Extensions of Lorentzian spacetime geometry

Size: px
Start display at page:

Download "Extensions of Lorentzian spacetime geometry"

Transcription

1 Extensions of Lorentzian spacetime geometry From Finsler to Cartan and vice versa Manuel Hohmann Teoreetilise Füüsika Labor Füüsika Instituut Tartu Ülikool 13. November 2013 Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

2 Outline 1 Introduction 2 Cartan geometry on observer space 3 Finsler spacetimes 4 From Finsler geometry to Cartan geometry 5 From Cartan geometry to Finsler geometry 6 Closing the circle 7 Finsler-Cartan-Gravity 8 Conclusion Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

3 Outline 1 Introduction 2 Cartan geometry on observer space 3 Finsler spacetimes 4 From Finsler geometry to Cartan geometry 5 From Cartan geometry to Finsler geometry 6 Closing the circle 7 Finsler-Cartan-Gravity 8 Conclusion Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

4 References This work: MH, Extensions of Lorentzian spacetime geometry: from Finsler to Cartan and vice versa, Phys. Rev. D 87 (2013) [arxiv: [gr-qc]]. Cartan geometry of observer space: S. Gielen and D. K. Wise, Lifting General Relativity to Observer Space, J. Math. Phys. 54 (2013) [arxiv: [gr-qc]]. Finsler spacetimes: C. Pfeifer and M. N. R. Wohlfarth, Causal structure and electrodynamics on Finsler spacetimes, Phys. Rev. D 84 (2011) [arxiv: [gr-qc]]. C. Pfeifer and M. N. R. Wohlfarth, Finsler geometric extension of Einstein gravity, Phys. Rev. D 85 (2012) [arxiv: [gr-qc]]. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

5 Physical motivation A simple experiment: light propagation in spacetime (M, g). A supernova occurs at some beacon event x 0 M. Light from the supernova follows a null geodesic γ in M. An astronomer observes the light at another event x M. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

6 Physical motivation A simple experiment: light propagation in spacetime (M, g). A supernova occurs at some beacon event x 0 M. Light from the supernova follows a null geodesic γ in M. An astronomer observes the light at another event x M. The measured data: Light intensity: photon rate measured with local clock. Spectrum: photon frequency measured with local clock. Location of the source: direction of incoming light in local frame. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

7 Physical motivation A simple experiment: light propagation in spacetime (M, g). A supernova occurs at some beacon event x 0 M. Light from the supernova follows a null geodesic γ in M. An astronomer observes the light at another event x M. The measured data: Light intensity: photon rate measured with local clock. Spectrum: photon frequency measured with local clock. Location of the source: direction of incoming light in local frame. Mathematical description of the measured data: General covariance: Physical quantities are tensors. Tensor components are measured with respect to local frame. No measurement without a frame. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

8 Physical motivation A simple experiment: light propagation in spacetime (M, g). A supernova occurs at some beacon event x 0 M. Light from the supernova follows a null geodesic γ in M. An astronomer observes the light at another event x M. The measured data: Light intensity: photon rate measured with local clock. Spectrum: photon frequency measured with local clock. Location of the source: direction of incoming light in local frame. Mathematical description of the measured data: General covariance: Physical quantities are tensors. Tensor components are measured with respect to local frame. No measurement without a frame. Consider observer frames as more fundamental than spacetime. Spacetime emerges from equivalence classes of observer frames. Geometric theory based on this assumption? Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

9 Why Cartan geometry on observer space? Quantum gravity may suggest breaking of general covariance: Loop quantum gravity Spin foam models Causal dynamical triangulations Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

10 Why Cartan geometry on observer space? Quantum gravity may suggest breaking of general covariance: Loop quantum gravity Spin foam models Causal dynamical triangulations Possible implications: Existence of preferred observers / timelike vector fields.... preferred spatial foliations of spacetime. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

11 Why Cartan geometry on observer space? Quantum gravity may suggest breaking of general covariance: Loop quantum gravity Spin foam models Causal dynamical triangulations Possible implications: Existence of preferred observers / timelike vector fields.... preferred spatial foliations of spacetime. Problems: Breaking of Copernican principle. No observation of (strongly) broken symmetry. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

12 Why Cartan geometry on observer space? Quantum gravity may suggest breaking of general covariance: Loop quantum gravity Spin foam models Causal dynamical triangulations Possible implications: Existence of preferred observers / timelike vector fields.... preferred spatial foliations of spacetime. Problems: Breaking of Copernican principle. No observation of (strongly) broken symmetry. Solution: Consider space O of all allowed observers. Describe experiments on observer space instead of spacetime. Observer dependence of physical quantities follows naturally. No preferred observers. Geometry of observer space modeled by Cartan geometry. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

13 Why Finsler geometry of spacetimes? Finsler geometry of space widely used in physics: Approaches to quantum gravity Electrodynamics in anisotropic media Modeling of astronomical data Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

14 Why Finsler geometry of spacetimes? Finsler geometry of space widely used in physics: Approaches to quantum gravity Electrodynamics in anisotropic media Modeling of astronomical data Finsler geometry generalizes Riemannian geometry: Clock postulate: proper time equals arc length along trajectories. Geometry described by Finsler metric. Well-defined notions of connections, curvature, parallel transport... Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

15 Why Finsler geometry of spacetimes? Finsler geometry of space widely used in physics: Approaches to quantum gravity Electrodynamics in anisotropic media Modeling of astronomical data Finsler geometry generalizes Riemannian geometry: Clock postulate: proper time equals arc length along trajectories. Geometry described by Finsler metric. Well-defined notions of connections, curvature, parallel transport... Finsler spacetimes are suitable backgrounds for: Gravity Electrodynamics Other matter field theories Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

16 Why Finsler geometry of spacetimes? Finsler geometry of space widely used in physics: Approaches to quantum gravity Electrodynamics in anisotropic media Modeling of astronomical data Finsler geometry generalizes Riemannian geometry: Clock postulate: proper time equals arc length along trajectories. Geometry described by Finsler metric. Well-defined notions of connections, curvature, parallel transport... Finsler spacetimes are suitable backgrounds for: Gravity Electrodynamics Other matter field theories Possible explanations of yet unexplained phenomena: Fly-by anomaly Galaxy rotation curves Accelerating expansion of the universe Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

17 Outline 1 Introduction 2 Cartan geometry on observer space 3 Finsler spacetimes 4 From Finsler geometry to Cartan geometry 5 From Cartan geometry to Finsler geometry 6 Closing the circle 7 Finsler-Cartan-Gravity 8 Conclusion Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

18 Frame bundles vs. homogeneous spaces Consider Lorentzian manifold (M, g). Orthonormal frame bundle π : P M. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

19 Frame bundles vs. homogeneous spaces Consider Lorentzian manifold (M, g). Orthonormal frame bundle π : P M. Split of the tangent spaces T p P: Local infinitesimal Lorentz transforms: Only change local frame. Leave base point x = π(p) invariant. Tangent vectors to fibers π 1 (x). Infinitesimal translations: Infinitesimal change of base point x. Frame is unchanged parallely transported. Orthogonal to infinitesimal Lorentz transforms. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

20 Frame bundles vs. homogeneous spaces Consider Lorentzian manifold (M, g). Orthonormal frame bundle π : P M. Split of the tangent spaces T p P = g: Local infinitesimal Lorentz transforms h: Only change local frame. Leave base point x = π(p) invariant. Tangent vectors to fibers π 1 (x). Infinitesimal translations z = g/h: Infinitesimal change of base point x. Frame is unchanged parallely transported. Orthogonal to infinitesimal Lorentz transforms. Description using Lie algebras: Poincaré algebra g. Lorentz algebra h g. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

21 Frame bundles vs. homogeneous spaces Consider Lorentzian manifold (M, g). Orthonormal frame bundle π : P M is principal H-bundle. Split of the tangent spaces T p P = g: Local infinitesimal Lorentz transforms h: Only change local frame. Leave base point x = π(p) invariant. Tangent vectors to fibers π 1 (x). Infinitesimal translations z = g/h: Infinitesimal change of base point x. Frame is unchanged parallely transported. Orthogonal to infinitesimal Lorentz transforms. Description using Lie algebras: Poincaré algebra g. Lorentz algebra h g. Corresponding Lie groups: Frame bundle P locally looks like Poincaré group G. Fibers π 1 (x) look like Lorentz group H. Spacetime M locally looks like homogeneous space G/H. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

