If L 1 is a regular language, then L 2 = {w R w L 1 } is regular,

More information

Great Theoretical Ideas in Computer Science. Lecture 4: Deterministic Finite Automaton (DFA), Part 2

Great Theoretical Ideas in Computer Science. Lecture 4: Deterministic Finite Automaton (DFA), Part 2 5-25 Great Theoretical Ideas in Computer Science Lecture 4: Deterministic Finite Automaton (DFA), Part 2 January 26th, 27 Formal definition: DFA A deterministic finite automaton (DFA) M =(Q,,,q,F) M is

More information

DM17. Beregnelighed. Jacob Aae Mikkelsen

DM17. Beregnelighed. Jacob Aae Mikkelsen DM17 Beregnelighed Jacob Aae Mikkelsen January 12, 2007 CONTENTS Contents 1 Introduction 2 1.1 Operations with languages...................... 2 2 Finite Automata 3 2.1 Regular expressions/languages....................

More information

Languages, regular languages, finite automata

Languages, regular languages, finite automata Notes on Computer Theory Last updated: January, 2018 Languages, regular languages, finite automata Content largely taken from Richards [1] and Sipser [2] 1 Languages An alphabet is a finite set of characters,

More information

Harvard CS 121 and CSCI E-207 Lecture 4: NFAs vs. DFAs, Closure Properties

Harvard CS 121 and CSCI E-207 Lecture 4: NFAs vs. DFAs, Closure Properties Harvard CS 121 and CSCI E-207 Lecture 4: NFAs vs. DFAs, Closure Properties Salil Vadhan September 13, 2012 Reading: Sipser, 1.2. How to simulate NFAs? NFA accepts w if there is at least one accepting computational

More information

Outline. Nondetermistic Finite Automata. Transition diagrams. A finite automaton is a 5-tuple (Q, Σ,δ,q 0,F)

Outline. Nondetermistic Finite Automata. Transition diagrams. A finite automaton is a 5-tuple (Q, Σ,δ,q 0,F) Outline Nondeterminism Regular expressions Elementary reductions http://www.cs.caltech.edu/~cs20/a October 8, 2002 1 Determistic Finite Automata A finite automaton is a 5-tuple (Q, Σ,δ,q 0,F) Q is a finite

More information

Fooling Sets and. Lecture 5

Fooling Sets and. Lecture 5 Fooling Sets and Introduction to Nondeterministic Finite Automata Lecture 5 Proving that a language is not regular Given a language, we saw how to prove it is regular (union, intersection, concatenation,

More information

CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata (cont )

CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata (cont ) CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata (cont ) Sungjin Im University of California, Merced 2-3-214 Example II A ɛ B ɛ D F C E Example II A ɛ B ɛ D F C E NFA accepting

More information

The Church-Turing Thesis

The Church-Turing Thesis The Church-Turing Thesis Huan Long Shanghai Jiao Tong University Acknowledgements Part of the slides comes from a similar course in Fudan University given by Prof. Yijia Chen. http://basics.sjtu.edu.cn/

More information

Formal Languages, Automata and Models of Computation

Formal Languages, Automata and Models of Computation CDT314 FABER Formal Languages, Automata and Models of Computation Lecture 5 School of Innovation, Design and Engineering Mälardalen University 2011 1 Content - More Properties of Regular Languages (RL)

More information

Deterministic Finite Automata. Non deterministic finite automata. Non-Deterministic Finite Automata (NFA) Non-Deterministic Finite Automata (NFA)

Deterministic Finite Automata. Non deterministic finite automata. Non-Deterministic Finite Automata (NFA) Non-Deterministic Finite Automata (NFA) Deterministic Finite Automata Non deterministic finite automata Automata we ve been dealing with have been deterministic For every state and every alphabet symbol there is exactly one move that the machine

More information

Recap DFA,NFA, DTM. Slides by Prof. Debasis Mitra, FIT.

Recap DFA,NFA, DTM. Slides by Prof. Debasis Mitra, FIT. Recap DFA,NFA, DTM Slides by Prof. Debasis Mitra, FIT. 1 Formal Language Finite set of alphabets Σ: e.g., {0, 1}, {a, b, c}, { {, } } Language L is a subset of strings on Σ, e.g., {00, 110, 01} a finite

More information

2017/08/29 Chapter 1.2 in Sipser Ø Announcement:

2017/08/29 Chapter 1.2 in Sipser Ø Announcement: Nondeterministic Human-aware Finite Robo.cs Automata 2017/08/29 Chapter 1.2 in Sipser Ø Announcement: q Piazza registration: http://piazza.com/asu/fall2017/cse355 q First poll will be posted on Piazza

More information

Computational Models - Lecture 4

Computational Models - Lecture 4 Computational Models - Lecture 4 Regular languages: The Myhill-Nerode Theorem Context-free Grammars Chomsky Normal Form Pumping Lemma for context free languages Non context-free languages: Examples Push

More information

CS 154 Introduction to Automata and Complexity Theory

CS 154 Introduction to Automata and Complexity Theory CS 154 Introduction to Automata and Complexity Theory cs154.stanford.edu 1 INSTRUCTORS & TAs Ryan Williams Cody Murray Lera Nikolaenko Sunny Rajan 2 Textbook 3 Homework / Problem Sets Homework will be

