Non-deterministic Finite Automata (NFAs)

Size: px
Start display at page:

Download "Non-deterministic Finite Automata (NFAs)"

Transcription

1 Algorithms & Models of Computation CS/ECE 374, Fall 27 Non-deterministic Finite Automata (NFAs) Part I NFA Introduction Lecture 4 Thursday, September 7, 27 Sariel Har-Peled (UIUC) CS374 Fall 27 / 39 Sariel Har-Peled (UIUC) CS374 2 Fall 27 2 / 39 Non-deterministic Finite State Automata (NFAs) NFA behavior,,,, q q q q q q Differences from DFA From state q on same letter a Σ multiple possible states No transitions from q on some letters -transitions! Questions: Is this a real machine? What does it do? Machine on input string w from state q can lead to set of states (could be empty) From q on From q on From q on From q on From q on Sariel Har-Peled (UIUC) CS374 3 Fall 27 3 / 39 Sariel Har-Peled (UIUC) CS374 4 Fall 27 4 / 39

2 NFA acceptance: informal NFA acceptance: example,,,, q q q q q q Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w. The language accepted (or recognized) by a NFA N is denote by L(N) and defined as: L(N) = {w N accepts w}. Is accepted? Is accepted? Is accepted? Are all strings in accepted? What is the language accepted by N? Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted. Sariel Har-Peled (UIUC) CS374 5 Fall 27 5 / 39 Sariel Har-Peled (UIUC) CS374 6 Fall 27 6 / 39 Simulating NFA the first (N) a b a b A B C D E Run it on input ababa. Idea: Keep track of the states where the NFA might be at any given time. t = : a b a b A B C D E Remaining input: ababa. t = : a b a b A B C D E Sariel Har-Peled (UIUC) CS374 7 Fall 27 7 / 39 Formal Tuple Notation A non-deterministic finite automata (NFA) N = (Q, Σ, δ, s, A) is a five tuple where Q is a finite set whose elements are called states, Σ is a finite set called the input alphabet, δ : Q Σ {} P(Q) is the transition function (here P(Q) is the power set of Q), s Q is the start state, A Q is the set of accepting/final states. δ(q, a) for a Σ {} is a subset of Q a set of states. Sariel Har-Peled (UIUC) CS374 8 Fall 27 8 / 39

3 Reminder: Power set For a set Q its power set is: P(Q) = 2 Q = {X X Q} is the set of all subsets of Q. Q = {, 2, 3, 4} P(Q) = {, 2, 3, 4}, {2, 3, 4}, {, 3, 4}, {, 2, 4}, {, 2, 3}, {, 2}, {, 3}, {, 4}, {2, 3}, {2, 4}, {3, 4}, {}, {2}, {3}, {4}, {}, q Q = {q, q, q, } Σ = {, } δ s = q A = { } q q, Sariel Har-Peled (UIUC) CS374 9 Fall 27 9 / 39 Sariel Har-Peled (UIUC) CS374 Fall 27 / 39 Transition function in detail..., q δ(q, ) = {q } δ(q, ) = {q, q } δ(q, ) = {q } δ(q, ) = {q } δ(q, ) = {} δ(q, ) = { } q q, δ(q, ) = {q, q } δ(q, ) = {q } δ(q, ) = {} δ(, ) = { } δ(, ) = { } δ(, ) = { } Extending the transition function to strings NFA N = (Q, Σ, δ, s, A) 2 δ(q, a): set of states that N can go to from q on reading a Σ {}. 3 Want transition function δ : Q Σ P(Q) 4 δ (q, w): set of states reachable on input w starting in state q. Sariel Har-Peled (UIUC) CS374 Fall 27 / 39 Sariel Har-Peled (UIUC) CS374 2 Fall 27 2 / 39