22 Frame bundles vs. homogeneous spaces Consider Lorentzian manifold (M, g). Orthonormal frame bundle π : P M is principal H-bundle. Split of the tangent spaces T p P = g: Local infinitesimal Lorentz transforms h: Only change local frame. Leave base point x = π(p) invariant. Tangent vectors to fibers π 1 (x). Infinitesimal translations z = g/h: Infinitesimal change of base point x. Frame is unchanged parallely transported. Orthogonal to infinitesimal Lorentz transforms. Description using Lie algebras: Poincaré algebra g. Lorentz algebra h g. Corresponding Lie groups: Frame bundle P locally looks like Poincaré group G. Fibers π 1 (x) look like Lorentz group H. Spacetime M locally looks like homogeneous space G/H. Geometry encoded in mapping between T p P and g. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

23 The hamster ball Consider a hamster ball on a two-dimensional surface: Two-dimensional Riemannian manifold (M, g). Orthonormal frame bundle π : P M is principal SO(2)-bundle. Hamster position and orientation marks frame p P. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

24 The hamster ball Consider a hamster ball on a two-dimensional surface: Two-dimensional Riemannian manifold (M, g). Orthonormal frame bundle π : P M is principal SO(2)-bundle. Hamster position and orientation marks frame p P. Degrees of freedom of the hamster T p P: Rotations around its position x = π(p). Rolling without slippling over M. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

25 The hamster ball Consider a hamster ball on a two-dimensional surface: Two-dimensional Riemannian manifold (M, g). Orthonormal frame bundle π : P M is principal SO(2)-bundle. Hamster position and orientation marks frame p P. Degrees of freedom of the hamster T p P ball motions so(3): Rotations around its position x = π(p): subalgebra so(2). Rolling without slippling over M: quotient space so(3)/so(2). Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

26 The hamster ball Consider a hamster ball on a two-dimensional surface: Two-dimensional Riemannian manifold (M, g). Orthonormal frame bundle π : P M is principal SO(2)-bundle. Hamster position and orientation marks frame p P. Degrees of freedom of the hamster T p P ball motions so(3): Rotations around its position x = π(p): subalgebra so(2). Rolling without slippling over M: quotient space so(3)/so(2). Surface M modeled by homogeneous space SO(3)/ SO(2). Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

27 The hamster ball Consider a hamster ball on a two-dimensional surface: Two-dimensional Riemannian manifold (M, g). Orthonormal frame bundle π : P M is principal SO(2)-bundle. Hamster position and orientation marks frame p P. Degrees of freedom of the hamster T p P ball motions so(3): Rotations around its position x = π(p): subalgebra so(2). Rolling without slippling over M: quotient space so(3)/so(2). Surface M modeled by homogeneous space SO(3)/ SO(2) = S 2. Geometry of M encoded in Hamster ball motion. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

28 Cartan geometry Choose a Lie group G with a closed subgroup H G. Choose a principal H-bundle π : P M with dim P = dim G. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

29 Cartan geometry Choose a Lie group G with a closed subgroup H G. Choose a principal H-bundle π : P M with dim P = dim G. For each point p P with π(p) = x identify: T p P g T p π 1 (x) h Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

30 Cartan geometry Choose a Lie group G with a closed subgroup H G. Choose a principal H-bundle π : P M with dim P = dim G. For each point p P with π(p) = x identify: T p P A p g T p π 1 (x) h A p Cartan connection A Ω 1 (P, g): 1-form on P with values in g. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

31 Cartan geometry Choose a Lie group G with a closed subgroup H G. Choose a principal H-bundle π : P M with dim P = dim G. For each point p P with π(p) = x identify: T p P A p g T p π 1 (x) h A p Cartan connection A Ω 1 (P, g): 1-form on P with values in g. Fundamental vector fields A : g Γ(TP) as inverse of A. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

32 Cartan geometry Choose a Lie group G with a closed subgroup H G. Choose a principal H-bundle π : P M with dim P = dim G. For each point p P with π(p) = x identify: T p P A p g T p π 1 (x) h A p Cartan connection A Ω 1 (P, g): 1-form on P with values in g. Fundamental vector fields A : g Γ(TP) as inverse of A. Geometry of M encoded in A resp. A. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

33 Example: Cartan geometry of spacetime Choose Lie groups: Let SO 0 (4, 1) Λ > 0 G = ISO 0 (3, 1) Λ = 0, H = SO 0 (3, 1). SO 0 (3, 2) Λ < 0 Coset spaces G/H are the maximally symmetric spacetimes. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

34 Example: Cartan geometry of spacetime Choose Lie groups: Let SO 0 (4, 1) Λ > 0 G = ISO 0 (3, 1) Λ = 0, H = SO 0 (3, 1). SO 0 (3, 2) Λ < 0 Coset spaces G/H are the maximally symmetric spacetimes. Choose principal H-bundle: Let (M, g) be a Lorentzian manifold. Let P be the oriented time-oriented orthonormal frames on M. π : P M is a principal H-bundle. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

35 Example: Cartan geometry of spacetime Choose Lie groups: Let SO 0 (4, 1) Λ > 0 G = ISO 0 (3, 1) Λ = 0, H = SO 0 (3, 1). SO 0 (3, 2) Λ < 0 Coset spaces G/H are the maximally symmetric spacetimes. Choose principal H-bundle: Let (M, g) be a Lorentzian manifold. Let P be the oriented time-oriented orthonormal frames on M. π : P M is a principal H-bundle. Choose Cartan connection: g = h z splits into direct sum. Let e Ω 1 (P, z) be the solder form of π : P M. Let ω Ω 1 (P, h) be the Levi-Civita connection. A = ω + e Ω 1 (P, g) is a Cartan connection. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

36 Example: Cartan geometry of spacetime Choose Lie groups: Let SO 0 (4, 1) Λ > 0 G = ISO 0 (3, 1) Λ = 0, H = SO 0 (3, 1). SO 0 (3, 2) Λ < 0 Coset spaces G/H are the maximally symmetric spacetimes. Choose principal H-bundle: Let (M, g) be a Lorentzian manifold. Let P be the oriented time-oriented orthonormal frames on M. π : P M is a principal H-bundle. Choose Cartan connection: g = h z splits into direct sum. Let e Ω 1 (P, z) be the solder form of π : P M. Let ω Ω 1 (P, h) be the Levi-Civita connection. A = ω + e Ω 1 (P, g) is a Cartan connection. Metric g can be reconstructed from Cartan geometry. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

37 Example: Cartan geometry of observer space Choose Lie groups: [S. Gielen, D. Wise 12] Let SO 0 (4, 1) Λ > 0 G = ISO 0 (3, 1) Λ = 0, K = SO(3). SO 0 (3, 2) Λ < 0 Coset spaces G/K are the maximally symmetric observer spaces. Choose principal K -bundle: Let (M, g) be a Lorentzian manifold. Let O be the future unit timelike vectors on M. Let P be the oriented time-oriented orthonormal frames on M. π : P O is a principal K -bundle. Choose Cartan connection: g = h z splits into direct sum. Let e Ω 1 (P, z) be the solder form of π : P M. Let ω Ω 1 (P, h) be the Levi-Civita connection. A = ω + e Ω 1 (P, g) is a Cartan connection. Metric g can be reconstructed from Cartan geometry. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

38 Outline 1 Introduction 2 Cartan geometry on observer space 3 Finsler spacetimes 4 From Finsler geometry to Cartan geometry 5 From Cartan geometry to Finsler geometry 6 Closing the circle 7 Finsler-Cartan-Gravity 8 Conclusion Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

39 The clock postulate Proper time along a curve in Lorentzian spacetime: τ = t2 t 1 g ab (x(t))ẋ a (t)ẋ b (t)dt. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

40 The clock postulate Proper time along a curve in Lorentzian spacetime: τ = t2 t 1 g ab (x(t))ẋ a (t)ẋ b (t)dt. Finsler geometry: use a more general length functional: τ = t2 Finsler function F : TM R +. t 1 F(x(t), ẋ(t))dt. Parametrization invariance requires homogeneity: F(x, λy) = λf(x, y) λ > 0. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

41 Definition of Finsler spacetimes Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth 11] Finsler metric with Lorentz signature: gab F (x, y) = 1 2 y a y b F 2 (x, y). Notion of timelike, lightlike, spacelike tangent vectors. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

42 Definition of Finsler spacetimes Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth 11] Finsler metric with Lorentz signature: gab F (x, y) = 1 2 y a y b F 2 (x, y). Notion of timelike, lightlike, spacelike tangent vectors. Unit vectors y T x M defined by F 2 (x, y) = g F ab (x, y)y a y b = 1. Set Ω x T x M of unit timelike vectors at x M. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

