Energy Profiles and Chemical Reactions

Size: px
Start display at page:

Download "Energy Profiles and Chemical Reactions"

Transcription

1 Energy rofiles and Chemical eactions + B C D E egensburg er-la Norrby

2 Modeling Kinetics Molecular Modeling Stationary points Energies Barriers eaction rates DFT, ab initio, MM Ground & Transition states otential, Free eversible? ate constants, concentrations egensburg er-la Norrby

3 Energy The basic property The energy is a function of the geometry, that is, the coordinates (r). Each system strives to minimize the energy. Stable structures are located at energy minima. The force which acts on each atom to bring it to the minima is the slope of the energy function: F = - E/ r E r F The most common task is to move all atoms in the direction of the force to bring it to the minimum, where all other properties are calculated egensburg er-la Norrby

4 Molecular Energy Total energy: separate all electrons and nuclei completely tomization energy, heat of formation: separate into component atoms Bond energy: separate molecule into two fragments. otential energy: relative to an arbitrary state defined as zero Steric energy: relative to a hypothetical unstrained conformation. Conformational energy: relative to lowest energy conformation egensburg er-la Norrby

5 Calculating Energies Target accuracy: 2-4 kj/mol Quantum Mechanics Solving the Schrödinger equation The wavefunction: the position of every electron ny property available from the wavefunction Tradeoff between accuracy and speed Currently ca 200 atoms with acceptable accuracy Total energies: E = 0 at total separation Molecular Mechanics Simple, analytic functions, atomic positions only Known systems only Very fast, millions of atoms possible Steric energies: E = 0 for unstrained structures. nly conformational energies valid ˆ H " = E " E = # k( l " l 0 ) 2 l egensburg er-la Norrby

6 Structures Energy minima, conformations Energy!E!E Transition state, reaction rates Minimum, observable egensburg er-la Norrby

7 opulation distributions Boltzmann factor p 1 =12%!E 1 =4 kj/mol T=300K (27 C) p 0 =61% p 2 =27%!E 2 =2 kj/mol p 1 p 0 = e!e 1/T (cf. G = TlnK) p 0 = ules of thumb for ratios: (also valid for relative rates) e!e 0/T e!e 0/T + e!e 1/T + e!e 2/T t 25 C: 2/1, 2 kj/mol 5/1, 4 kj/mol 10/1, 6 kj/mol (1.4 kcal/mol) 4 kj/mol t -78 C, 12/1 t 25 C, 5/1 t 75 C, 4/1 t 250 C, 5/2 egensburg er-la Norrby

8 Calculated energies The basic calculated energy is the potential energy, varying as a function of the geometry E Vibrational levels ZE U T (!H T ) E 0 t 0 K, all molecules are at the lowest vibrational level, G 0 = H 0 = U 0 = E 0 +ZE t higher temperatures, higher levels are populated; H T > H 0 Experiments depend on the free energy, which also includes entropy, G = H - TS egensburg er-la Norrby

9 Degenerate conformations Conformational entropy In the example below, there is one global minimum and two equivalent (experimentally indistinguishable) higher conformations. gauche anti gauche 2 kj/mol 2 kj/mol From the rules of thumb, at room temperature the ratios are 1:2:1. That means that there are equal amounts of gauche and anti, that is, the total free energy of gauche and anti are equal. The free energy of gauche is lowered by a conformational entropy contribution equal to ln2. The entropy contribution is always lnw, where W is the number of states. egensburg er-la Norrby

10 Quizz The global minimum,, has a single conformation. The next lowest conformation, B, 2 kj/mol higher than, has 10 identical (degenerate) copies. How much lower is the free energy of B compared to? a) 4 kj/mol b) 6 kj/mol c) 8 kj/mol d) 10 kj/mol egensburg er-la Norrby

11 Entropy and free energy G = H T S The entropy, S = lnw, just comes from the fact that there are many possible states in each conformation. G could be obtained equivalently by summing the energy over all possible states, but it is easier to calculate an energy minimum once, and then get the entropy for that minimum by counting the number of equivalent conformations, the population in all vibrational states, etc. Higher energy, but more possible states, therefore higher population and thus lower free energy egensburg er-la Norrby

12 Gas phase free energy G tot = E 0 + ZE + H vib + T S vib + G rot/trans + T S conf Temperature independent: E 0 ZE The potential energy at the calculated minimum Zero point energy Temperature dependent (no contribution at 0 K): H vib From averaging over vibrational levels (Note: many packages include ZE in this term!) S vib Vibrational entropy G rot/trans Contribution from translation and rotation ule of thumb: 30±10 kj/mol for each molecule at room temperature S conf Conformational entropy. Either ln(number of conf.) or sum over all conformations, including degenerate ones. egensburg er-la Norrby

13 Solvent Charge stabilization Charges, especially localized anions, are much more stable in solvent. F Extremely strong base in gas phase, less so in solvent Delocalized charge, less difference between gas phase and solvent. bout equal to fluoride in water. Charge separation is almost impossible in gas phase gas phase H 3 N water H 2 N H egensburg er-la Norrby

14 Solvation Gas phase H 3 N Born: Free energy gain from exposed surface of polar atoms, SM2, SM3,... Continuum: cavity with compensating surface charges CM, CSM!"!"!"!" H 3 N!"!"!+!+!+!+!+!+!+!+ N H 2 H H 3 N Explicit solvation (QM/MM) Microsolvation H 3 N H 3 N egensburg er-la Norrby

15 Transition state energies and rates Calculated from free energies in solvent, G! roduct!g eactant!g B!G!G B!!G roduct B roduct ratio at equilibrium: "##G T K = e ate constant, formation of : k = " k b T h e#$g T Kinetic ratio, /B: k k B = e "##G T egensburg er-la Norrby

16 Two reaction steps eactant Intermediate roduct B B = tot First step: fast, exergonic Low T: I II can be studied independently I verall barrier last step, G = G B G II!G II!G tot!g B Common state diagram: G B min(g I,G II ) I II!G B B tot First step: endergonic Intermediate II cannot be seen Curtin-Hammett!!G!G tot!g B verall barrier G = G B G I egensburg er-la Norrby