4 . "-Transitions the NFA somehow chose a path to an accept state still exist. One slight disadvantage of this metaphor is that if an NFA reads a string that is not in its language, it destroys all universes. t is fairly common for NFAs to include so-called "-transitions, which allow the machine to hange state Extending without reading the transition input symbol. function An NFA with to "-transitions strings accepts a string w a a 2 a 3 Extending the transition function to strings a` Proofs/oracles. Finally, we can treat NFAs not as a mechanism for computing something, but as and only if there is a sequence of transitions s! q! q 2!! q` where the final a mechanism for verifying proofs. If we want to prove that a string w contains one of the suffixes tate q` is accepting, each a i is either " or a symbol in, and a a 2 a` = w. or, it suffices to demonstrate a single walk in our example NFA that starts at s and ends For example, For NFA consider N = the (Q, following Σ, δ, s, NFA A) and with q"-transitions. Q the ɛreach(q) (For this example, is the setwe indicate at c, and whose For NFA edgesn are= labeled (Q, Σ, with δ, the s, A) symbols and qin w. QEquivalently, the ɛreach(q) whenever is the the setnfa faces a he "-transitions of all states using large that red q can arrows; reach we using won t only normally -transitions. do that.) This NFA deliberately has nontrivial choice, of all states the prover that can q can simply reach tellusing the NFA onlywhich -transitions. state to move to next. ore "-transitions than necessary. This intuition can be formalized as follows. Consider a deterministic finite state machine whose input alphabet is the product of an input alphabet and an oracle alphabet a b c Equivalently, we can imagine that this Inductive definition of δ DFA reads : Q Σ simultaneously from two strings of the same P(Q): length: the input string w and the oracle string!. In either formulation, the transition function, s g, has the form : ifq w ( =, ) δ!(q, Q. w) As usual, = ɛreach(q) this DFA accepts the pair (w,!) 2 ( ) if and only if (s, (w, if!)) w 2= A. afinally, where Ma nondeterministically Σ accepts the string w 2 if there is d e f an oracle string δ! (q, 2 a) with =! p ɛreach(q) = w such ( that r δ(p,a) (w, ɛreach(r))!) 2 L(M). An NFA with "-transitions if w = ax,. "-Transitions δ (q, w) = p ɛreach(q) ( r δ(p,a) δ (r, x)) The NFA starts as usual in state s. If the input string is, the the machine might It is fairly common for NFAs to include so-called "-transitions, which allow the machine to on-deterministically choose the following transitions and then accept. change state without reading an input symbol. An NFA with "-transitions accepts a string w a a 2 a 3 a` " " " " " " if and only if there is a sequence of transitions s! q s Sariel! s Har-Peled! d (UIUC)! a! b! c CS374! d! 3 e! f! e! f Fall! 27 c! 3 g! q 2!! q` where the final / 39 Sariel Har-Peled (UIUC) CS374 4 Fall 27 4 / 39 state q` is accepting, each a i is either " or a symbol in, and a a 2 a` = w. More formally, the transition function in an NFA with "-transitions has a slightly larger For example, consider the following NFA with "-transitions. (For this example, we indicate omain : Q ( [ {"})! 2 Q. The "-reach of a state q 2 Q consists of all states r that satisfy the "-transitions using large red arrows; we won t normally do that.) This NFA deliberately has ne of the following conditions: more "-transitions than necessary. Formal definition of language accepted by N either r = q, or r 2 (q, ") for some state q in the "-reach of q. A string w is accepted by NFA N if δ N (s, w) A. n other words, r is in the "-reach of q if there is a (possibly empty) sequence of "-transitions ading from q to r. For example, in the example NFA above, the "-reach of state f is {a, c, d, f, g}. The language L(N) accepted by a NFA N = (Q, Σ, δ, s, A) is {w Σ δ (s, w) A }. Important: Formal definition of the language of NFA above uses δ and not δ. As such, one does not need to include -transitions closure when specifying δ, since δ takes care of that. What is: b, s g, a d e An NFA with "-transitions The NFA starts δ (s, as ɛ) usual in state s. If the input string is, the the machine might non-deterministically δ (s, choose ) the following transitions and then accept. s δ (c, " ) "! s! d! a! b! c "! d! e! f "! e! f "! c "! g δ (b, ) More formally, the transition function in an NFA with "-transitions has a slightly larger domain : Q ( [ {"})! 2 Q. The "-reach of a state q 2 Q consists of all states r that satisfy one of the following conditions: c f Sariel Har-Peled (UIUC) CS374 5 Fall 27 5 / 39 either r = q, Sariel Har-Peled (UIUC) CS374 6 Fall 27 6 / 39 or r 2 (q, ") for some state q in the "-reach of q.

5 Another definition of computation w q N p: State p of NFA N is reachable from q on w there exists a sequence of states r, r,..., r k and a sequence x, x 2,..., x k where x i Σ {}, for each i, such that: r = q, for each i, r i + δ(r i, x i + ), r k = p, and w = x x 2 x 3 x k. Why non-determinism? Non-determinism adds power to the model; richer programming language and hence (much) easier to design programs Fundamental in theory to prove many theorems Very important in practice directly and indirectly Many deep connections to various fields in Computer Science and Mathematics Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly. δ N(q, w) = { p Q q } w N p. Sariel Har-Peled (UIUC) CS374 7 Fall 27 7 / 39 Sariel Har-Peled (UIUC) CS374 8 Fall 27 8 / 39 DFAs and NFAs Part II Constructing NFAs Every DFA is a NFA so NFAs are at least as powerful as DFAs. NFAs prove ability to guess and verify which simplifies design and reduces number of states Easy proofs of some closure properties Sariel Har-Peled (UIUC) CS374 9 Fall 27 9 / 39 Sariel Har-Peled (UIUC) CS374 2 Fall 27 2 / 39

6 Strings that represent decimal numbers.,,,2,..., {strings that contain CS374 as a substring} {strings that contain CS374 or CS473 as a substring} {strings that contain CS374 and CS473 as substrings},2,...,9 4.,,2,...,9,,2,...,9 Sariel Har-Peled (UIUC) CS374 2 Fall 27 2 / 39 Sariel Har-Peled (UIUC) CS Fall / 39 L k = {bitstrings that have a k positions from the end} A simple transformation For every NFA N there is another NFA N such that L(N) = L(N ) and such that N has the following two properties: N has single final state f that has no outgoing transitions The start state s of N is different from f Sariel Har-Peled (UIUC) CS Fall / 39 Sariel Har-Peled (UIUC) CS Fall / 39

7 Closure properties of NFAs Part III Closure Properties of NFAs Are the class of languages accepted by NFAs closed under the following operations? union intersection concatenation Kleene star complement Sariel Har-Peled (UIUC) CS Fall / 39 Sariel Har-Peled (UIUC) CS Fall / 39 Closure under union For any two NFAs N and N 2 there is a NFA N such that L(N) = L(N ) L(N 2 ). Closure under concatenation For any two NFAs N and N 2 there is a NFA N such that L(N) = L(N ) L(N 2 ). q N f q N f q 2 f 2 N 2 q 2 N f 2 2 Sariel Har-Peled (UIUC) CS Fall / 39 Sariel Har-Peled (UIUC) CS Fall / 39

8 Closure under Kleene star For any NFA N there is a NFA N such that L(N) = (L(N )). Closure under Kleene star For any NFA N there is a NFA N such that L(N) = (L(N )). q N f q N f Does not work! Why? Sariel Har-Peled (UIUC) CS Fall / 39 Sariel Har-Peled (UIUC) CS374 3 Fall 27 3 / 39 Closure under Kleene star For any NFA N there is a NFA N such that L(N) = (L(N )). Part IV q q N f NFAs capture Regular Languages Sariel Har-Peled (UIUC) CS374 3 Fall 27 3 / 39 Sariel Har-Peled (UIUC) CS Fall / 39