43 Definition of Finsler spacetimes Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth 11] Finsler metric with Lorentz signature: gab F (x, y) = 1 2 y a y b F 2 (x, y). Notion of timelike, lightlike, spacelike tangent vectors. Unit vectors y T x M defined by F 2 (x, y) = g F ab (x, y)y a y b = 1. Set Ω x T x M of unit timelike vectors at x M. Ω x contains a closed connected component S x Ω x. Causality: S x corresponds to physical observers. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

44 Outline 1 Introduction 2 Cartan geometry on observer space 3 Finsler spacetimes 4 From Finsler geometry to Cartan geometry 5 From Cartan geometry to Finsler geometry 6 Closing the circle 7 Finsler-Cartan-Gravity 8 Conclusion Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

45 Observer space Recall from the definition of Finsler spacetimes: Set Ω x T x M of unit timelike vectors at x M. Physical observers correspond to S x Ω x. Definition of observer space: O = x M S x. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

46 Observer space Recall from the definition of Finsler spacetimes: Set Ω x T x M of unit timelike vectors at x M. Physical observers correspond to S x Ω x. Definition of observer space: O = x M S x. Tangent vectors y S x satisfy g F ab (x, y)y a y b = 1. Complete y = f 0 to a frame f i with gab F (x, y)f a i fj b = η ij. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

47 Observer space Recall from the definition of Finsler spacetimes: Set Ω x T x M of unit timelike vectors at x M. Physical observers correspond to S x Ω x. Definition of observer space: O = x M S x. Tangent vectors y S x satisfy g F ab (x, y)y a y b = 1. Complete y = f 0 to a frame f i with gab F (x, y)f a i fj b = η ij. Let P be the space of all observer frames. π : P O is a principal SO(3)-bundle. In general no principal SO 0 (3, 1)-bundle π : P M. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

48 Construction of the Cartan connection Need to construct A Ω 1 (P, g). Recall that g = h z A = ω + e Need to construct ω Ω 1 (P, h) and e Ω 1 (P, z). Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

49 Construction of the Cartan connection Need to construct A Ω 1 (P, g). Recall that g = h z A = ω + e Need to construct ω Ω 1 (P, h) and e Ω 1 (P, z). Definition of e: Use the solder form. Let w T (x,f ) P be a tangent vector. Differential of the projection π : P M yields π (w) T x M. View frame f as a linear isometry f : z T x M. Solder form given by e(w) = f 1 ( π (w)). Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

50 Construction of the Cartan connection Need to construct A Ω 1 (P, g). Recall that g = h z A = ω + e Need to construct ω Ω 1 (P, h) and e Ω 1 (P, z). Definition of e: Use the solder form. Let w T (x,f ) P be a tangent vector. Differential of the projection π : P M yields π (w) T x M. View frame f as a linear isometry f : z T x M. Solder form given by e(w) = f 1 ( π (w)). Definition of ω: Use the Cartan linear connection. Tangent vector w T (x,f ) P shifts frame f by small amount. Compare shifted frame with parallely transported frame. Both frames differ by Lorentz transform. [C. Pfeifer, M. Wohlfarth 11] Measure the difference using the original frame: f a i = ɛf a j ω j i(w). Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

51 Cartan connection in components Translational part e Ω 1 (P, z): e i = f 1i adx a. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

52 Cartan connection in components Translational part e Ω 1 (P, z): e i = f 1i adx a. Boost / rotational part ω Ω 1 (P, h): [ ( )] ω i j = f 1i a dfj a + fj b dx c F a bc + (dx d N c d + df0 c )Ca bc. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

53 Cartan connection in components Translational part e Ω 1 (P, z): e i = f 1i adx a. Boost / rotational part ω Ω 1 (P, h): [ ( )] ω i j = f 1i a dfj a + fj b dx c F a bc + (dx d N c d + df0 c )Ca bc Coefficients of Cartan linear connection: N a b = 1 4 b [g ( F aq y p p q F 2 q F 2)], F a bc = 1 ( ) 2 gf ap δ b gpc F + δ c gbp F δ pgbc F, C a bc = 1 ( ) 2 gf ap b gpc F + c gbp F p gbc F.. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

54 Cartan connection in components Translational part e Ω 1 (P, z): e i = f 1i adx a. Boost / rotational part ω Ω 1 (P, h): [ ( )] ω i j = f 1i a dfj a + fj b dx c F a bc + (dx d N c d + df0 c )Ca bc Coefficients of Cartan linear connection: N a b = 1 4 b [g ( F aq y p p q F 2 q F 2)], F a bc = 1 ( ) 2 gf ap δ b gpc F + δ c gbp F δ pgbc F, C a bc = 1 ( ) 2 gf ap b gpc F + c gbp F p gbc F. A = ω + e is a Cartan connection on π : P O. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36.

55 Fundamental vector fields Let a = z i Z i hi jh i j g. Define the vector field A(a) = z i f a i ( a f b j F c ab j c ) ( + h i jfi a h i 0fi b fj c C bc) a a j. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

56 Fundamental vector fields Let a = z i Z i hi jh i j g. Define the vector field A(a) = z i f a i ( a f b j F c ab j c ) ( + h i jfi a h i 0fi b fj c C bc) a a j. For all p P we find For all w T p P we find A(A(a)(p)) = a. A(A(w))(p) = w. A p : T p P g and A p : g T p P complement each other. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

57 Fundamental vector fields Let a = z i Z i hi jh i j g. Define the vector field A(a) = z i f a i ( a f b j F c ab j c ) ( + h i jfi a h i 0fi b fj c C bc) a a j. For all p P we find For all w T p P we find A(A(a)(p)) = a. A(A(w))(p) = w. A p : T p P g and A p : g T p P complement each other. Horizontal vector fields A(z): translations. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

58 Fundamental vector fields Let a = z i Z i hi jh i j g. Define the vector field A(a) = z i f a i ( a f b j F c ab j c ) ( + h i jfi a h i 0fi b fj c C bc) a a j. For all p P we find For all w T p P we find A(A(a)(p)) = a. A(A(w))(p) = w. A p : T p P g and A p : g T p P complement each other. Horizontal vector fields A(z): translations. Vertical vector fields A(h): Lorentz transforms. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

59 Time translation Consider the fundamental vector field of the time translator Z 0, t = A(Z 0 ) = f a 0 a f a j N b a j b ω i j(t) = 0, e i (t) = δ i 0. Integral curve Γ : R P, λ (x(λ), f (λ)) of t. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

60 Time translation Consider the fundamental vector field of the time translator Z 0, t = A(Z 0 ) = f a 0 a f a j N b a j b ω i j(t) = 0, e i (t) = δ i 0. Integral curve Γ : R P, λ (x(λ), f (λ)) of t. From e i (t) = δ i 0 follows: ẋ a = f a 0. (x, f 0 ) is the canonical lift of a curve from M to O. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

61 Time translation Consider the fundamental vector field of the time translator Z 0, t = A(Z 0 ) = f a 0 a f a j N b a j b ω i j(t) = 0, e i (t) = δ i 0. Integral curve Γ : R P, λ (x(λ), f (λ)) of t. From e i (t) = δ i 0 follows: ẋ a = f a 0. (x, f 0 ) is the canonical lift of a curve from M to O. From ω i 0(t) = 0 follows: (x, f 0 ) is a Finsler geodesic. 0 = ḟ a 0 + Na bẋ b = ẍ a + N a bẋ b. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

62 Time translation Consider the fundamental vector field of the time translator Z 0, t = A(Z 0 ) = f a 0 a f a j N b a j b ω i j(t) = 0, e i (t) = δ i 0. Integral curve Γ : R P, λ (x(λ), f (λ)) of t. From e i (t) = δ i 0 follows: ẋ a = f a 0. (x, f 0 ) is the canonical lift of a curve from M to O. From ω i 0(t) = 0 follows: 0 = ḟ a 0 + Na bẋ b = ẍ a + N a bẋ b. (x, f 0 ) is a Finsler geodesic. From ω α β(t) = 0 follows: ( ) 0 = ḟ α a + fα b ẋ c F a bc + (ẋ d N c d + ḟ 0 c )Ca bc = (ẋ, ḟ 0 ) f α a. Frame f is parallely transported. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