More information

Properties of Regular Languages (2015/10/15)

Properties of Regular Languages (2015/10/15) Chapter 4 Properties of Regular Languages (25//5) Pasbag, Turkey Outline 4. Proving Languages Not to e Regular 4.2 Closure Properties of Regular Languages 4.3 Decision Properties of Regular Languages 4.4

More information

arxiv: v2 [cs.fl] 29 Nov 2013

arxiv: v2 [cs.fl] 29 Nov 2013 A Survey of Multi-Tape Automata Carlo A. Furia May 2012 arxiv:1205.0178v2 [cs.fl] 29 Nov 2013 Abstract This paper summarizes the fundamental expressiveness, closure, and decidability properties of various

More information

Finite Automata Part Two

Finite Automata Part Two Finite Automata Part Two DFAs A DFA is a Deterministic Finite Automaton A DFA is defined relative to some alphabet Σ. For each state in the DFA, there must be exactly one transition defined for each symbol

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

FORMAL LANGUAGES, AUTOMATA AND COMPUTATION FORMAL LANGUAGES, AUTOMATA AND COMPUTATION IDENTIFYING NONREGULAR LANGUAGES PUMPING LEMMA Carnegie Mellon University in Qatar (CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 5 SPRING 2011

More information

CS:4330 Theory of Computation Spring Regular Languages. Finite Automata and Regular Expressions. Haniel Barbosa

CS:4330 Theory of Computation Spring Regular Languages. Finite Automata and Regular Expressions. Haniel Barbosa CS:4330 Theory of Computation Spring 2018 Regular Languages Finite Automata and Regular Expressions Haniel Barbosa Readings for this lecture Chapter 1 of [Sipser 1996], 3rd edition. Sections 1.1 and 1.3.

More information

Lecture 1: Finite State Automaton

Lecture 1: Finite State Automaton Lecture 1: Finite State Automaton Instructor: Ketan Mulmuley Scriber: Yuan Li January 6, 2015 1 Deterministic Finite Automaton Informally, a deterministic finite automaton (DFA) has finite number of s-

More information

More Properties of Regular Languages

More Properties of Regular Languages More Properties of Regular anguages 1 We have proven Regular languages are closed under: Union Concatenation Star operation Reverse 2 Namely, for regular languages 1 and 2 : Union 1 2 Concatenation Star

More information

Recitation 2 - Non Deterministic Finite Automata (NFA) and Regular OctoberExpressions

Recitation 2 - Non Deterministic Finite Automata (NFA) and Regular OctoberExpressions Recitation 2 - Non Deterministic Finite Automata (NFA) and Regular Expressions Orit Moskovich Gal Rotem Tel Aviv University October 28, 2015 Recitation 2 - Non Deterministic Finite Automata (NFA) and Regular

More information

CPSC 421: Tutorial #1

CPSC 421: Tutorial #1 CPSC 421: Tutorial #1 October 14, 2016 Set Theory. 1. Let A be an arbitrary set, and let B = {x A : x / x}. That is, B contains all sets in A that do not contain themselves: For all y, ( ) y B if and only

More information

CS5371 Theory of Computation. Lecture 5: Automata Theory III (Non-regular Language, Pumping Lemma, Regular Expression)

CS5371 Theory of Computation. Lecture 5: Automata Theory III (Non-regular Language, Pumping Lemma, Regular Expression) CS5371 Theory of Computation Lecture 5: Automata Theory III (Non-regular Language, Pumping Lemma, Regular Expression) Objectives Prove the Pumping Lemma, and use it to show that there are non-regular languages

More information

THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET

THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET Regular Languages and FA A language is a set of strings over a finite alphabet Σ. All languages are finite or countably infinite. The set of all languages

More information

Lecture Notes On THEORY OF COMPUTATION MODULE -1 UNIT - 2

Lecture Notes On THEORY OF COMPUTATION MODULE -1 UNIT - 2 BIJU PATNAIK UNIVERSITY OF TECHNOLOGY, ODISHA Lecture Notes On THEORY OF COMPUTATION MODULE -1 UNIT - 2 Prepared by, Dr. Subhendu Kumar Rath, BPUT, Odisha. UNIT 2 Structure NON-DETERMINISTIC FINITE AUTOMATA

More information

Chap. 1.2 NonDeterministic Finite Automata (NFA)

Chap. 1.2 NonDeterministic Finite Automata (NFA) Chap. 1.2 NonDeterministic Finite Automata (NFA) DFAs: exactly 1 new state for any state & next char NFA: machine may not work same each time More than 1 transition rule for same state & input Any one

More information

Lecture 4: More on Regexps, Non-Regular Languages

Lecture 4: More on Regexps, Non-Regular Languages 6.045 Lecture 4: More on Regexps, Non-Regular Languages 6.045 Announcements: - Pset 1 is on piazza (as of last night) - If you don t have piazza access but are registered for 6.045, send email to TAs with

More information

Computational Models - Lecture 3

Computational Models - Lecture 3 Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. p. 1 Computational Models - Lecture 3 Equivalence of regular expressions and regular languages (lukewarm leftover

More information

Formal Definition of Computation. August 28, 2013

Formal Definition of Computation. August 28, 2013 August 28, 2013 Computation model The model of computation considered so far is the work performed by a finite automaton Finite automata were described informally, using state diagrams, and formally, as

More information

Computational Models - Lecture 3 1

Computational Models - Lecture 3 1 Computational Models - Lecture 3 1 Handout Mode Iftach Haitner. Tel Aviv University. November 14, 2016 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice Herlihy, Brown University.