9 Regular Languages Recap Regular Languages Regular Expressions regular denotes {ɛ} regular ɛ denotes {ɛ} {a} regular for a Σ a denote {a} R R 2 regular if both are r + r 2 denotes R R 2 R R 2 regular if both are r r 2 denotes R R 2 R is regular if R is r denote R NFAs and Regular Language For every regular language L there is an NFA N such that L = L(N). Proof strategy: For every regular expression r show that there is a NFA N such that L(r) = L(N) Induction on length of r Regular expressions denote regular languages they explicitly show the operations that were used to form the language Sariel Har-Peled (UIUC) CS Fall / 39 Sariel Har-Peled (UIUC) CS Fall / 39 NFAs and Regular Language For every regular expression r show that there is a NFA N such that L(r) = L(N) Induction on length of r Base cases:, {}, {a} for a Σ. NFAs and Regular Language For every regular expression r show that there is a NFA N such that L(r) = L(N) Induction on length of r Inductive cases: r, r 2 regular expressions and r = r + r 2. By induction there are NFAs N, N 2 s.t L(N ) = L(r ) and L(N 2 ) = L(r 2 ). We have already seen that there is NFA N s.t L(N) = L(N ) L(N 2 ), hence L(N) = L(r) r = r r 2. Use closure of NFA languages under concatenation r = (r ). Use closure of NFA languages under Kleene star Sariel Har-Peled (UIUC) CS Fall / 39 Sariel Har-Peled (UIUC) CS Fall / 39

10 (+)(+) * (+) (+) * (+) * (+) * * * Sariel Har-Peled (UIUC) CS Fall / 39 Sariel Har-Peled (UIUC) CS Fall / 39 * Final NFA simplified slightly to reduce states Sariel Har-Peled (UIUC) CS Fall / 39

Deterministic Finite Automata (DFAs)

Deterministic Finite Automata (DFAs) Algorithms & Models of Computation CS/ECE 374, Fall 27 Deterministic Finite Automata (DFAs) Lecture 3 Tuesday, September 5, 27 Sariel Har-Peled (UIUC) CS374 Fall 27 / 36 Part I DFA Introduction Sariel

More information

Deterministic Finite Automata (DFAs)

Deterministic Finite Automata (DFAs) CS/ECE 374: Algorithms & Models of Computation, Fall 28 Deterministic Finite Automata (DFAs) Lecture 3 September 4, 28 Chandra Chekuri (UIUC) CS/ECE 374 Fall 28 / 33 Part I DFA Introduction Chandra Chekuri

More information

CS 154. Finite Automata, Nondeterminism, Regular Expressions

CS 154. Finite Automata, Nondeterminism, Regular Expressions CS 54 Finite Automata, Nondeterminism, Regular Expressions Read string left to right The DFA accepts a string if the process ends in a double circle A DFA is a 5-tuple M = (Q, Σ, δ, q, F) Q is the set

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 5-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY NON-DETERMINISM and REGULAR OPERATIONS THURSDAY JAN 6 UNION THEOREM The union of two regular languages is also a regular language Regular Languages Are

More information

Lecture 3: Nondeterministic Finite Automata

Lecture 3: Nondeterministic Finite Automata Lecture 3: Nondeterministic Finite Automata September 5, 206 CS 00 Theory of Computation As a recap of last lecture, recall that a deterministic finite automaton (DFA) consists of (Q, Σ, δ, q 0, F ) where

More information

Deterministic Finite Automata (DFAs)

Deterministic Finite Automata (DFAs) Algorithms & Models of Computation CS/ECE 374, Spring 29 Deterministic Finite Automata (DFAs) Lecture 3 Tuesday, January 22, 29 L A TEXed: December 27, 28 8:25 Chan, Har-Peled, Hassanieh (UIUC) CS374 Spring

More information

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism,

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism, CS 54, Lecture 2: Finite Automata, Closure Properties Nondeterminism, Why so Many Models? Streaming Algorithms 0 42 Deterministic Finite Automata Anatomy of Deterministic Finite Automata transition: for

More information

Deterministic Finite Automata (DFAs)

Deterministic Finite Automata (DFAs) Algorithms & Models of Computation CS/ECE 374, Fall 27 Deterministic Finite Automata (DFAs) Lecture 3 Tuesday, September 5, 27 Part I DFA Introduction Sariel Har-Peled (UIUC) CS374 Fall 27 / 36 Sariel

More information

CS 154, Lecture 3: DFA NFA, Regular Expressions

CS 154, Lecture 3: DFA NFA, Regular Expressions CS 154, Lecture 3: DFA NFA, Regular Expressions Homework 1 is coming out Deterministic Finite Automata Computation with finite memory Non-Deterministic Finite Automata Computation with finite memory and

More information

Closure under the Regular Operations

Closure under the Regular Operations September 7, 2013 Application of NFA Now we use the NFA to show that collection of regular languages is closed under regular operations union, concatenation, and star Earlier we have shown this closure

More information

CS 455/555: Finite automata

CS 455/555: Finite automata CS 455/555: Finite automata Stefan D. Bruda Winter 2019 AUTOMATA (FINITE OR NOT) Generally any automaton Has a finite-state control Scans the input one symbol at a time Takes an action based on the currently

More information

Finite Automata and Regular languages

Finite Automata and Regular languages Finite Automata and Regular languages Huan Long Shanghai Jiao Tong University Acknowledgements Part of the slides comes from a similar course in Fudan University given by Prof. Yijia Chen. http://basics.sjtu.edu.cn/