63 Time translation Consider the fundamental vector field of the time translator Z 0, t = A(Z 0 ) = f a 0 a f a j N b a j b ω i j(t) = 0, e i (t) = δ i 0. Integral curve Γ : R P, λ (x(λ), f (λ)) of t. From e i (t) = δ i 0 follows: ẋ a = f a 0. (x, f 0 ) is the canonical lift of a curve from M to O. From ω i 0(t) = 0 follows: 0 = ḟ a 0 + Na bẋ b = ẍ a + N a bẋ b. (x, f 0 ) is a Finsler geodesic. From ω α β(t) = 0 follows: ( ) 0 = ḟ α a + fα b ẋ c F a bc + (ẋ d N c d + ḟ 0 c )Ca bc = (ẋ, ḟ 0 ) f α a. Frame f is parallely transported. Integral curves of t define freely falling observers. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

64 Curvature of the Cartan connection Curvature F = F h + F z Ω 2 (P, g) defined by F = da + 1 [A, A]. 2 Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

65 Curvature of the Cartan connection Curvature F = F h + F z Ω 2 (P, g) defined by F = da + 1 [A, A]. 2 Translational part F z Ω 2 (P, z) ( torsion ): F z = de i + ω i j e j = f 1i ac a bcdx b δf c 0 with δf c 0 = Nc ddx d + df c 0. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

66 Curvature of the Cartan connection Curvature F = F h + F z Ω 2 (P, g) defined by F = da + 1 [A, A]. 2 Translational part F z Ω 2 (P, z) ( torsion ): F z = de i + ω i j e j = f 1i ac a bcdx b δf c 0 with δf0 c = Nc ddx d + df0 c. Boost / rotational part F h Ω 2 (P, h): F h = dω i j + ω i k ω k j = 1 ( 2 f 1i d f j c R d cabdx a dx b + 2P d cabdx a δf b 0 + Sd cabδf a 0 δf b 0 ). Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

67 Curvature of the Cartan connection Curvature F = F h + F z Ω 2 (P, g) defined by F = da + 1 [A, A]. 2 Translational part F z Ω 2 (P, z) ( torsion ): F z = de i + ω i j e j = f 1i ac a bcdx b δf c 0 with δf0 c = Nc ddx d + df0 c. Boost / rotational part F h Ω 2 (P, h): F h = dω i j + ω i k ω k j = 1 ( 2 f 1i d f j c R d cabdx a dx b + 2P d cabdx a δf b 0 + Sd cabδf a 0 δf b 0 R d cab, P d cab, S d cab: curvature of Cartan linear connection. Cartan geometry reproduces well-known Finsler objects. ). Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

68 Outline 1 Introduction 2 Cartan geometry on observer space 3 Finsler spacetimes 4 From Finsler geometry to Cartan geometry 5 From Cartan geometry to Finsler geometry 6 Closing the circle 7 Finsler-Cartan-Gravity 8 Conclusion Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

69 Spacetime Condition 1: boost distribution A(h) must be integrable. A(h) can be integrated to a foliation F with leaf space M. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

70 Spacetime Condition 1: boost distribution A(h) must be integrable. A(h) can be integrated to a foliation F with leaf space M. Condition 2: foliation F must be strictly simple. Leaf space M is a smooth manifold. Canonical projection π : P M is a submersion. Canonical projections π = π π: P π O π M π Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

71 Observer trajectories Four-velocity of an observer? Embedding of observer space O into TM? Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

72 Observer trajectories Four-velocity of an observer? Embedding of observer space O into TM? Fundamental vector field t = A(Z 0 ) Γ(TP) of time translation. t transforms trivially under spatial rotations. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

73 Observer trajectories Four-velocity of an observer? Embedding of observer space O into TM? Fundamental vector field t = A(Z 0 ) Γ(TP) of time translation. t transforms trivially under spatial rotations. Unique vector field r Γ(TO) such that: P π O t r TP π TO Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

74 Observer trajectories Four-velocity of an observer? Embedding of observer space O into TM? Fundamental vector field t = A(Z 0 ) Γ(TP) of time translation. t transforms trivially under spatial rotations. Unique vector field r Γ(TO) such that: P π O t r TP π TO π TM σ Integral curves λ o(λ) O of r must be canonical lifts: σ(o(λ)) = d dλ π (o(λ)) = π (ȯ(λ)) = π (r(o(λ))). Uniquely defined map σ = π r. Condition 3: σ must be an embedding. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

75 Finsler geometry Finsler function must be positively homogeneous of degree one: F(x, λy) = λ F(x, y) Unit timelike condition: F(σ(o)) = 1 for all observers o O. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

76 Finsler geometry Finsler function must be positively homogeneous of degree one: F(x, λy) = λ F(x, y) Unit timelike condition: F(σ(o)) = 1 for all observers o O. Define F(λσ(o)) = λ on double cone Rσ(O). Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

77 Finsler geometry Finsler function must be positively homogeneous of degree one: F(x, λy) = λ F(x, y) Unit timelike condition: F(σ(o)) = 1 for all observers o O. Define F(λσ(o)) = λ on double cone Rσ(O). Condition 4: σ(o) must intersect each line (x, Ry) at most once. Condition 5: Finsler metric gab F must have Lorentz signature: gab F = 1 2 a b F 2 Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

78 Finsler geometry Finsler function must be positively homogeneous of degree one: F(x, λy) = λ F(x, y) Unit timelike condition: F(σ(o)) = 1 for all observers o O. Define F(λσ(o)) = λ on double cone Rσ(O). Condition 4: σ(o) must intersect each line (x, Ry) at most once. Condition 5: Finsler metric gab F must have Lorentz signature: gab F = 1 2 a b F 2 Finsler spacetime geometry on Rσ(O). No Finsler geometry on TM \ Rσ(O). Cartan geometry describes only geometry visible to observers. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

79 Outline 1 Introduction 2 Cartan geometry on observer space 3 Finsler spacetimes 4 From Finsler geometry to Cartan geometry 5 From Cartan geometry to Finsler geometry 6 Closing the circle 7 Finsler-Cartan-Gravity 8 Conclusion Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

80 Reconstruction of a given Finsler spacetime Idea: Start from a Finsler spacetime (M, F ). Construct a Cartan observer space (π : P O, A). Construct a new Finsler spacetime ( ˆM, ˆF ). Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

81 Reconstruction of a given Finsler spacetime Idea: Start from a Finsler spacetime (M, F ). Construct a Cartan observer space (π : P O, A). Construct a new Finsler spacetime ( ˆM, ˆF ). Equivalence of Finsler spacetimes (M, F) and ( ˆM, ˆF)? Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

82 Reconstruction of a given Finsler spacetime Idea: Start from a Finsler spacetime (M, F ). Construct a Cartan observer space (π : P O, A). Construct a new Finsler spacetime ( ˆM, ˆF ). Equivalence of Finsler spacetimes (M, F) and ( ˆM, ˆF)? There exists a diffeomorphism µ: TM M π µ ˆπ T ˆM TO σ r O π µ ˆπ ˆM Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

83 Reconstruction of a given Finsler spacetime Idea: Start from a Finsler spacetime (M, F ). Construct a Cartan observer space (π : P O, A). Construct a new Finsler spacetime ( ˆM, ˆF ). Equivalence of Finsler spacetimes (M, F) and ( ˆM, ˆF)? There exists a diffeomorphism µ: TM M π µ ˆπ T ˆM TO σ r O π µ ˆπ ˆM µ preserves the Finsler function on timelike vectors. Reconstruction of the original Finsler geometry. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

84 Reconstruction of a given Cartan observer space Idea: Start from a Cartan observer space (π : P O, A). Construct a Finsler spacetime (M, F). Construct a new Cartan observer space (ˆπ : ˆP Ô, Â). Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

85 Reconstruction of a given Cartan observer space Idea: Start from a Cartan observer space (π : P O, A). Construct a Finsler spacetime (M, F). Construct a new Cartan observer space (ˆπ : ˆP Ô, Â). Equivalence of (π : P O, A) and (ˆπ : ˆP Ô, Â)? Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

86 Reconstruction of a given Cartan observer space Idea: Start from a Cartan observer space (π : P O, A). Construct a Finsler spacetime (M, F). Construct a new Cartan observer space (ˆπ : ˆP Ô, Â). Equivalence of (π : P O, A) and (ˆπ : ˆP Ô, Â)? Only if a Cartan morphism χ exists: M π ˆπ O Ô σ π ˆπ χ P ˆP A(a) TP χ T ˆP Â(a) Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