More information

Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs

Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs Harry Lewis October 8, 2013 Reading: Sipser, pp. 119-128. Pushdown Automata (review) Pushdown Automata = Finite automaton

More information

Formal Models in NLP

Formal Models in NLP Formal Models in NLP Finite-State Automata Nina Seemann Universität Stuttgart Institut für Maschinelle Sprachverarbeitung Pfaffenwaldring 5b 70569 Stuttgart May 15, 2012 Nina Seemann (IMS) Formal Models

More information

We define the multi-step transition function T : S Σ S as follows. 1. For any s S, T (s,λ) = s. 2. For any s S, x Σ and a Σ,

We define the multi-step transition function T : S Σ S as follows. 1. For any s S, T (s,λ) = s. 2. For any s S, x Σ and a Σ, Distinguishability Recall A deterministic finite automaton is a five-tuple M = (S,Σ,T,s 0,F) where S is a finite set of states, Σ is an alphabet the input alphabet, T : S Σ S is the transition function,

More information

Büchi Automata and their closure properties. - Ajith S and Ankit Kumar

Büchi Automata and their closure properties. - Ajith S and Ankit Kumar Büchi Automata and their closure properties - Ajith S and Ankit Kumar Motivation Conventional programs accept input, compute, output result, then terminate Reactive program : not expected to terminate

More information

Chapter 6: NFA Applications

Chapter 6: NFA Applications Chapter 6: NFA Applications Implementing NFAs The problem with implementing NFAs is that, being nondeterministic, they define a more complex computational procedure for testing language membership. To

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY THE PUMPING LEMMA FOR REGULAR LANGUAGES and REGULAR EXPRESSIONS TUESDAY Jan 21 WHICH OF THESE ARE REGULAR? B = {0 n 1 n n 0} C = { w w has equal number

More information

Lecture 17: Language Recognition

Lecture 17: Language Recognition Lecture 17: Language Recognition Finite State Automata Deterministic and Non-Deterministic Finite Automata Regular Expressions Push-Down Automata Turing Machines Modeling Computation When attempting to

More information

Closure under the Regular Operations

Closure under the Regular Operations Closure under the Regular Operations Application of NFA Now we use the NFA to show that collection of regular languages is closed under regular operations union, concatenation, and star Earlier we have

More information

Computational Models - Lecture 5 1

Computational Models - Lecture 5 1 Computational Models - Lecture 5 1 Handout Mode Iftach Haitner and Yishay Mansour. Tel Aviv University. April 10/22, 2013 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

INF Introduction and Regular Languages. Daniel Lupp. 18th January University of Oslo. Department of Informatics. Universitetet i Oslo

INF Introduction and Regular Languages. Daniel Lupp. 18th January University of Oslo. Department of Informatics. Universitetet i Oslo INF28 1. Introduction and Regular Languages Daniel Lupp Universitetet i Oslo 18th January 218 Department of Informatics University of Oslo INF28 Lecture :: 18th January 1 / 33 Details on the Course consists

More information

Languages. Non deterministic finite automata with ε transitions. First there was the DFA. Finite Automata. Non-Deterministic Finite Automata (NFA)

Languages. Non deterministic finite automata with ε transitions. First there was the DFA. Finite Automata. Non-Deterministic Finite Automata (NFA) Languages Non deterministic finite automata with ε transitions Recall What is a language? What is a class of languages? Finite Automata Consists of A set of states (Q) A start state (q o ) A set of accepting

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Section 1.4 Explain the limits of the class of regular languages Justify why the

More information

Exam 1 CSU 390 Theory of Computation Fall 2007

Exam 1 CSU 390 Theory of Computation Fall 2007 Exam 1 CSU 390 Theory of Computation Fall 2007 Solutions Problem 1 [10 points] Construct a state transition diagram for a DFA that recognizes the following language over the alphabet Σ = {a, b}: L 1 =

More information

CSCE 551 Final Exam, Spring 2004 Answer Key

CSCE 551 Final Exam, Spring 2004 Answer Key CSCE 551 Final Exam, Spring 2004 Answer Key 1. (10 points) Using any method you like (including intuition), give the unique minimal DFA equivalent to the following NFA: 0 1 2 0 5 1 3 4 If your answer is

More information

Finite Automata and Regular Languages

Finite Automata and Regular Languages Finite Automata and Regular Languages Topics to be covered in Chapters 1-4 include: deterministic vs. nondeterministic FA, regular expressions, one-way vs. two-way FA, minimization, pumping lemma for regular

More information