17 Curtin-Hammett derivation I k a k a II B k b B Steady state: d[ II] = k a [ I]" ( k "a + k b )[ II] = 0 dt " [ II] = k a[ I ] k #a + k b rate = k b [ II] = k a k b [I] # k obs = k a k b k "a + k b k "a + k b k a = ce " ( G "G I ) T k "a = ce " ( G "G II ) T ( k obs = c e" G "G I ) T e " ( G B "G II ) T e " ( G "G II ) T + e " ( G B "G II ) = c e" GB "GI T 1+ e " G B "G k b = ce " ( G B "G II ) T ( ) T ( ) T # ( c = #k b T h) % G B > G : $G obs = G B " G I ' & G B = G : half rate ' ( G B < G : $G obs = G " G I Intermediate II is kinetically insignificant (as long as it is higher in energy than I)! TS is kinetically insignificant as long as it is significantly lower than TS B egensburg er-la Norrby

18 re-equilibria, TS conformations Free energy profile State diagram G 2 G 3 G TS "G = "T ln i T # $ min G i G TS i e ( ) G 1 G 2 G 3 G react "G G react = "T ln i T # $ min G i i e ( ) G prod Ensemble free energies always slightly lower than the lowest single free energy arallel paths can be seen as a TS ensemble (TS conformations) Note that serial TSs have an apparent barrier slightly higher than the highest single TS (cf. Curtin-Hammett) egensburg er-la Norrby

19 Multi-step reactions Effectively irreversible step (EIS): ny barrier higher than all subsequent barriers, C, and D, but not B (below) nly EIS can be kinetically significant basin I basin II B C basin III D D IV Barriers are calculated from the preceding ensemble (basin) Virtually the same as calculate from the lowest preceding point without passing an EIS ny EIS can be product-controlling (i.e., selectivity-determining). The rate determining step (rds) is the step with the highest barrier The resting state is the basin preceding the rds. For an alternative nomenclature, see: Kozuch, Shaik, cc. Chem. es. 2011, 44, 101 C egensburg er-la Norrby

20 Multi-step reactions Effectively irreversible step (EIS): ny barrier higher than all subsequent barriers, C, and D, but not B (below) nly EIS can be kinetically significant State diagram: I C D II III D IV Barriers are calculated from the preceding ensemble (basin) Virtually the same as calculate from the lowest preceding point without passing an EIS ny EIS can be product-controlling (i.e., selectivity-determining) The rate determining step (rds) is the step with the highest barrier (II C) The resting state is the basin preceding the rds (II) For an alternative nomenclature, see: Kozuch, Shaik, cc. Chem. es. 2011, 44, 101 C egensburg er-la Norrby

21 eaction progress Initial phase: starting material I is converted to intermediate II t low T, step can be studied independently, and the product is II Steady state: intermediate II is reacting slowly to product IV. C I D II III D IV t the steady state, the rate across every EIS is equal: only II and IV detectable spectroscopically If any step requires an external reagent, the rate is dependent also on that concentration slow addition can change the qualitative character of the state diagram Example: r X dl 2 r X d L L r' Sn 3 r r' d L L C k [ I] = k C [ II] = k D [ III] r r' egensburg er-la Norrby

22 Catalytic cycles In catalytic cycles at steady state, the starting point is arbitrary The nature of any potential EIS must be checked across the boundary C I II III D D I IV C I II D is not an EIS, it is lower than the subsequent D is reversible, and kinetically insignificant D III C egensburg er-la Norrby

23 Catalytic cycles In catalytic cycles at steady state, the starting point is arbitrary The nature of any potential EIS must be checked across the boundary C III II C D I III II C D is not an EIS, it is lower than the subsequent D is reversible, and kinetically insignificant The state diagram does not include I or D Even the nature of C as an EIS is doubtful If C is lower than, then the rds is II D can potentially be made significant again by slow addition egensburg er-la Norrby

24 Modeling and kinetics Current DFT methods can calculate relative barriers to within kj/mol Several potential pitfalls, not always sufficient for determination of rds I ' C C C' III D D D' I' II III' IV II' IV' Calculation of the same type of barrier after a small perturbation Generally accurate to 1-2 kj/mol Typical perturbations: Substituents (Hammett studies) Isotopic substitution (kinetic isotope effects) Evaluate in state diagram, relevant TS - lowest preceding point egensburg er-la Norrby

25 Cu-catalyzed cyclopropanation CEt rate limiting stereoselectivity Hammett isotope effect N 2 N 2 CEt tbu tbu Cu N N Cu N N tbu tbu r r CEt tbu Cu N N tbu tbu Cu N N product determining CEt tbu tbu Cu N N tbu egensburg er-la Norrby

26 The Heck reaction catalytic cycle with several potential EIS L d L r X d L L r d L L r d L L H r d L L r H d L L L d L ryl halide r X Hammett xidative addition ath Ligand exchange Migratory insertion egio- and stereoselectivity Bond rotation Double-bond regioselectivity r Hammett h Me h!-hydride elimination Me Dissociation Deprotonation eversibility h h h egensburg er-la Norrby

27 Quizz: Ni-catalyzed Heck reaction Ni h Tf h Ni h Ni h H Ni Cy 2 NEt h Ni What step is product-determining? Vote for i-iv i: oxidative addition ii: migratory insertion iv: deprotonation iii:!-hydride elimination Ns Tf + Et Ns Et + Tf Et egensburg er-la Norrby

28 Quizz: Ni-catalyzed Heck reaction Ni h Tf h Ni h Ni h H Ni Cy 2 NEt h Ni What step is product-determining? Vote for i-iv i: oxidative addition ii: migratory insertion iv: deprotonation iii:!-hydride elimination Tf + + egensburg er-la Norrby

29 Quizz: Ni-catalyzed Heck reaction Ni h Tf h Ni h Ni h H Ni Cy 2 NEt h Ni What step is product-determining? Vote for i-iv i: oxidative addition ii: migratory insertion iv: deprotonation iii:!-hydride elimination Tf + CN CN + CN egensburg er-la Norrby