87 Reconstruction of a given Cartan observer space Idea: Start from a Cartan observer space (π : P O, A). Construct a Finsler spacetime (M, F). Construct a new Cartan observer space (ˆπ : ˆP Ô, Â). Equivalence of (π : P O, A) and (ˆπ : ˆP Ô, Â)? Only if a Cartan morphism χ exists: M π ˆπ O Ô σ π ˆπ χ P ˆP A(a) TP χ π TO σ π T ˆP T Ô ˆπ Â(a) ˆπ Every Cartan morphism χ = (x, f ) takes the form x(p) = π (π(p)), f i (p) = π (π (A(Z i )(p))) Simple test for equivalence of (π : P O, A) and (ˆπ : ˆP Ô, Â). Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36 TM

88 Outline 1 Introduction 2 Cartan geometry on observer space 3 Finsler spacetimes 4 From Finsler geometry to Cartan geometry 5 From Cartan geometry to Finsler geometry 6 Closing the circle 7 Finsler-Cartan-Gravity 8 Conclusion Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

89 Gravity from Cartan to Finsler MacDowell-Mansouri gravity on observer space: [S. Gielen, D. Wise 12] S G = ɛ αβγ tr h (F h F h ) b α b β b γ O Hodge operator on h. Non-degenerate H-invariant inner product tr h on h. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

90 Gravity from Cartan to Finsler MacDowell-Mansouri gravity on observer space: [S. Gielen, D. Wise 12] S G = ɛ αβγ tr h (F h F h ) b α b β b γ O Hodge operator on h. Non-degenerate H-invariant inner product tr h on h. Translate terms into Finsler language (with R = dω [ω, ω]): Curvature scalar: Cosmological constant: Gauss-Bonnet term: [e, e] R g F ab R c acb dv. [e, e] [e, e] dv. R R ɛ abcd ɛ efgh R abef R cdgh dv. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

91 Gravity from Cartan to Finsler MacDowell-Mansouri gravity on observer space: [S. Gielen, D. Wise 12] S G = ɛ αβγ tr h (F h F h ) b α b β b γ O Hodge operator on h. Non-degenerate H-invariant inner product tr h on h. Translate terms into Finsler language (with R = dω [ω, ω]): Curvature scalar: Cosmological constant: Gauss-Bonnet term: [e, e] R g F ab R c acb dv. [e, e] [e, e] dv. R R ɛ abcd ɛ efgh R abef R cdgh dv. Gravity theory on Finsler spacetime. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

92 Gravity from Finsler to Cartan Finsler gravity action: [C. Pfeifer, M. Wohlfarth 11] S G = O Sasaki metric G on O. Non-linear curvature R a ab. d 4 x d 3 y GR a aby b. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

93 Gravity from Finsler to Cartan Finsler gravity action: [C. Pfeifer, M. Wohlfarth 11] S G = O Sasaki metric G on O. Non-linear curvature R a ab. d 4 x d 3 y GR a aby b. Translate terms into Cartan language: d 4 x d 3 y G = ɛ ijkl ɛ αβγ e i e j e k e l b α b β b γ, R a aby b = b α [A(Z α ), A(Z 0 )]. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

94 Gravity from Finsler to Cartan Finsler gravity action: [C. Pfeifer, M. Wohlfarth 11] S G = O Sasaki metric G on O. Non-linear curvature R a ab. d 4 x d 3 y GR a aby b. Translate terms into Cartan language: d 4 x d 3 y G = ɛ ijkl ɛ αβγ e i e j e k e l b α b β b γ, R a aby b = b α [A(Z α ), A(Z 0 )]. Gravity theory on observer space. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

95 Outline 1 Introduction 2 Cartan geometry on observer space 3 Finsler spacetimes 4 From Finsler geometry to Cartan geometry 5 From Cartan geometry to Finsler geometry 6 Closing the circle 7 Finsler-Cartan-Gravity 8 Conclusion Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

96 Summary Observer space: Lift physics from spacetime to the space of observers. Describe observer space geometry using Cartan geometry. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

97 Summary Observer space: Lift physics from spacetime to the space of observers. Describe observer space geometry using Cartan geometry. Finsler spacetime: Based on generalized length functional. Finsler metric is observer dependent. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

98 Summary Observer space: Lift physics from spacetime to the space of observers. Describe observer space geometry using Cartan geometry. Finsler spacetime: Based on generalized length functional. Finsler metric is observer dependent. From Finsler to Cartan: Cartan geometry on observer space derived from Finsler geometry. Connection calculated from Cartan linear connection. Parallely transported observer frames given by the flow of time. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

99 Summary Observer space: Lift physics from spacetime to the space of observers. Describe observer space geometry using Cartan geometry. Finsler spacetime: Based on generalized length functional. Finsler metric is observer dependent. From Finsler to Cartan: Cartan geometry on observer space derived from Finsler geometry. Connection calculated from Cartan linear connection. Parallely transported observer frames given by the flow of time. From Cartan to Finsler: Spacetime can (sometimes) be constructed from Cartan geometry. Observer dependent Finsler metric from Cartan connection. Observers have timelike four-velocities in TM. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

100 Summary Observer space: Lift physics from spacetime to the space of observers. Describe observer space geometry using Cartan geometry. Finsler spacetime: Based on generalized length functional. Finsler metric is observer dependent. From Finsler to Cartan: Cartan geometry on observer space derived from Finsler geometry. Connection calculated from Cartan linear connection. Parallely transported observer frames given by the flow of time. From Cartan to Finsler: Spacetime can (sometimes) be constructed from Cartan geometry. Observer dependent Finsler metric from Cartan connection. Observers have timelike four-velocities in TM. Both constructions complement each other. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

101 Summary Observer space: Lift physics from spacetime to the space of observers. Describe observer space geometry using Cartan geometry. Finsler spacetime: Based on generalized length functional. Finsler metric is observer dependent. From Finsler to Cartan: Cartan geometry on observer space derived from Finsler geometry. Connection calculated from Cartan linear connection. Parallely transported observer frames given by the flow of time. From Cartan to Finsler: Spacetime can (sometimes) be constructed from Cartan geometry. Observer dependent Finsler metric from Cartan connection. Observers have timelike four-velocities in TM. Both constructions complement each other. Gravity: MacDowell-Mansouri gravity from Cartan to Finsler. Finsler gravity from Finsler to Cartan. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

102 Outlook Current projects: Derive gravitational equations of motion. Translate more terms between both languages. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

103 Outlook Current projects: Derive gravitational equations of motion. Translate more terms between both languages. Future projects: Consistent matter coupling. Study of exact solutions. Effects of deviations from metric geometry? Geometrodynamics of Finsler spacetimes.... Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 13. November / 36

Extensions of Lorentzian spacetime geometry

Extensions of Lorentzian spacetime geometry Extensions of Lorentzian spacetime geometry From Finsler to Cartan and vice versa Manuel Hohmann Teoreetilise Füüsika Labor Füüsika Instituut Tartu Ülikool LQP33 Workshop 15. November 2013 Manuel Hohmann

More information

Vooludünaamika laiendatud geomeetrias

Vooludünaamika laiendatud geomeetrias Vooludünaamika laiendatud geomeetrias Manuel Hohmann Teoreetilise Füüsika Labor Füüsika Instituut Tartu Ülikool 28. oktoober 2014 Manuel Hohmann (Tartu Ülikool) Vooludünaamika 28. oktoober 2014 1 / 25

More information

Observer dependent background geometries arxiv:

Observer dependent background geometries arxiv: Observer dependent background geometries arxiv:1403.4005 Manuel Hohmann Laboratory of Theoretical Physics Physics Institute University of Tartu DPG-Tagung Berlin Session MP 4 18. März 2014 Manuel Hohmann

More information

Lifting General Relativity to Observer Space

Lifting General Relativity to Observer Space Lifting General Relativity to Observer Space Derek Wise Institute for Quantum Gravity University of Erlangen Work with Steffen Gielen: 1111.7195 1206.0658 1210.0019 International Loop Quantum Gravity Seminar

More information

Holographic Special Relativity:

Holographic Special Relativity: Holographic Special Relativity: Observer Space from Conformal Geometry Derek K. Wise University of Erlangen Based on 1305.3258 International Loop Quantum Gravity Seminar 15 October 2013 1 Holographic special

More information

The Erlangen Program and General Relativity

The Erlangen Program and General Relativity The Erlangen Program and General Relativity Derek K. Wise University of Erlangen Department of Mathematics & Institute for Quantum Gravity Colloquium, Utah State University January 2014 What is geometry?