More information

Languages. Non deterministic finite automata with ε transitions. First there was the DFA. Finite Automata. Non-Deterministic Finite Automata (NFA)

Languages. Non deterministic finite automata with ε transitions. First there was the DFA. Finite Automata. Non-Deterministic Finite Automata (NFA) Languages Non deterministic finite automata with ε transitions Recall What is a language? What is a class of languages? Finite Automata Consists of A set of states (Q) A start state (q o ) A set of accepting

More information

Theory of Computation (I) Yijia Chen Fudan University

Theory of Computation (I) Yijia Chen Fudan University Theory of Computation (I) Yijia Chen Fudan University Instructor Yijia Chen Homepage: http://basics.sjtu.edu.cn/~chen Email: yijiachen@fudan.edu.cn Textbook Introduction to the Theory of Computation Michael

More information

September 7, Formal Definition of a Nondeterministic Finite Automaton

September 7, Formal Definition of a Nondeterministic Finite Automaton Formal Definition of a Nondeterministic Finite Automaton September 7, 2014 A comment first The formal definition of an NFA is similar to that of a DFA. Both have states, an alphabet, transition function,

More information

T (s, xa) = T (T (s, x), a). The language recognized by M, denoted L(M), is the set of strings accepted by M. That is,

T (s, xa) = T (T (s, x), a). The language recognized by M, denoted L(M), is the set of strings accepted by M. That is, Recall A deterministic finite automaton is a five-tuple where S is a finite set of states, M = (S, Σ, T, s 0, F ) Σ is an alphabet the input alphabet, T : S Σ S is the transition function, s 0 S is the

More information

UNIT-II. NONDETERMINISTIC FINITE AUTOMATA WITH ε TRANSITIONS: SIGNIFICANCE. Use of ε-transitions. s t a r t. ε r. e g u l a r

UNIT-II. NONDETERMINISTIC FINITE AUTOMATA WITH ε TRANSITIONS: SIGNIFICANCE. Use of ε-transitions. s t a r t. ε r. e g u l a r Syllabus R9 Regulation UNIT-II NONDETERMINISTIC FINITE AUTOMATA WITH ε TRANSITIONS: In the automata theory, a nondeterministic finite automaton (NFA) or nondeterministic finite state machine is a finite

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministic Finite Automata Not A DFA Does not have exactly one transition from every state on every symbol: Two transitions from q 0 on a No transition from q 1 (on either a or b) Though not a DFA,

More information

Automata Theory. Lecture on Discussion Course of CS120. Runzhe SJTU ACM CLASS

Automata Theory. Lecture on Discussion Course of CS120. Runzhe SJTU ACM CLASS Automata Theory Lecture on Discussion Course of CS2 This Lecture is about Mathematical Models of Computation. Why Should I Care? - Ways of thinking. - Theory can drive practice. - Don t be an Instrumentalist.

More information

Equivalence of DFAs and NFAs

Equivalence of DFAs and NFAs CS 172: Computability and Complexity Equivalence of DFAs and NFAs It s a tie! DFA NFA Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: L.von Ahn, L. Blum, M. Blum What we ll do today Prove that DFAs

More information

COM364 Automata Theory Lecture Note 2 - Nondeterminism

COM364 Automata Theory Lecture Note 2 - Nondeterminism COM364 Automata Theory Lecture Note 2 - Nondeterminism Kurtuluş Küllü March 2018 The FA we saw until now were deterministic FA (DFA) in the sense that for each state and input symbol there was exactly

More information

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova.

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova. Introduction to the Theory of Computation Automata 1VO + 1PS Lecturer: Dr. Ana Sokolova http://cs.uni-salzburg.at/~anas/ Setup and Dates Lectures and Instructions 23.10. 3.11. 17.11. 24.11. 1.12. 11.12.

More information

CS243, Logic and Computation Nondeterministic finite automata

CS243, Logic and Computation Nondeterministic finite automata CS243, Prof. Alvarez NONDETERMINISTIC FINITE AUTOMATA (NFA) Prof. Sergio A. Alvarez http://www.cs.bc.edu/ alvarez/ Maloney Hall, room 569 alvarez@cs.bc.edu Computer Science Department voice: (67) 552-4333

More information

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova.

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova. Introduction to the Theory of Computation Automata 1VO + 1PS Lecturer: Dr. Ana Sokolova http://cs.uni-salzburg.at/~anas/ Setup and Dates Lectures Tuesday 10:45 pm - 12:15 pm Instructions Tuesday 12:30

More information

CS 530: Theory of Computation Based on Sipser (second edition): Notes on regular languages(version 1.1)

CS 530: Theory of Computation Based on Sipser (second edition): Notes on regular languages(version 1.1) CS 530: Theory of Computation Based on Sipser (second edition): Notes on regular languages(version 1.1) Definition 1 (Alphabet) A alphabet is a finite set of objects called symbols. Definition 2 (String)

More information

Inf2A: Converting from NFAs to DFAs and Closure Properties

Inf2A: Converting from NFAs to DFAs and Closure Properties 1/43 Inf2A: Converting from NFAs to DFAs and Stuart Anderson School of Informatics University of Edinburgh October 13, 2009 Starter Questions 2/43 1 Can you devise a way of testing for any FSM M whether

More information

Deterministic Finite Automata. Non deterministic finite automata. Non-Deterministic Finite Automata (NFA) Non-Deterministic Finite Automata (NFA)

Deterministic Finite Automata. Non deterministic finite automata. Non-Deterministic Finite Automata (NFA) Non-Deterministic Finite Automata (NFA) Deterministic Finite Automata Non deterministic finite automata Automata we ve been dealing with have been deterministic For every state and every alphabet symbol there is exactly one move that the machine