30 The asymmetric HWE reaction H + H X H + H X racemic mixture Step 1 (') 2 CH 3 C(CH 3 ) 2 h High reagent selectivity ensures (2S) intermediate. Low diastereoselectivity for C(3) and C(4). H (') 2 (S) () C* H (') 2 (S) () C* H (') 2 (S) (S) C* H (') 2 C* () (S) () (S) H H H H X X X X FE anti-fe anti-fe FE (S) (S) Step 2 High diastereoselectivity for C(3) and C(4) C* C* *C *C X minor X major enaniodivergent products X X minor egensburg er-la Norrby

31 HWE reaction selectivity filtering (') 2 C* (') 2 C* X (SSS) X Filter (S) (SSS) (SS) Filter (SS) (S) (SS) (SS) Z (mostly ) E (mostly S) egensburg er-la Norrby

32 Summary Modeling yields reliable structures, sometimes K energies The entire reaction path should be evaluated Find the effectively irreversible steps nly these can control selectivity Barrier evaluated from lowest point in the preceding basin (Curtin-Hammett) Comparison of different types of TS sometimes unreliable Comparing perturbations for similar steps gives high accuracy egensburg er-la Norrby

( ) Thermodynamic selectivity (reversible reactions)

( ) Thermodynamic selectivity (reversible reactions) II. Reactivity A) General Principles Fundamental Equations G o Ea / RT = "RT ln K eq k = Ae 1) Kinetics vs Thermodynamics Kinetic selectivity (irreversible reactions) [ P 1 ] [ ] = ln k 1 P 2 ( ) = " #G

More information

Basics of Catalysis and Kinetics

Basics of Catalysis and Kinetics Basics of Catalysis and Kinetics Nobel laureates in catalysis: Haber (1918) Ziegler and Natta (1963) Wilkinson, Fischer (1973) Knowles, Noyori, Sharpless (2001) Grubbs, Schrock, Chauvin (2006) Ertl (2007)

More information

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b.

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. eaction chemistry of complexes Three general forms: 1. eactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. Oxidative Addition c. eductive Elimination d. Nucleophillic

More information

Chapter 6 Chemical Reactivity and Mechanisms

Chapter 6 Chemical Reactivity and Mechanisms Chapter 6 Chemical Reactivity and Mechanisms 6.1 Enthalpy Enthalpy (ΔH or q) is the heat energy exchange between the reaction and its surroundings at constant pressure Breaking a bond requires the system

More information

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom Insertion Reactions xidative addition and substitution allow us to assemble 1e and 2e ligands on the metal, respectively. With insertion, and its reverse reaction, elimination, we can now combine and transform

More information

Structure and Preparation of Alkenes: Elimination Reactions

Structure and Preparation of Alkenes: Elimination Reactions Structure and Preparation of Alkenes: Elimination Reactions Alkene Nomenclature First identify the longest continuous chain that includes the double bond. Replace the -ane ending of the corresponding unbranched

More information

Organic Tutorials 3 rd Year Michaelmas Transition Metals in Organic Synthesis: (General paper level) ! 1! Reading

Organic Tutorials 3 rd Year Michaelmas Transition Metals in Organic Synthesis: (General paper level) ! 1! Reading rganic Tutorials 3 rd Year Michaelmas 2010 Transition Metals in rganic Synthesis: (General paper level) Reading 1. Lecture Course, and suggested references from this. 2. Clayden, Greaves, Warren and Wothers.

More information

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine An Introduction to Quantum Chemistry and Potential Energy Surfaces Benjamin G. Levine This Week s Lecture Potential energy surfaces What are they? What are they good for? How do we use them to solve chemical

More information

10/26/2010. An Example of a Polar Reaction: Addition of H 2 O to Ethylene. to Ethylene

10/26/2010. An Example of a Polar Reaction: Addition of H 2 O to Ethylene. to Ethylene 6.5 An Example of a Polar Reaction: Addition of H 2 O to Ethylene Addition of water to ethylene Typical polar process Acid catalyzed addition reaction (Electophilic addition reaction) Polar Reaction All

More information

Chapter 13: Alcohols and Phenols

Chapter 13: Alcohols and Phenols Chapter 13: Alcohols and Phenols [ Chapter 9 Sections: 9.10; Chapter 13 Sections: 13.1-13.3, 13.9-13.10] 1. Nomenclature of Alcohols simple alcohols C3 C3C2 Eddie Sachs 1927-1964 larger alcohols find the

More information

Electronic Supplementary Information. for

Electronic Supplementary Information. for Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information for Two Chiral Catalysts in Action: Insights on Cooperativity

More information

Organocopper Reagents

Organocopper Reagents rganocopper eagents General Information!!! why organocopper reagents? - Efficient method of C-C bond formation - Cu less electropositive than Li or Mg, so -Cu bond less polarized - consequences: 1. how

More information

2/26/18. Practice Questions. Practice Questions B F. How many steps are there in this reaction?

2/26/18. Practice Questions. Practice Questions B F. How many steps are there in this reaction? Practice Questions Practice Questions D B F C E A G How many steps are there in this reaction? 1 Practice Questions D B F C E A G What is the highest-energy transitions state? Practice Questions D B F

More information

10.01 Kinetics. Dr. Fred Omega Garces. What determines the speed of a reaction? Chemistry 100. Miramar College. 1 Kinetics and Equilibrium

10.01 Kinetics. Dr. Fred Omega Garces. What determines the speed of a reaction? Chemistry 100. Miramar College. 1 Kinetics and Equilibrium 10.01 Kinetics What determines the speed of a reaction? Dr. Fred Omega Garces Chemistry 100 Miramar College 1 Kinetics and Equilibrium Kinetics and Equilibrium Kinetics is a concept that address, how fast

More information

Enzyme reaction example of Catalysis, simplest form: E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate

Enzyme reaction example of Catalysis, simplest form: E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate V 41 Enzyme Kinetics Enzyme reaction example of Catalysis, simplest form: k 1 E + S k -1 ES E at beginning and ES k 2 k -2 E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate

More information

Metal Hydrides, Alkyls, Aryls, and their Reactions

Metal Hydrides, Alkyls, Aryls, and their Reactions Metal Hydrides, Alkyls, Aryls, and their Reactions A Primer on MO Theory σ-bonding in Organotransition Metal Complexes M-C Bond Energies in Organotransition Metal Complexes Thermodynamic Predictions

More information

Chapter 14. Principles of Catalysis

Chapter 14. Principles of Catalysis Organometallics Study Meeting 2011/08/28 Kimura Chapter 14. Principles of Catalysis 14. 1. General Principles 14.1.1. Definition of a Catalyst 14.1.2. Energetics of Catalysis 14.1.3. Reaction Coordinate

More information

Chapter 9. Nucleophilic Substitution and ß-Elimination

Chapter 9. Nucleophilic Substitution and ß-Elimination Chapter 9 Nucleophilic Substitution and ß-Elimination Nucleophilic Substitution Nucleophile: From the Greek meaning nucleus loving. A molecule or ion that donates a pair of electrons to another atom or

More information

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry A. Loupy, B.Tchoubar Salt Effects in Organic and Organometallic Chemistry 1 Introduction - Classification of Specific Salt Effects 1 1.1 Specific Salt Effects Involving the Salt's Lewis Acid or Base Character

More information

Organometallic Catalysis

Organometallic Catalysis Organometallic Catalysis The catalysts we will study are termed homogeneous catalysts as they are dissolved in th e same solvent as the substrate. In contrast, heterogeneous catalysts, such as palladium

More information

An Overview of Organic Reactions. Reaction types: Classification by outcome Most reactions produce changes in the functional group of the reactants:

An Overview of Organic Reactions. Reaction types: Classification by outcome Most reactions produce changes in the functional group of the reactants: An Overview of Organic Reactions Reaction types: Classification by outcome Most reactions produce changes in the functional group of the reactants: 1. Addition (forward) Gain of atoms across a bond Example:

More information

Chapter 5. Nucleophilic aliphatic substitution mechanism. by G.DEEPA

Chapter 5. Nucleophilic aliphatic substitution mechanism. by G.DEEPA Chapter 5 Nucleophilic aliphatic substitution mechanism by G.DEEPA 1 Introduction The polarity of a carbon halogen bond leads to the carbon having a partial positive charge In alkyl halides this polarity

More information

Initials: 1. Chem 633: Advanced Organic Chemistry 2016 Final Exam

Initials: 1. Chem 633: Advanced Organic Chemistry 2016 Final Exam Initials: 1 ame: Chem 633: Advanced rganic Chemistry 2016 Final Exam This exam is closed note, closed book. Please answer the following questions clearly and concisely. In general, use pictures and less

More information

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122)

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122) Basic Organic Chemistry Course code : CHEM 12162 (Pre-requisites : CHEM 11122) Chapter 01 Mechanistic Aspects of S N2,S N1, E 2 & E 1 Reactions Dr. Dinesh R. Pandithavidana Office: B1 222/3 Phone: (+94)777-745-720

More information

The Mechanistic Studies of the Wacker Oxidation. Tyler W. Wilson SED Group Meeting

The Mechanistic Studies of the Wacker Oxidation. Tyler W. Wilson SED Group Meeting The Mechanistic Studies of the Wacker xidation Tyler W. Wilson SE Group Meeting 11.27.2007 Introduction xidation of ethene by (II) chloride solutions (Phillips, 1894) -First used as a test for alkenes

More information

Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points

Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points Name: KEY Gas constant: R = 8.314 J mol -1 K -1 = 0.008314 kj mol -1 K -1. Boltzmann constant k = 1.381 10-23 J/K = 0.6950 cm -1 /K h =

More information

Recommended Reading: 23, 29 (3rd edition); 22, 29 (4th edition) Ch 102 Problem Set 7 Due: Thursday, June 1 Before Class. Problem 1 (1 points) Part A

Recommended Reading: 23, 29 (3rd edition); 22, 29 (4th edition) Ch 102 Problem Set 7 Due: Thursday, June 1 Before Class. Problem 1 (1 points) Part A Recommended Reading: 23, 29 (3rd edition); 22, 29 (4th edition) Ch 102 Problem Set 7 Due: Thursday, June 1 Before Class Problem 1 (1 points) Part A Kinetics experiments studying the above reaction determined

More information

Nucleophilic attack on ligand

Nucleophilic attack on ligand Nucleophilic attack on ligand Nucleophile "substitutes" metal hapticity usually decreases xidation state mostly unchanged Competition: nucleophilic attack on metal usually leads to ligand substitution

More information

Conjugated Systems, Orbital Symmetry and UV Spectroscopy

Conjugated Systems, Orbital Symmetry and UV Spectroscopy Conjugated Systems, Orbital Symmetry and UV Spectroscopy Introduction There are several possible arrangements for a molecule which contains two double bonds (diene): Isolated: (two or more single bonds

More information

Measuring enzyme (enantio)selectivity

Measuring enzyme (enantio)selectivity Measuring enzyme (enantio)selectivity Types of selectivity - review stereoisomers Stereoselective synthesis (create) vs. resolutions (separate) Enantioselectivity & enantiomeric purity Ways to measure

More information

Introduction to Theories of Chemical Reactions. Graduate Course Seminar Beate Flemmig FHI

Introduction to Theories of Chemical Reactions. Graduate Course Seminar Beate Flemmig FHI Introduction to Theories of Chemical Reactions Graduate Course Seminar Beate Flemmig FHI I. Overview What kind of reactions? gas phase / surface unimolecular / bimolecular thermal / photochemical What

More information

Lecture Notes Chem 51B S. King I. Conjugation

Lecture Notes Chem 51B S. King I. Conjugation Lecture Notes Chem 51B S. King Chapter 16 Conjugation, Resonance, and Dienes I. Conjugation Conjugation occurs whenever p-orbitals can overlap on three or more adjacent atoms. Conjugated systems are more