More information

Cartan Geometrodynamics

Cartan Geometrodynamics Cartan Geometrodynamics Derek Wise (joint work with Steffen Gielen) Universität Erlangen Nürnberg 27 February 2012 Geometrodynamics GR as evolving spatial geometry, rather than spacetime geometry. As Wheeler

More information

Gravitation: Tensor Calculus

Gravitation: Tensor Calculus An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

UNIVERSITY OF DUBLIN

UNIVERSITY OF DUBLIN UNIVERSITY OF DUBLIN TRINITY COLLEGE JS & SS Mathematics SS Theoretical Physics SS TSM Mathematics Faculty of Engineering, Mathematics and Science school of mathematics Trinity Term 2015 Module MA3429

More information

arxiv: v1 [gr-qc] 22 Aug 2014

arxiv: v1 [gr-qc] 22 Aug 2014 Radar orthogonality and radar length in Finsler and metric spacetime geometry Christian Pfeifer Institute for Theoretical Physics, Universität Hannover, Appelstrasse 2, 30167 Hannover, Germany arxiv:1408.5306v1

More information

A CONSTRUCTION OF TRANSVERSE SUBMANIFOLDS

A CONSTRUCTION OF TRANSVERSE SUBMANIFOLDS UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLI 2003 A CONSTRUCTION OF TRANSVERSE SUBMANIFOLDS by J. Szenthe Abstract. In case of Riemannian manifolds isometric actions admitting submanifolds

More information

1. Geometry of the unit tangent bundle

1. Geometry of the unit tangent bundle 1 1. Geometry of the unit tangent bundle The main reference for this section is [8]. In the following, we consider (M, g) an n-dimensional smooth manifold endowed with a Riemannian metric g. 1.1. Notations

More information

ESSENTIAL KILLING FIELDS OF PARABOLIC GEOMETRIES: PROJECTIVE AND CONFORMAL STRUCTURES. 1. Introduction

ESSENTIAL KILLING FIELDS OF PARABOLIC GEOMETRIES: PROJECTIVE AND CONFORMAL STRUCTURES. 1. Introduction ESSENTIAL KILLING FIELDS OF PARABOLIC GEOMETRIES: PROJECTIVE AND CONFORMAL STRUCTURES ANDREAS ČAP AND KARIN MELNICK Abstract. We use the general theory developed in our article [1] in the setting of parabolic

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

Reduction of Homogeneous Riemannian structures

Reduction of Homogeneous Riemannian structures Geometric Structures in Mathematical Physics, 2011 Reduction of Homogeneous Riemannian structures M. Castrillón López 1 Ignacio Luján 2 1 ICMAT (CSIC-UAM-UC3M-UCM) Universidad Complutense de Madrid 2 Universidad

More information

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3 Syllabus May 3, 2017 Contents 1 Special relativity 1 2 Differential geometry 3 3 General Relativity 13 3.1 Physical Principles.......................................... 13 3.2 Einstein s Equation..........................................

More information

Comparison for infinitesimal automorphisms. of parabolic geometries

Comparison for infinitesimal automorphisms. of parabolic geometries Comparison techniques for infinitesimal automorphisms of parabolic geometries University of Vienna Faculty of Mathematics Srni, January 2012 This talk reports on joint work in progress with Karin Melnick

More information

MacDowell Mansouri Gravity and Cartan Geometry

MacDowell Mansouri Gravity and Cartan Geometry MacDowell Mansouri Gravity and Cartan Geometry arxiv:gr-qc/0611154 v1 30 Nov 2006 Derek K. Wise Department of Mathematics University of California Riverside, CA 92521, USA email: derek@math.ucr.edu November

More information

The generally covariant locality principle and an extension to gauge symmetries

The generally covariant locality principle and an extension to gauge symmetries The generally covariant locality principle and an extension to gauge symmetries Jochen Zahn Universität Wien Seminar Mathematische Physik, November 2012 Outline We review the framework of locally covariant

More information

Connection Variables in General Relativity

Connection Variables in General Relativity Connection Variables in General Relativity Mauricio Bustamante Londoño Instituto de Matemáticas UNAM Morelia 28/06/2008 Mauricio Bustamante Londoño (UNAM) Connection Variables in General Relativity 28/06/2008

More information

SYMMETRIES OF SECTIONAL CURVATURE ON 3 MANIFOLDS. May 27, 1992

SYMMETRIES OF SECTIONAL CURVATURE ON 3 MANIFOLDS. May 27, 1992 SYMMETRIES OF SECTIONAL CURVATURE ON 3 MANIFOLDS Luis A. Cordero 1 Phillip E. Parker,3 Dept. Xeometría e Topoloxía Facultade de Matemáticas Universidade de Santiago 15706 Santiago de Compostela Spain cordero@zmat.usc.es

More information

Black Holes and Thermodynamics I: Classical Black Holes

Black Holes and Thermodynamics I: Classical Black Holes Black Holes and Thermodynamics I: Classical Black Holes Robert M. Wald General references: R.M. Wald General Relativity University of Chicago Press (Chicago, 1984); R.M. Wald Living Rev. Rel. 4, 6 (2001).

More information

An introduction to General Relativity and the positive mass theorem

An introduction to General Relativity and the positive mass theorem An introduction to General Relativity and the positive mass theorem National Center for Theoretical Sciences, Mathematics Division March 2 nd, 2007 Wen-ling Huang Department of Mathematics University of

More information

Smooth Dynamics 2. Problem Set Nr. 1. Instructor: Submitted by: Prof. Wilkinson Clark Butler. University of Chicago Winter 2013

Smooth Dynamics 2. Problem Set Nr. 1. Instructor: Submitted by: Prof. Wilkinson Clark Butler. University of Chicago Winter 2013 Smooth Dynamics 2 Problem Set Nr. 1 University of Chicago Winter 2013 Instructor: Submitted by: Prof. Wilkinson Clark Butler Problem 1 Let M be a Riemannian manifold with metric, and Levi-Civita connection.

More information

Integration of non linear conservation laws?

Integration of non linear conservation laws? Integration of non linear conservation laws? Frédéric Hélein, Institut Mathématique de Jussieu, Paris 7 Advances in Surface Theory, Leicester, June 13, 2013 Harmonic maps Let (M, g) be an oriented Riemannian

More information

CHAPTER 1 PRELIMINARIES

CHAPTER 1 PRELIMINARIES CHAPTER 1 PRELIMINARIES 1.1 Introduction The aim of this chapter is to give basic concepts, preliminary notions and some results which we shall use in the subsequent chapters of the thesis. 1.2 Differentiable

More information

The existence of light-like homogeneous geodesics in homogeneous Lorentzian manifolds. Sao Paulo, 2013

The existence of light-like homogeneous geodesics in homogeneous Lorentzian manifolds. Sao Paulo, 2013 The existence of light-like homogeneous geodesics in homogeneous Lorentzian manifolds Zdeněk Dušek Sao Paulo, 2013 Motivation In a previous project, it was proved that any homogeneous affine manifold (and

More information

LECTURE 9: MOVING FRAMES IN THE NONHOMOGENOUS CASE: FRAME BUNDLES. 1. Introduction

LECTURE 9: MOVING FRAMES IN THE NONHOMOGENOUS CASE: FRAME BUNDLES. 1. Introduction LECTURE 9: MOVING FRAMES IN THE NONHOMOGENOUS CASE: FRAME BUNDLES 1. Introduction Until now we have been considering homogenous spaces G/H where G is a Lie group and H is a closed subgroup. The natural

More information

Geometry of SpaceTime Einstein Theory. of Gravity II. Max Camenzind CB Oct-2010-D7

Geometry of SpaceTime Einstein Theory. of Gravity II. Max Camenzind CB Oct-2010-D7 Geometry of SpaceTime Einstein Theory of Gravity II Max Camenzind CB Oct-2010-D7 Textbooks on General Relativity Geometry of SpaceTime II Connection and curvature on manifolds. Sectional Curvature. Geodetic

More information

Curved Spacetime I. Dr. Naylor

Curved Spacetime I. Dr. Naylor Curved Spacetime I Dr. Naylor Last Week Einstein's principle of equivalence We discussed how in the frame of reference of a freely falling object we can construct a locally inertial frame (LIF) Space tells

More information

Multimetric cosmology and structure formation

Multimetric cosmology and structure formation Multimetric cosmology and structure formation Manuel Hohmann Teoreetilise füüsika labor Füüsikainstituut Tartu Ülikool 3. oktoober 2012 Manuel Hohmann (Tartu Ülikool) Multimetric gravity 3. oktoober 2012

More information

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1 Assistant: Saskia Voss Sheet 1 1. Conformal change of Riemannian metrics [3 points] Let (M, g) be a Riemannian manifold. A conformal change is a nonnegative function λ : M (0, ). Such a function defines

More information

Einstein Toolkit Workshop. Joshua Faber Apr

Einstein Toolkit Workshop. Joshua Faber Apr Einstein Toolkit Workshop Joshua Faber Apr 05 2012 Outline Space, time, and special relativity The metric tensor and geometry Curvature Geodesics Einstein s equations The Stress-energy tensor 3+1 formalisms

More information

ARITHMETICITY OF TOTALLY GEODESIC LIE FOLIATIONS WITH LOCALLY SYMMETRIC LEAVES

ARITHMETICITY OF TOTALLY GEODESIC LIE FOLIATIONS WITH LOCALLY SYMMETRIC LEAVES ASIAN J. MATH. c 2008 International Press Vol. 12, No. 3, pp. 289 298, September 2008 002 ARITHMETICITY OF TOTALLY GEODESIC LIE FOLIATIONS WITH LOCALLY SYMMETRIC LEAVES RAUL QUIROGA-BARRANCO Abstract.