More information

Nondeterministic finite automata

Nondeterministic finite automata Lecture 3 Nondeterministic finite automata This lecture is focused on the nondeterministic finite automata (NFA) model and its relationship to the DFA model. Nondeterminism is an important concept in the

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation 1/19/2016 LECTURE 3 Last time: DFAs and NFAs Operations on languages Today: Nondeterminism Equivalence of NFAs and DFAs Closure properties of regular languages Sofya Raskhodnikova

More information

CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata (cont )

CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata (cont ) CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata (cont ) Sungjin Im University of California, Merced 2-3-214 Example II A ɛ B ɛ D F C E Example II A ɛ B ɛ D F C E NFA accepting

More information

Computational Models Lecture 2 1

Computational Models Lecture 2 1 Computational Models Lecture 2 1 Handout Mode Iftach Haitner. Tel Aviv University. October 30, 2017 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice Herlihy, Brown University.

More information

Computational Models Lecture 2 1

Computational Models Lecture 2 1 Computational Models Lecture 2 1 Handout Mode Ronitt Rubinfeld and Iftach Haitner. Tel Aviv University. March 16/18, 2015 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

Regular Languages. Problem Characterize those Languages recognized by Finite Automata.

Regular Languages. Problem Characterize those Languages recognized by Finite Automata. Regular Expressions Regular Languages Fundamental Question -- Cardinality Alphabet = Σ is finite Strings = Σ is countable Languages = P(Σ ) is uncountable # Finite Automata is countable -- Q Σ +1 transition

More information

Recitation 2 - Non Deterministic Finite Automata (NFA) and Regular OctoberExpressions

Recitation 2 - Non Deterministic Finite Automata (NFA) and Regular OctoberExpressions Recitation 2 - Non Deterministic Finite Automata (NFA) and Regular Expressions Orit Moskovich Gal Rotem Tel Aviv University October 28, 2015 Recitation 2 - Non Deterministic Finite Automata (NFA) and Regular

More information

Fooling Sets and. Lecture 5

Fooling Sets and. Lecture 5 Fooling Sets and Introduction to Nondeterministic Finite Automata Lecture 5 Proving that a language is not regular Given a language, we saw how to prove it is regular (union, intersection, concatenation,

More information

Lecture 1: Finite State Automaton

Lecture 1: Finite State Automaton Lecture 1: Finite State Automaton Instructor: Ketan Mulmuley Scriber: Yuan Li January 6, 2015 1 Deterministic Finite Automaton Informally, a deterministic finite automaton (DFA) has finite number of s-

More information

Theory of Computation (II) Yijia Chen Fudan University

Theory of Computation (II) Yijia Chen Fudan University Theory of Computation (II) Yijia Chen Fudan University Review A language L is a subset of strings over an alphabet Σ. Our goal is to identify those languages that can be recognized by one of the simplest

More information

Recap DFA,NFA, DTM. Slides by Prof. Debasis Mitra, FIT.

Recap DFA,NFA, DTM. Slides by Prof. Debasis Mitra, FIT. Recap DFA,NFA, DTM Slides by Prof. Debasis Mitra, FIT. 1 Formal Language Finite set of alphabets Σ: e.g., {0, 1}, {a, b, c}, { {, } } Language L is a subset of strings on Σ, e.g., {00, 110, 01} a finite

More information

Chapter Five: Nondeterministic Finite Automata

Chapter Five: Nondeterministic Finite Automata Chapter Five: Nondeterministic Finite Automata From DFA to NFA A DFA has exactly one transition from every state on every symbol in the alphabet. By relaxing this requirement we get a related but more

More information

CS 154. Finite Automata vs Regular Expressions, Non-Regular Languages

CS 154. Finite Automata vs Regular Expressions, Non-Regular Languages CS 154 Finite Automata vs Regular Expressions, Non-Regular Languages Deterministic Finite Automata Computation with finite memory Non-Deterministic Finite Automata Computation with finite memory and guessing

More information

CSE 105 Theory of Computation Professor Jeanne Ferrante

CSE 105 Theory of Computation  Professor Jeanne Ferrante CSE 105 Theory of Computation http://www.jflap.org/jflaptmp/ Professor Jeanne Ferrante 1 Today s agenda NFA Review and Design NFA s Equivalence to DFA s Another Closure Property proof for Regular Languages

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministic Finite Automata Mahesh Viswanathan Introducing Nondeterminism Consider the machine shown in Figure. Like a DFA it has finitely many states and transitions labeled by symbols from an input

More information

HKN CS/ECE 374 Midterm 1 Review. Nathan Bleier and Mahir Morshed

HKN CS/ECE 374 Midterm 1 Review. Nathan Bleier and Mahir Morshed HKN CS/ECE 374 Midterm 1 Review Nathan Bleier and Mahir Morshed For the most part, all about strings! String induction (to some extent) Regular languages Regular expressions (regexps) Deterministic finite

More information

CMPSCI 250: Introduction to Computation. Lecture #22: From λ-nfa s to NFA s to DFA s David Mix Barrington 22 April 2013

CMPSCI 250: Introduction to Computation. Lecture #22: From λ-nfa s to NFA s to DFA s David Mix Barrington 22 April 2013 CMPSCI 250: Introduction to Computation Lecture #22: From λ-nfa s to NFA s to DFA s David Mix Barrington 22 April 2013 λ-nfa s to NFA s to DFA s Reviewing the Three Models and Kleene s Theorem The Subset

More information

CSE 311: Foundations of Computing. Lecture 23: Finite State Machine Minimization & NFAs