More information

LECTURE #12 Thurs., Oct.13, Midterm exam: Tues.Oct.25 during class Ch.1, , 7.10, 2,

LECTURE #12 Thurs., Oct.13, Midterm exam: Tues.Oct.25 during class Ch.1, , 7.10, 2, CHEM 221 section 01 LECTURE #12 Thurs., Oct.13, 2005 Midterm exam: Tues.Oct.25 during class Ch.1, 7.2-7.5, 7.10, 2, 3.1-3.5 ASSIGNED READINGS: TODAY S CLASS: 3.6 How alkenes react: curved arrows to show

More information

CHEM 251 (4 credits): Description

CHEM 251 (4 credits): Description CHEM 251 (4 credits): Intermediate Reactions of Nucleophiles and Electrophiles (Reactivity 2) Description: An understanding of chemical reactivity, initiated in Reactivity 1, is further developed based

More information

Shi Asymmetric Epoxidation

Shi Asymmetric Epoxidation Shi Asymmetric Epoxidation Chiral dioxirane strategy: R 3 + 1 xone, ph 10.5, K 2 C 3, H 2, C R 3 formed in situ catalyst (10-20 mol%) is prepared from D-fructose, and its enantiomer from L-sorbose oxone,

More information

C C. sp 2. π M.O. atomic. orbitals. carbon 1. σ M.O. molecular. orbitals. H C C rotate D. D H zero overlap of p orbitals: π bond broken!

C C. sp 2. π M.O. atomic. orbitals. carbon 1. σ M.O. molecular. orbitals. H C C rotate D. D H zero overlap of p orbitals: π bond broken! Alkenes Electrophilic Addition 1 Alkene Structures chemistry of double bond σ BDE ~ 80 kcal/mol π = BDE ~ 65 kcal/mol The p-bond is weaker than the sigma-bond The, electrons in the p-bond are higher in

More information

The Curtin-Hammett Principle

The Curtin-Hammett Principle [B 2 ] G TS2 - G TS1 t [B 1 ] t = ( (G TS2 - G TS1 ) ) e RT ΔG 1 ΔG 21 ΔG 2 So, relative reaction rates depend only on relative transition-state energies, and not on starting-material ground-state energies.

More information

Chapter 7 Alkenes; Elimination Reactions

Chapter 7 Alkenes; Elimination Reactions hapter 7 Alkenes; Elimination Reactions Alkenes Alkenes contain a carbon-carbon double bond. They are named as derivatives of alkanes with the suffix -ane changed to -ene. The parent alkane is the longest

More information

Theoretical Models for Chemical Kinetics

Theoretical Models for Chemical Kinetics Theoretical Models for Chemical Kinetics Thus far we have calculated rate laws, rate constants, reaction orders, etc. based on observations of macroscopic properties, but what is happening at the molecular

More information

Some Hartwig Chemistry Experimental Approaches and Detailed Mechanistic Analysis

Some Hartwig Chemistry Experimental Approaches and Detailed Mechanistic Analysis Some artwig Chemistry Experimental Approaches and Detailed chanistic Analysis b. 1964 1986 A.B. Princeton U, Maitland Jones 1990.D. UC Berkeley, obert Bergman and ichard Anderson 1990-92 Post-doc, MIT,

More information

3. RATE LAW AND STOICHIOMETRY

3. RATE LAW AND STOICHIOMETRY Page 1 of 39 3. RATE LAW AND STOICHIOMETRY Professional Reference Shelf R3.2 Abbreviated Lecture Notes Full Lecture Notes I. Overview II. Introduction A. The Transition State B. Procedure to Calculate

More information

Express the transition state equilibrium constant in terms of the partition functions of the transition state and the

Express the transition state equilibrium constant in terms of the partition functions of the transition state and the Module 7 : Theories of Reaction Rates Lecture 33 : Transition State Theory Objectives After studying this Lecture you will be able to do the following. Distinguish between collision theory and transition

More information

HYDROGENATION. Concerned with two forms of hydrogenation: heterogeneous (catalyst insoluble) and homogeneous (catalyst soluble)

HYDROGENATION. Concerned with two forms of hydrogenation: heterogeneous (catalyst insoluble) and homogeneous (catalyst soluble) YDGEATI Concerned with two forms of hydrogenation: heterogeneous (catalyst insoluble) and homogeneous (catalyst soluble) eterogeneous Catalysis Catalyst insoluble in reaction medium eactions take place

More information

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July 344 Organic Chemistry Laboratory Summer 2013 Lecture 6 Transition metal organometallic chemistry and catalysis July 30 2013 Summary of Grignard lecture Organometallic chemistry - the chemistry of compounds

More information

Organometallics Study Meeting Part 4. Reactions of Organometallic Complexes

Organometallics Study Meeting Part 4. Reactions of Organometallic Complexes rganometallics Study eeting art 4. eactions of rganometallic Complexes 1. asics 2011/4/28 oshino(d1).10 1-1. igand Exchange Dissosiative echanism ' n n-1 ' n-1 Fe(C) 5 (18e):hoto-promoteddissociationofigand

More information

Practice Problems, November 27, 2000

Practice Problems, November 27, 2000 Practice Problems, ovember 27, 2000 1. Why do the following groups all have very similar A-values? R-Group A-Value (kcal mol -1 ) 3 1.74 2 3 1.79 2 1.77 2 Br 1.79 2 Sn( 3 ) 3 1.79 2 Si( 3 ) 3 1.65 2 Ph

More information

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc Chiral Catalyst II ast lecture we looked at asymmetric catalysis for oxidation and reduction Many other organic transformations, this has led to much investigation Today we will look at some others...