More information

A brief introduction to Semi-Riemannian geometry and general relativity. Hans Ringström

A brief introduction to Semi-Riemannian geometry and general relativity. Hans Ringström A brief introduction to Semi-Riemannian geometry and general relativity Hans Ringström May 5, 2015 2 Contents 1 Scalar product spaces 1 1.1 Scalar products...................................... 1 1.2 Orthonormal

More information

A local characterization for constant curvature metrics in 2-dimensional Lorentz manifolds

A local characterization for constant curvature metrics in 2-dimensional Lorentz manifolds A local characterization for constant curvature metrics in -dimensional Lorentz manifolds Ivo Terek Couto Alexandre Lymberopoulos August 9, 8 arxiv:65.7573v [math.dg] 4 May 6 Abstract In this paper we

More information

Diffeomorphism Invariant Gauge Theories

Diffeomorphism Invariant Gauge Theories Diffeomorphism Invariant Gauge Theories Kirill Krasnov (University of Nottingham) Oxford Geometry and Analysis Seminar 25 Nov 2013 Main message: There exists a large new class of gauge theories in 4 dimensions

More information

Bondi mass of Einstein-Maxwell-Klein-Gordon spacetimes

Bondi mass of Einstein-Maxwell-Klein-Gordon spacetimes of of Institute of Theoretical Physics, Charles University in Prague April 28th, 2014 scholtz@troja.mff.cuni.cz 1 / 45 Outline of 1 2 3 4 5 2 / 45 Energy-momentum in special Lie algebra of the Killing

More information

Aspects of multimetric gravity

Aspects of multimetric gravity Aspects of multimetric gravity Manuel Hohmann Teoreetilise füüsika labor Füüsikainstituut Tartu Ülikool 4. september 2012 Manuel Hohmann (Tartu Ülikool) Multimetric gravity 4. september 2012 1 / 32 Outline

More information

Research Article New Examples of Einstein Metrics in Dimension Four

Research Article New Examples of Einstein Metrics in Dimension Four International Mathematics and Mathematical Sciences Volume 2010, Article ID 716035, 9 pages doi:10.1155/2010/716035 Research Article New Examples of Einstein Metrics in Dimension Four Ryad Ghanam Department

More information

arxiv: v1 [gr-qc] 11 Sep 2014

arxiv: v1 [gr-qc] 11 Sep 2014 Frascati Physics Series Vol. 58 (2014) Frontier Objects in Astrophysics and Particle Physics May 18-24, 2014 arxiv:1409.3370v1 [gr-qc] 11 Sep 2014 OPEN PROBLEMS IN GRAVITATIONAL PHYSICS S. Capozziello

More information

Connections and geodesics in the space of metrics The exponential parametrization from a geometric perspective

Connections and geodesics in the space of metrics The exponential parametrization from a geometric perspective Connections and geodesics in the space of metrics The exponential parametrization from a geometric perspective Andreas Nink Institute of Physics University of Mainz September 21, 2015 Based on: M. Demmel

More information

Solvable Lie groups and the shear construction

Solvable Lie groups and the shear construction Solvable Lie groups and the shear construction Marco Freibert jt. with Andrew Swann Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel 19.05.2016 1 Swann s twist 2 The shear construction The

More information

INTRODUCTION TO GEOMETRY

INTRODUCTION TO GEOMETRY INTRODUCTION TO GEOMETRY ERIKA DUNN-WEISS Abstract. This paper is an introduction to Riemannian and semi-riemannian manifolds of constant sectional curvature. We will introduce the concepts of moving frames,

More information

Conification of Kähler and hyper-kähler manifolds and supergr

Conification of Kähler and hyper-kähler manifolds and supergr Conification of Kähler and hyper-kähler manifolds and supergravity c-map Masaryk University, Brno, Czech Republic and Institute for Information Transmission Problems, Moscow, Russia Villasimius, September

More information

Minkowski spacetime. Pham A. Quang. Abstract: In this talk we review the Minkowski spacetime which is the spacetime of Special Relativity.

Minkowski spacetime. Pham A. Quang. Abstract: In this talk we review the Minkowski spacetime which is the spacetime of Special Relativity. Minkowski spacetime Pham A. Quang Abstract: In this talk we review the Minkowski spacetime which is the spacetime of Special Relativity. Contents 1 Introduction 1 2 Minkowski spacetime 2 3 Lorentz transformations

More information

Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields

Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields Chapter 16 Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields 16.1 Isometries and Local Isometries Recall that a local isometry between two Riemannian manifolds M

More information

Introduction to General Relativity

Introduction to General Relativity Introduction to General Relativity Lectures by Igor Pesando Slides by Pietro Fré Virgo Site May 22nd 2006 The issue of reference frames Since oldest and observers antiquity the Who is at motion? The Sun

More information

Moduli spaces of Type A geometries EGEO 2016 La Falda, Argentina. Peter B Gilkey

Moduli spaces of Type A geometries EGEO 2016 La Falda, Argentina. Peter B Gilkey EGEO 2016 La Falda, Argentina Mathematics Department, University of Oregon, Eugene OR USA email: gilkey@uoregon.edu a Joint work with M. Brozos-Vázquez, E. García-Río, and J.H. Park a Partially supported

More information

Spin(10,1)-metrics with a parallel null spinor and maximal holonomy

Spin(10,1)-metrics with a parallel null spinor and maximal holonomy Spin(10,1)-metrics with a parallel null spinor and maximal holonomy 0. Introduction. The purpose of this addendum to the earlier notes on spinors is to outline the construction of Lorentzian metrics in

More information

Elements of differential geometry

Elements of differential geometry Elements of differential geometry R.Beig (Univ. Vienna) ESI-EMS-IAMP School on Mathematical GR, 28.7. - 1.8. 2014 1. tensor algebra 2. manifolds, vector and covector fields 3. actions under diffeos and

More information

Gauge Theory of Gravitation: Electro-Gravity Mixing

Gauge Theory of Gravitation: Electro-Gravity Mixing Gauge Theory of Gravitation: Electro-Gravity Mixing E. Sánchez-Sastre 1,2, V. Aldaya 1,3 1 Instituto de Astrofisica de Andalucía, Granada, Spain 2 Email: sastre@iaa.es, es-sastre@hotmail.com 3 Email: valdaya@iaa.es

More information

Geometry of almost-product (pseudo-)riemannian manifold. manifolds and the dynamics of the observer. Aneta Wojnar

Geometry of almost-product (pseudo-)riemannian manifold. manifolds and the dynamics of the observer. Aneta Wojnar Geometry of almost-product (pseudo-)riemannian manifolds and the dynamics of the observer University of Wrocªaw Barcelona Postgrad Encounters on Fundamental Physics, October 2012 Outline 1 Motivation 2

More information

Minimal timelike surfaces in a certain homogeneous Lorentzian 3-manifold II

Minimal timelike surfaces in a certain homogeneous Lorentzian 3-manifold II Minimal timelike surfaces in a certain homogeneous Lorentzian 3-manifold II Sungwook Lee Abstract The 2-parameter family of certain homogeneous Lorentzian 3-manifolds which includes Minkowski 3-space and

More information

Gravitation: Special Relativity

Gravitation: Special Relativity An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

Relativistic simultaneity and causality

Relativistic simultaneity and causality Relativistic simultaneity and causality V. J. Bolós 1,, V. Liern 2, J. Olivert 3 1 Dpto. Matemática Aplicada, Facultad de Matemáticas, Universidad de Valencia. C/ Dr. Moliner 50. 46100, Burjassot Valencia),

More information

t, H = 0, E = H E = 4πρ, H df = 0, δf = 4πJ.