CSE 311: Foundations of Computing. Lecture 23: Finite State Machine Minimization & NFAs CSE : Foundations of Computing Lecture : Finite State Machine Minimization & NFAs State Minimization Many different FSMs (DFAs) for the same problem Take a given FSM and try to reduce its state set by

More information

CISC 4090: Theory of Computation Chapter 1 Regular Languages. Section 1.1: Finite Automata. What is a computer? Finite automata

CISC 4090: Theory of Computation Chapter 1 Regular Languages. Section 1.1: Finite Automata. What is a computer? Finite automata CISC 4090: Theory of Computation Chapter Regular Languages Xiaolan Zhang, adapted from slides by Prof. Werschulz Section.: Finite Automata Fordham University Department of Computer and Information Sciences

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 2 January 5, 2018 January 5, 2018 CS21 Lecture 2 1 Outline Finite Automata Nondeterministic Finite Automata Closure under regular operations NFA, FA equivalence

More information

Nondeterminism and Epsilon Transitions

Nondeterminism and Epsilon Transitions Nondeterminism and Epsilon Transitions Mridul Aanjaneya Stanford University June 28, 22 Mridul Aanjaneya Automata Theory / 3 Challenge Problem Question Prove that any square with side length a power of

More information

September 11, Second Part of Regular Expressions Equivalence with Finite Aut

September 11, Second Part of Regular Expressions Equivalence with Finite Aut Second Part of Regular Expressions Equivalence with Finite Automata September 11, 2013 Lemma 1.60 If a language is regular then it is specified by a regular expression Proof idea: For a given regular language

More information

Chap. 1.2 NonDeterministic Finite Automata (NFA)

Chap. 1.2 NonDeterministic Finite Automata (NFA) Chap. 1.2 NonDeterministic Finite Automata (NFA) DFAs: exactly 1 new state for any state & next char NFA: machine may not work same each time More than 1 transition rule for same state & input Any one

More information

Nondeterminism. September 7, Nondeterminism

Nondeterminism. September 7, Nondeterminism September 7, 204 Introduction is a useful concept that has a great impact on the theory of computation Introduction is a useful concept that has a great impact on the theory of computation So far in our

More information

Finite Automata Part Two

Finite Automata Part Two Finite Automata Part Two DFAs A DFA is a Deterministic Finite Automaton A DFA is defined relative to some alphabet Σ. For each state in the DFA, there must be exactly one transition defined for each symbol

More information

Theory of Languages and Automata

Theory of Languages and Automata Theory of Languages and Automata Chapter 1- Regular Languages & Finite State Automaton Sharif University of Technology Finite State Automaton We begin with the simplest model of Computation, called finite

More information

Sri vidya college of engineering and technology

Sri vidya college of engineering and technology Unit I FINITE AUTOMATA 1. Define hypothesis. The formal proof can be using deductive proof and inductive proof. The deductive proof consists of sequence of statements given with logical reasoning in order

More information

Theory of Computation p.1/?? Theory of Computation p.2/?? Unknown: Implicitly a Boolean variable: true if a word is

Theory of Computation p.1/?? Theory of Computation p.2/?? Unknown: Implicitly a Boolean variable: true if a word is Abstraction of Problems Data: abstracted as a word in a given alphabet. Σ: alphabet, a finite, non-empty set of symbols. Σ : all the words of finite length built up using Σ: Conditions: abstracted as a

More information

UNIT-III REGULAR LANGUAGES

UNIT-III REGULAR LANGUAGES Syllabus R9 Regulation REGULAR EXPRESSIONS UNIT-III REGULAR LANGUAGES Regular expressions are useful for representing certain sets of strings in an algebraic fashion. In arithmetic we can use the operations

More information

Closure under the Regular Operations

Closure under the Regular Operations Closure under the Regular Operations Application of NFA Now we use the NFA to show that collection of regular languages is closed under regular operations union, concatenation, and star Earlier we have

More information

CSC236 Week 11. Larry Zhang

CSC236 Week 11. Larry Zhang CSC236 Week 11 Larry Zhang 1 Announcements Next week s lecture: Final exam review This week s tutorial: Exercises with DFAs PS9 will be out later this week s. 2 Recap Last week we learned about Deterministic

More information

Non-Deterministic Finite Automata

Non-Deterministic Finite Automata Slides modified Yishay Mansour on modification by Benny Chor, based on original slides by Maurice Herlihy, Brown University. p. 8 Non-Deterministic Finite Automata 0,1 0,1 0 0,ε q q 1 q 2 3 1 q 4 an NFA

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY REVIEW for MIDTERM 1 THURSDAY Feb 6 Midterm 1 will cover everything we have seen so far The PROBLEMS will be from Sipser, Chapters 1, 2, 3 It will be

More information

Closure Properties of Regular Languages. Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism

Closure Properties of Regular Languages. Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism Closure Properties of Regular Languages Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism Closure Properties Recall a closure property is a statement

More information

Chapter 6: NFA Applications

Chapter 6: NFA Applications Chapter 6: NFA Applications Implementing NFAs The problem with implementing NFAs is that, being nondeterministic, they define a more complex computational procedure for testing language membership. To

More information

Computational Models - Lecture 1 1

Computational Models - Lecture 1 1 Computational Models - Lecture 1 1 Handout Mode Ronitt Rubinfeld and Iftach Haitner. Tel Aviv University. February 29/ March 02, 2016 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames

More information

Let us first give some intuitive idea about a state of a system and state transitions before describing finite automata.