More information

Essentials of Chapter 6

Essentials of Chapter 6 Essentials of Chapter 6 (Videos: conformational Analysis, Conformational Analysis of Cycloalkanes, Chirality, /S Nomenclature [Basic Advanced], ptical Activity) A. Stereochemical Structures Wedge Bond

More information

Chem 634. Introduction to Transition Metal Catalysis. Reading: Heg Ch 1 2 CS-B 7.1, , 11.3 Grossman Ch 6

Chem 634. Introduction to Transition Metal Catalysis. Reading: Heg Ch 1 2 CS-B 7.1, , 11.3 Grossman Ch 6 Chem 634 Introduction to Transition etal Catalysis eading: eg Ch 1 2 CS-B 7.1, 8.2 8.3, 11.3 Grossman Ch 6 Announcements Problem Set 1 due Thurs, 9/24 at beginning of class ffice our: Wed, 10:30-12, 220

More information

CHEM 109A Organic Chemistry

CHEM 109A Organic Chemistry CHEM 109A Organic Chemistry https://labs.chem.ucsb.edu/zakarian/armen/courses.html Chapter 5 Alkene: Introduction Thermodynamics and Kinetics Midterm 2... Grades will be posted on Tuesday, Feb. 27 th.

More information

Stereochemical Considerations in Planning Synthesis

Stereochemical Considerations in Planning Synthesis Chapter 2 Stereochemical Considerations in Planning Synthesis Chapter 2 Stereochemical Considerations in Planning Syntheses 2.1 Conformational Analysis Molecules that differ from each other by rotation

More information

Chem 232. Problem Set 9. Question 1. D. J. Wardrop

Chem 232. Problem Set 9. Question 1. D. J. Wardrop Chem 232 D. J. Wardrop wardropd@uic.edu Problem Set 9 Question 1. a. Rank in order of increasing number of chirality centers (1 = fewest chirality centers; 5 = most chirality). 3 C C 3 b. Rank in order

More information

a) Write the mechanism of Friedel-Crafts alkylation of ethyl benzene to give 1,4- diethylbenzene. Show all arrow pushing.

a) Write the mechanism of Friedel-Crafts alkylation of ethyl benzene to give 1,4- diethylbenzene. Show all arrow pushing. a) Write the mechanism of Friedel-Crafts alkylation of ethyl benzene to give 1,4- diethylbenzene. Show all arrow pushing. Br AlBr 3 b) Using resonance and inductive effects, explain why an ethyl group

More information

Aldehydes and Ketones : Aldol Reactions

Aldehydes and Ketones : Aldol Reactions Aldehydes and Ketones : Aldol Reactions The Acidity of the a Hydrogens of Carbonyl Compounds: Enolate Anions Hydrogens on carbons a to carbonyls are unusually acidic The resulting anion is stabilized by

More information

Chemical Kinetics and Equilibrium

Chemical Kinetics and Equilibrium Chemical Kinetics and Equilibrium Part 1: Kinetics David A. Katz Department of Chemistry Pima Community College Tucson, AZ USA Chemical Kinetics The study of the rates of chemical reactions and how they

More information

1. (18 points) The reaction given below is performed in water at a ph above the pka of ethane thiol, thus making ethane thiolate:

1. (18 points) The reaction given below is performed in water at a ph above the pka of ethane thiol, thus making ethane thiolate: 1. (18 points) The reaction given below is performed in water at a ph above the pka of ethane thiol, thus making ethane thiolate: a) Derive the rate law for the production of C using the steady state approximation.

More information

The Potential Energy Surface

The Potential Energy Surface The Potential Energy Surface In this section we will explore the information that can be obtained by solving the Schrödinger equation for a molecule, or series of molecules. Of course, the accuracy of

More information

1 What is energy?

1 What is energy? http://www.intothecool.com/ 1 What is energy? the capacity to do work? (Greek: en-, in; + ergon, work) the capacity to cause change to produce an effect? a certain quantity that does not change in the

More information

Glendale Community College Chemistry 105 Exam. 3 Lecture Notes Chapters 6 & 7

Glendale Community College Chemistry 105 Exam. 3 Lecture Notes Chapters 6 & 7 Sevada Chamras, Ph.D. Glendale Community College Chemistry 105 Exam. 3 Lecture Notes Chapters 6 & 7 Description: Examples: 3 Major Types of Organic Halides: 1. Alkyl Halides: Chapter 6 (Part 1/2) : Alkyl

More information

Geology 560, Prof. Thomas Johnson Unit IV, Part 2: Activation energies and the responses of reaction rates to temperature and compositional changes.

Geology 560, Prof. Thomas Johnson Unit IV, Part 2: Activation energies and the responses of reaction rates to temperature and compositional changes. Geology 560, Prof. Thomas Johnson Unit IV, Part 2: Activation energies and the responses of reaction rates to temperature and compositional changes. eading: White, Chapter 5; Walther, Chapter 13 Excellent

More information

The Positive Muon as a Probe in Chemistry. Dr. Iain McKenzie ISIS Neutron and Muon Source STFC Rutherford Appleton Laboratory

The Positive Muon as a Probe in Chemistry. Dr. Iain McKenzie ISIS Neutron and Muon Source STFC Rutherford Appleton Laboratory The Positive Muon as a Probe in Chemistry Dr. Iain McKenzie ISIS Neutron and Muon Source STFC Rutherford Appleton Laboratory I.McKenzie@rl.ac.uk µsr and Chemistry Properties of atoms or molecules containing

More information

Marcus Theory for Electron Transfer a short introduction

Marcus Theory for Electron Transfer a short introduction Marcus Theory for Electron Transfer a short introduction Minoia Andrea MPIP - Journal Club -Mainz - January 29, 2008 1 Contents 1 Intro 1 2 History and Concepts 2 2.1 Frank-Condon principle applied to

More information

c. Cl H Page 1 of 7 major P (E > Z and more substituted over less substituted alkene) LG must be axial are the same Cl -

c. Cl H Page 1 of 7 major P (E > Z and more substituted over less substituted alkene) LG must be axial are the same Cl - CEM 109A 1. Predict the products of the following reactions (a-c E2, d-f E1 KEY focuses only on elimination products, in most cases there will also be substitution products.) a. - LG must be axial - are

More information

Catalysis Lectures W.H. Green 5.68J/10.652J Spring Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework

Catalysis Lectures W.H. Green 5.68J/10.652J Spring Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework Catalysis Lectures W.H. Green 5.68J/10.652J Spring 2003 Handouts: Norskov et al., J. Catalysis Imbihl and Ertl, Chem. Rev. (partial) Homework Major points: 1) Why reactions have barriers, and how catalysts

More information

Wilkinson s other (ruthenium) catalyst

Wilkinson s other (ruthenium) catalyst Wilkinson s other (ruthenium) catalyst Cl 3 ; 2 h 3, reflux 3h h 3 Cl h 3 h Cl 3 Good catalyst especially for 2 1-alkenes 2, base toluene Cl h 3 h 3 h 3 Et 3 Cl h 3 Cl h 3 h 3 R h 3 h 3 Cl h 3 R RC 2 C

More information

Introduction. A1.1 (a) Shell number and number of subshells 1. A1.1 (b) Orbitals 2. A1.1 (c ) Orbital shapes (s, p & d) 2

Introduction. A1.1 (a) Shell number and number of subshells 1. A1.1 (b) Orbitals 2. A1.1 (c ) Orbital shapes (s, p & d) 2 Preface Table of Contents Introduction i A1.1 (a) Shell number and number of subshells 1 A1.1 (b) Orbitals 2 A1.1 (c ) Orbital shapes (s, p & d) 2 A1.1 (d) Relative energies of s,p,d,f sub-shells 4 A 1.1

More information

Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability

Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Part I. Review of forces Covalent bonds Non-covalent Interactions Van der Waals Interactions

More information

LECTURE #13 Tues., Oct.18, Midterm exam: Tues.Oct.25 during class Ch.1, , 7.10, 2, Sections

LECTURE #13 Tues., Oct.18, Midterm exam: Tues.Oct.25 during class Ch.1, , 7.10, 2, Sections CEM 221 section 01 LECTURE #13 Tues., Oct.18, 2005 Midterm exam: Tues.Oct.25 during class Ch.1, 7.2-7.5, 7.10, 2, 3.1-3.5 ASSGNED READNGS: TODAY S CLASS: Sections 4.1 4.6 NEXT CLASS: rest of Ch.4 http://artsandscience.concordia.ca/facstaff/p-r/rogers

More information

Chapter 15: Conjugated Systems, Orbital Symmetry, and UV Spectroscopy

Chapter 15: Conjugated Systems, Orbital Symmetry, and UV Spectroscopy Chapter 15: Conjugated Systems, Orbital Symmetry, and UV Spectroscopy Conjugated unsaturated systems have a p orbital on a carbon adjacent to a double bond The p orbital can come from another double (e.g.

More information

Columbia University C99ORG12.DOC S3443D Summer 99 Professor Grace B. Borowitz Exam No. 2 June 14, 1999

Columbia University C99ORG12.DOC S3443D Summer 99 Professor Grace B. Borowitz Exam No. 2 June 14, 1999 olumbia University 99RG12.D SD Summer 99 Professor Grace B. Borowitz Exam No. 2 June 1, 1999 Name: Sterie hemistry Grade: Please use a non-red pen. Answer questions in the provided space. If you write

More information

Elementary Organometallic Reactions

Elementary Organometallic Reactions Elementary eactions CE 966 (Tunge) Elementary rganometallic eactions All mechanisms are simply a combination of elementary reactions. 1) Coordination -- issociation 2) xidative Addition -- eductive Elimination

More information

(Neither an oxidation or reduction: Addition or loss of H +, H 2 O, HX).

(Neither an oxidation or reduction: Addition or loss of H +, H 2 O, HX). eactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. xidation is a

More information

Lecture 6 January 18, 2012 CC Bonds diamond, ΔHf, Group additivity

Lecture 6 January 18, 2012 CC Bonds diamond, ΔHf, Group additivity Lecture 6 January 18, 2012 CC Bonds diamond, ΔHf, Group additivity Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry,

More information

CHEM Lecture 7

CHEM Lecture 7 CEM 494 Special Topics in Chemistry Illinois at Chicago CEM 494 - Lecture 7 Prof. Duncan Wardrop ctober 22, 2012 CEM 494 Special Topics in Chemistry Illinois at Chicago Preparation of Alkenes Elimination

More information

with the larger dimerization energy also exhibits the larger structural changes.

with the larger dimerization energy also exhibits the larger structural changes. A7. Looking at the image and table provided below, it is apparent that the monomer and dimer are structurally almost identical. Although angular and dihedral data were not included, these data are also

More information

Organic Chemistry I (Chem340), Spring Final Exam

Organic Chemistry I (Chem340), Spring Final Exam rganic Chemistry I (Chem340), pring 2005 Final Exam This is a closed-book exam. No aid is to be given to or received from another person. Model set and calculator may be used, but cannot be shared. Please

More information

Chemical Kinetics. Topic 7

Chemical Kinetics. Topic 7 Chemical Kinetics Topic 7 Corrosion of Titanic wrec Casón shipwrec 2Fe(s) + 3/2O 2 (g) + H 2 O --> Fe 2 O 3.H 2 O(s) 2Na(s) + 2H 2 O --> 2NaOH(aq) + H 2 (g) Two examples of the time needed for a chemical

More information

Enzyme Kinetics. Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme. NC State University

Enzyme Kinetics. Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme. NC State University Enzyme Kinetics Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme NC State University Michaelis-Menton kinetics The rate of an enzyme catalyzed reaction in which substrate S is converted

More information

Modeling Chemical Reactions in Aqueous Solutions

Modeling Chemical Reactions in Aqueous Solutions University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2013 Modeling Chemical Reactions in Aqueous Solutions Osman Uner University of Arkansas, Fayetteville Follow this and additional

More information

Molecular Interactions F14NMI. Lecture 4: worked answers to practice questions

Molecular Interactions F14NMI. Lecture 4: worked answers to practice questions Molecular Interactions F14NMI Lecture 4: worked answers to practice questions http://comp.chem.nottingham.ac.uk/teaching/f14nmi jonathan.hirst@nottingham.ac.uk (1) (a) Describe the Monte Carlo algorithm