Let us first give some intuitive idea about a state of a system and state transitions before describing finite automata. Finite Automata Automata (singular: automation) are a particularly simple, but useful, model of computation. They were initially proposed as a simple model for the behavior of neurons. The concept of a

More information

CS:4330 Theory of Computation Spring Regular Languages. Finite Automata and Regular Expressions. Haniel Barbosa

CS:4330 Theory of Computation Spring Regular Languages. Finite Automata and Regular Expressions. Haniel Barbosa CS:4330 Theory of Computation Spring 2018 Regular Languages Finite Automata and Regular Expressions Haniel Barbosa Readings for this lecture Chapter 1 of [Sipser 1996], 3rd edition. Sections 1.1 and 1.3.

More information

Formal Models in NLP

Formal Models in NLP Formal Models in NLP Finite-State Automata Nina Seemann Universität Stuttgart Institut für Maschinelle Sprachverarbeitung Pfaffenwaldring 5b 70569 Stuttgart May 15, 2012 Nina Seemann (IMS) Formal Models

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministic Finite Automata COMP2600 Formal Methods for Software Engineering Katya Lebedeva Australian National University Semester 2, 206 Slides by Katya Lebedeva. COMP 2600 Nondeterministic Finite

More information

Automata and Languages

Automata and Languages Automata and Languages Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Nondeterministic Finite Automata with empty moves (-NFA) Definition A nondeterministic finite automaton

More information

1 More finite deterministic automata

1 More finite deterministic automata CS 125 Section #6 Finite automata October 18, 2016 1 More finite deterministic automata Exercise. Consider the following game with two players: Repeatedly flip a coin. On heads, player 1 gets a point.

More information

CPS 220 Theory of Computation REGULAR LANGUAGES

CPS 220 Theory of Computation REGULAR LANGUAGES CPS 22 Theory of Computation REGULAR LANGUAGES Introduction Model (def) a miniature representation of a thing; sometimes a facsimile Iraq village mockup for the Marines Scientific modelling - the process

More information

Subset construction. We have defined for a DFA L(A) = {x Σ ˆδ(q 0, x) F } and for A NFA. For any NFA A we can build a DFA A D such that L(A) = L(A D )

Subset construction. We have defined for a DFA L(A) = {x Σ ˆδ(q 0, x) F } and for A NFA. For any NFA A we can build a DFA A D such that L(A) = L(A D ) Search algorithm Clever algorithm even for a single word Example: find abac in abaababac See Knuth-Morris-Pratt and String searching algorithm on wikipedia 2 Subset construction We have defined for a DFA

More information

Constructions on Finite Automata

Constructions on Finite Automata Constructions on Finite Automata Informatics 2A: Lecture 4 Mary Cryan School of Informatics University of Edinburgh mcryan@inf.ed.ac.uk 24 September 2018 1 / 33 Determinization The subset construction

More information

Lecture 23 : Nondeterministic Finite Automata DRAFT Connection between Regular Expressions and Finite Automata

Lecture 23 : Nondeterministic Finite Automata DRAFT Connection between Regular Expressions and Finite Automata CS/Math 24: Introduction to Discrete Mathematics 4/2/2 Lecture 23 : Nondeterministic Finite Automata Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last time we designed finite state automata

More information

Great Theoretical Ideas in Computer Science. Lecture 4: Deterministic Finite Automaton (DFA), Part 2

Great Theoretical Ideas in Computer Science. Lecture 4: Deterministic Finite Automaton (DFA), Part 2 5-25 Great Theoretical Ideas in Computer Science Lecture 4: Deterministic Finite Automaton (DFA), Part 2 January 26th, 27 Formal definition: DFA A deterministic finite automaton (DFA) M =(Q,,,q,F) M is

More information

CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata

CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata Sungjin Im University of California, Merced 1-27-215 Nondeterminism Michael Rabin and Dana Scott (1959) Michael Rabin Dana

More information

Deterministic Finite Automaton (DFA)

Deterministic Finite Automaton (DFA) 1 Lecture Overview Deterministic Finite Automata (DFA) o accepting a string o defining a language Nondeterministic Finite Automata (NFA) o converting to DFA (subset construction) o constructed from a regular

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 3 January 9, 2017 January 9, 2017 CS21 Lecture 3 1 Outline NFA, FA equivalence Regular Expressions FA and Regular Expressions January 9, 2017 CS21 Lecture 3 2

More information

Theory of Computation

Theory of Computation Theory of Computation COMP363/COMP6363 Prerequisites: COMP4 and COMP 6 (Foundations of Computing) Textbook: Introduction to Automata Theory, Languages and Computation John E. Hopcroft, Rajeev Motwani,

More information

Finite Automata. BİL405 - Automata Theory and Formal Languages 1

Finite Automata. BİL405 - Automata Theory and Formal Languages 1 Finite Automata BİL405 - Automata Theory and Formal Languages 1 Deterministic Finite Automata (DFA) A Deterministic Finite Automata (DFA) is a quintuple A = (Q,,, q 0, F) 1. Q is a finite set of states

More information

Nondeterministic Finite Automata. Nondeterminism Subset Construction

Nondeterministic Finite Automata. Nondeterminism Subset Construction Nondeterministic Finite Automata Nondeterminism Subset Construction 1 Nondeterminism A nondeterministic finite automaton has the ability to be in several states at once. Transitions from a state on an

More information

CSC173 Workshop: 13 Sept. Notes

CSC173 Workshop: 13 Sept. Notes CSC173 Workshop: 13 Sept. Notes Frank Ferraro Department of Computer Science University of Rochester September 14, 2010 1 Regular Languages and Equivalent Forms A language can be thought of a set L of

More information

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever. ETH Zürich (D-ITET) September,

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever.  ETH Zürich (D-ITET) September, Automata & languages A primer on the Theory of Computation Laurent Vanbever www.vanbever.eu ETH Zürich (D-ITET) September, 24 2015 Last week was all about Deterministic Finite Automaton We saw three main

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Section 1.1 Construct finite automata using algorithms from closure arguments Determine

More information

Harvard CS 121 and CSCI E-207 Lecture 4: NFAs vs. DFAs, Closure Properties

Harvard CS 121 and CSCI E-207 Lecture 4: NFAs vs. DFAs, Closure Properties Harvard CS 121 and CSCI E-207 Lecture 4: NFAs vs. DFAs, Closure Properties Salil Vadhan September 13, 2012 Reading: Sipser, 1.2. How to simulate NFAs? NFA accepts w if there is at least one accepting computational

More information

Before we show how languages can be proven not regular, first, how would we show a language is regular?

Before we show how languages can be proven not regular, first, how would we show a language is regular? CS35 Proving Languages not to be Regular Before we show how languages can be proven not regular, first, how would we show a language is regular? Although regular languages and automata are quite powerful

More information

Clarifications from last time. This Lecture. Last Lecture. CMSC 330: Organization of Programming Languages. Finite Automata.

Clarifications from last time. This Lecture. Last Lecture. CMSC 330: Organization of Programming Languages. Finite Automata. CMSC 330: Organization of Programming Languages Last Lecture Languages Sets of strings Operations on languages Finite Automata Regular expressions Constants Operators Precedence CMSC 330 2 Clarifications

More information

CS 121, Section 2. Week of September 16, 2013

CS 121, Section 2. Week of September 16, 2013 CS 121, Section 2 Week of September 16, 2013 1 Concept Review 1.1 Overview In the past weeks, we have examined the finite automaton, a simple computational model with limited memory. We proved that DFAs,

More information

Finite Automata and Regular Languages

Finite Automata and Regular Languages Finite Automata and Regular Languages Topics to be covered in Chapters 1-4 include: deterministic vs. nondeterministic FA, regular expressions, one-way vs. two-way FA, minimization, pumping lemma for regular

More information

Equivalence of Regular Expressions and FSMs

Equivalence of Regular Expressions and FSMs Equivalence of Regular Expressions and FSMs Greg Plaxton Theory in Programming Practice, Spring 2005 Department of Computer Science University of Texas at Austin Regular Language Recall that a language

More information

Computational Theory

Computational Theory Computational Theory Finite Automata and Regular Languages Curtis Larsen Dixie State University Computing and Design Fall 2018 Adapted from notes by Russ Ross Adapted from notes by Harry Lewis Curtis Larsen

More information

Constructions on Finite Automata

Constructions on Finite Automata Constructions on Finite Automata Informatics 2A: Lecture 4 Alex Simpson School of Informatics University of Edinburgh als@inf.ed.ac.uk 23rd September, 2014 1 / 29 1 Closure properties of regular languages

More information

Context Free Languages and Grammars

Context Free Languages and Grammars Algorithms & Models of Computation CS/ECE 374, Fall 2017 Context Free Languages and Grammars Lecture 7 Tuesday, September 19, 2017 Sariel Har-Peled (UIUC) CS374 1 Fall 2017 1 / 36 What stack got to do

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Section 1.1 Design an automaton that recognizes a given language. Specify each of

More information

Lecture Notes On THEORY OF COMPUTATION MODULE -1 UNIT - 2

Lecture Notes On THEORY OF COMPUTATION MODULE -1 UNIT - 2 BIJU PATNAIK UNIVERSITY OF TECHNOLOGY, ODISHA Lecture Notes On THEORY OF COMPUTATION MODULE -1 UNIT - 2 Prepared by, Dr. Subhendu Kumar Rath, BPUT, Odisha. UNIT 2 Structure NON-DETERMINISTIC FINITE AUTOMATA

More information

GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I

GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I Internal Examination 2017-18 B.Tech III Year VI Semester Sub: Theory of Computation (6CS3A) Time: 1 Hour 30 min. Max Marks: 40 Note: Attempt all three

More information

Outline. Nondetermistic Finite Automata. Transition diagrams. A finite automaton is a 5-tuple (Q, Σ,δ,q 0,F)

Outline. Nondetermistic Finite Automata. Transition diagrams. A finite automaton is a 5-tuple (Q, Σ,δ,q 0,F) Outline Nondeterminism Regular expressions Elementary reductions http://www.cs.caltech.edu/~cs20/a October 8, 2002 1 Determistic Finite Automata A finite automaton is a 5-tuple (Q, Σ,δ,q 0,F) Q is a finite

More information

CS 322 D: Formal languages and automata theory

CS 322 D: Formal languages and automata theory CS 322 D: Formal languages and automata theory Tutorial NFA DFA Regular Expression T. Najla Arfawi 2 nd Term - 26 Finite Automata Finite Automata. Q - States 2. S - Alphabets 3. d - Transitions 4. q -

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 3.3, 4.1 State and use the Church-Turing thesis. Give examples of decidable problems.

More information

Lecture 4 Nondeterministic Finite Accepters

Lecture 4 Nondeterministic Finite Accepters Lecture 4 Nondeterministic Finite Accepters COT 4420 Theory of Computation Section 2.2, 2.3 Nondeterminism A nondeterministic finite automaton can go to several states at once. Transitions from one state

More information

INF Introduction and Regular Languages. Daniel Lupp. 18th January University of Oslo. Department of Informatics. Universitetet i Oslo

INF Introduction and Regular Languages. Daniel Lupp. 18th January University of Oslo. Department of Informatics. Universitetet i Oslo INF28 1. Introduction and Regular Languages Daniel Lupp Universitetet i Oslo 18th January 218 Department of Informatics University of Oslo INF28 Lecture :: 18th January 1 / 33 Details on the Course consists

More information