More information

CHAPTER 8 HW SOLUTIONS: ELIMINATIONS REACTIONS

CHAPTER 8 HW SOLUTIONS: ELIMINATIONS REACTIONS APTER 8 W SLUTNS: ELMNATNS REATNS S-TRANS SMERSM 1. Use a discussion and drawing of orbitals to help explain why it is generally easy to rotate around single bonds at room temperature, while it is difficult

More information

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: Z-enolates: M 2 M 2 syn 2 C 2 favored 2 M 2 anti disfavored E-enolates: M 2 2 C 3 C 3 C 2 favored 2 M M disfavored In

More information

Additions to the Carbonyl Groups

Additions to the Carbonyl Groups Chapter 18 Additions to the Carbonyl Groups Nucleophilic substitution (S N 2andS N 1) reaction occurs at sp3 hybridized carbons with electronegative leaving groups Why? The carbon is electrophilic! Addition

More information

Thermodynamics and Kinetics

Thermodynamics and Kinetics Thermodynamics and Kinetics C. Paolucci University of Notre Dame Department of Chemical & Biomolecular Engineering What is the energy we calculated? You used GAMESS to calculate the internal (ground state)

More information

Acid-Base -Bronsted-Lowry model: -Lewis model: -The more equilibrium lies to the right = More [H 3 O + ] = Higher K a = Lower pk a = Stronger acid

Acid-Base -Bronsted-Lowry model: -Lewis model: -The more equilibrium lies to the right = More [H 3 O + ] = Higher K a = Lower pk a = Stronger acid Revision Hybridisation -The valence electrons of a Carbon atom sit in 1s 2 2s 2 2p 2 orbitals that are different in energy. It has 2 x 2s electrons + 2 x 2p electrons are available to form 4 covalent bonds.

More information

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components. Chem 44 Review for Exam Hydrogenic atoms: The Coulomb energy between two point charges Ze and e: V r Ze r Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative

More information

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland 1) Question. Two methods which are widely used for the optimization of molecular geometies are the Steepest descents and Newton-Raphson

More information

Enzyme Kinetics 2014

Enzyme Kinetics 2014 V 41 Enzyme Kinetics 2014 Atkins Ch.23, Tinoco 4 th -Ch.8 Enzyme rxn example Catalysis/Mechanism: E + S k -1 ES k 1 ES E is at beginning and k 2 k -2 E + P at end of reaction Catalyst: No consumption of

More information

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0 1. (a) rovide a reasonable mechanism for the following transformation. I S 2 C 3 C 3 ( 3 ) 2 2, CuI C 3 TMG, DMF 3 C 2 S TMG = Me 2 Me 2 ICu ( 3 ) 2 0 I S 2 C 3 S 2 C 3 Cu I 3 3 3 C 2 S I 3 3 3 C 2 S 3

More information

Lecture 1. Conformational Analysis in Acyclic Systems

Lecture 1. Conformational Analysis in Acyclic Systems Lecture 1 Conformational Analysis in Acyclic Systems Learning Outcomes: by the end of this lecture and after answering the associated problems, you will be able to: 1. use Newman and saw-horse projections

More information

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

Molecular energy levels

Molecular energy levels Molecular energy levels Hierarchy of motions and energies in molecules The different types of motion in a molecule (electronic, vibrational, rotational,: : :) take place on different time scales and are

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis rganometallic hemistry and omogeneous atalysis Dr. Alexey Zazybin Lecture N8 Kashiwa ampus, December 11, 2009 Types of reactions in the coordination sphere of T 3. Reductive elimination X-L n -Y L n +

More information

Chapter 19 Chemical Thermodynamics Entropy and free energy

Chapter 19 Chemical Thermodynamics Entropy and free energy Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Explain and apply the terms spontaneous process, reversible process, irreversible process, and isothermal process.

More information

Heidelberg Molecular Modelling Summer School The Challenges of Transition Metal Systems

Heidelberg Molecular Modelling Summer School The Challenges of Transition Metal Systems Heidelberg Molecular Modelling Summer School The Challenges of Transition Metal Systems Dr Rob Deeth Inorganic Computational Chemistry Group University of Warwick UK verview Is molecular modelling of TM

More information

CHEM 4641 Fall questions worth a total of 32 points. Show your work, except on multiple-choice questions. 1 V α=

CHEM 4641 Fall questions worth a total of 32 points. Show your work, except on multiple-choice questions. 1 V α= Physical Chemistry I Final Exam Name: KEY CHEM 4641 Fall 017 15 questions worth a total of 3 points. Show your work, except on multiple-choice questions. 1 V 1 V α= κt = V T P V P T Gas constant R = 8.314

More information

Reaction Mechanisms Dependence of rate on temperature Activation Energy E a Activated Complex Arrhenius Equation

Reaction Mechanisms Dependence of rate on temperature Activation Energy E a Activated Complex Arrhenius Equation Kinetics Dependence of rate on Concentration (RATE LAW) Reaction Mechanisms Dependence of rate on temperature Activation Energy E a Activated Complex Arrhenius Equation Mary J. Bojan Chem 112 1 A MECHANISM

More information

Supporting Information

Supporting Information Supporting Information Formation of Ruthenium Carbenes by gem-hydrogen Transfer to Internal Alkynes: Implications for Alkyne trans-hydrogenation Markus Leutzsch, Larry M. Wolf, Puneet Gupta, Michael Fuchs,

More information

The Role of METAMORPhos Ligands in Transition Metal Complex Formation and Catalysis S. Oldenhof

The Role of METAMORPhos Ligands in Transition Metal Complex Formation and Catalysis S. Oldenhof The Role of METAMORPhos Ligands in Transition Metal Complex Formation and Catalysis S. Oldenhof Summary Catalysis plays a key role in the prosperity of our society, as catalysts are applied in the majority

More information

Mechanisms of Inorganic Reactions HS -26

Mechanisms of Inorganic Reactions HS -26 Mechanisms of Inorganic Reactions HS -26 A. Ligand Substitution Reactions Octahedral Co(III), Cr(III) Dissociative mechanism Square Planar Pt(II) Associative mechanism trans effect in Pt(II) complexes

More information