t, H = 0, E = H E = 4πρ, H df = 0, δf = 4πJ. Lecture 3 Cohomologies, curvatures Maxwell equations The Maxwell equations for electromagnetic fields are expressed as E = H t, H = 0, E = 4πρ, H E t = 4π j. These equations can be simplified if we use

More information

Causal RG equation for Quantum Einstein Gravity

Causal RG equation for Quantum Einstein Gravity Causal RG equation for Quantum Einstein Gravity Stefan Rechenberger Uni Mainz 14.03.2011 arxiv:1102.5012v1 [hep-th] with Elisa Manrique and Frank Saueressig Stefan Rechenberger (Uni Mainz) Causal RGE for

More information

Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields

Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields Chapter 15 Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields The goal of this chapter is to understand the behavior of isometries and local isometries, in particular

More information

LECTURE 5: SURFACES IN PROJECTIVE SPACE. 1. Projective space

LECTURE 5: SURFACES IN PROJECTIVE SPACE. 1. Projective space LECTURE 5: SURFACES IN PROJECTIVE SPACE. Projective space Definition: The n-dimensional projective space P n is the set of lines through the origin in the vector space R n+. P n may be thought of as the

More information

1 Hermitian symmetric spaces: examples and basic properties

1 Hermitian symmetric spaces: examples and basic properties Contents 1 Hermitian symmetric spaces: examples and basic properties 1 1.1 Almost complex manifolds............................................ 1 1.2 Hermitian manifolds................................................

More information

Connections for noncommutative tori

Connections for noncommutative tori Levi-Civita connections for noncommutative tori reference: SIGMA 9 (2013), 071 NCG Festival, TAMU, 2014 In honor of Henri, a long-time friend Connections One of the most basic notions in differential geometry

More information

Spacetime and 4 vectors

Spacetime and 4 vectors Spacetime and 4 vectors 1 Minkowski space = 4 dimensional spacetime Euclidean 4 space Each point in Minkowski space is an event. In SR, Minkowski space is an absolute structure (like space in Newtonian

More information

Extended Space for. Falk Hassler. bases on. arxiv: and in collaboration with. Pascal du Bosque and Dieter Lüst

Extended Space for. Falk Hassler. bases on. arxiv: and in collaboration with. Pascal du Bosque and Dieter Lüst Extended Space for (half) Maximally Supersymmetric Theories Falk Hassler bases on arxiv: 1611.07978 and 1705.09304 in collaboration with Pascal du Bosque and Dieter Lüst University of North Carolina at

More information

Orientation transport

Orientation transport Orientation transport Liviu I. Nicolaescu Dept. of Mathematics University of Notre Dame Notre Dame, IN 46556-4618 nicolaescu.1@nd.edu June 2004 1 S 1 -bundles over 3-manifolds: homological properties Let

More information

WICK ROTATIONS AND HOLOMORPHIC RIEMANNIAN GEOMETRY

WICK ROTATIONS AND HOLOMORPHIC RIEMANNIAN GEOMETRY WICK ROTATIONS AND HOLOMORPHIC RIEMANNIAN GEOMETRY Geometry and Lie Theory, Eldar Strøme 70th birthday Sigbjørn Hervik, University of Stavanger Work sponsored by the RCN! (Toppforsk-Fellesløftet) REFERENCES

More information

An Overview of Mathematical General Relativity

An Overview of Mathematical General Relativity An Overview of Mathematical General Relativity José Natário (Instituto Superior Técnico) Geometria em Lisboa, 8 March 2005 Outline Lorentzian manifolds Einstein s equation The Schwarzschild solution Initial

More information

Hyperbolic Geometry on Geometric Surfaces

Hyperbolic Geometry on Geometric Surfaces Mathematics Seminar, 15 September 2010 Outline Introduction Hyperbolic geometry Abstract surfaces The hemisphere model as a geometric surface The Poincaré disk model as a geometric surface Conclusion Introduction

More information

1-TYPE AND BIHARMONIC FRENET CURVES IN LORENTZIAN 3-SPACE *

1-TYPE AND BIHARMONIC FRENET CURVES IN LORENTZIAN 3-SPACE * Iranian Journal of Science & Technology, Transaction A, ol., No. A Printed in the Islamic Republic of Iran, 009 Shiraz University -TYPE AND BIHARMONIC FRENET CURES IN LORENTZIAN -SPACE * H. KOCAYIGIT **

More information

8 Symmetries and the Hamiltonian

8 Symmetries and the Hamiltonian 8 Symmetries and the Hamiltonian Throughout the discussion of black hole thermodynamics, we have always assumed energy = M. Now we will introduce the Hamiltonian formulation of GR and show how to define

More information

Chapter 7 Curved Spacetime and General Covariance

Chapter 7 Curved Spacetime and General Covariance Chapter 7 Curved Spacetime and General Covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 145 146 CHAPTER 7. CURVED SPACETIME

More information

EXERCISES IN POISSON GEOMETRY

EXERCISES IN POISSON GEOMETRY EXERCISES IN POISSON GEOMETRY The suggested problems for the exercise sessions #1 and #2 are marked with an asterisk. The material from the last section will be discussed in lecture IV, but it s possible

More information

MATH 4030 Differential Geometry Lecture Notes Part 4 last revised on December 4, Elementary tensor calculus

MATH 4030 Differential Geometry Lecture Notes Part 4 last revised on December 4, Elementary tensor calculus MATH 4030 Differential Geometry Lecture Notes Part 4 last revised on December 4, 205 Elementary tensor calculus We will study in this section some basic multilinear algebra and operations on tensors. Let

More information

Quantising Gravitational Instantons

Quantising Gravitational Instantons Quantising Gravitational Instantons Kirill Krasnov (Nottingham) GARYFEST: Gravitation, Solitons and Symmetries MARCH 22, 2017 - MARCH 24, 2017 Laboratoire de Mathématiques et Physique Théorique Tours This

More information

Gravitational Gauge Theory and the Existence of Time

Gravitational Gauge Theory and the Existence of Time Journal of Physics: Conference Series OPEN ACCESS Gravitational Gauge Theory and the Existence of Time To cite this article: James T Wheeler 2013 J. Phys.: Conf. Ser. 462 012059 View the article online

More information

Quantum Field Theory Notes. Ryan D. Reece

Quantum Field Theory Notes. Ryan D. Reece Quantum Field Theory Notes Ryan D. Reece November 27, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation

More information

The wave equation and redshift in Bianchi type I spacetimes O LIVER L INDBLAD P ETERSEN

The wave equation and redshift in Bianchi type I spacetimes O LIVER L INDBLAD P ETERSEN The wave equation and redshift in Bianchi type I spacetimes O LIVER L INDBLAD P ETERSEN Master of Science Thesis Stockholm, Sweden 2014 The wave equation and redshift in Bianchi type I spacetimes O LIVER

More information

Math 426H (Differential Geometry) Final Exam April 24, 2006.

Math 426H (Differential Geometry) Final Exam April 24, 2006. Math 426H Differential Geometry Final Exam April 24, 6. 8 8 8 6 1. Let M be a surface and let : [0, 1] M be a smooth loop. Let φ be a 1-form on M. a Suppose φ is exact i.e. φ = df for some f : M R. Show

More information

String Theory and Nonrelativistic Gravity

String Theory and Nonrelativistic Gravity String Theory and Nonrelativistic Gravity Eric Bergshoeff Groningen University work done in collaboration with Ceyda Şimşek, Jaume Gomis, Kevin Grosvenor and Ziqi Yan A topical conference on elementary

More information

Quasi-conformal minimal Lagrangian diffeomorphisms of the

Quasi-conformal minimal Lagrangian diffeomorphisms of the Quasi-conformal minimal Lagrangian diffeomorphisms of the hyperbolic plane (joint work with J.M. Schlenker) January 21, 2010 Quasi-symmetric homeomorphism of a circle A homeomorphism φ : S 1 S 1 is quasi-symmetric

More information

Metrics and Curvature

Metrics and Curvature Metrics and Curvature How to measure curvature? Metrics Euclidian/Minkowski Curved spaces General 4 dimensional space Cosmological principle Homogeneity and isotropy: evidence Robertson-Walker metrics

More information

Teleparallel Gravity as a Higher Gauge Theory

Teleparallel Gravity as a Higher Gauge Theory Teleparallel Gravity as a Higher Gauge Theory John C. Baez Department of Mathematics University of California Riverside, California 92521, USA and Centre for Quantum Technologies National University of

More information

Curved spacetime and general covariance

Curved spacetime and general covariance Chapter 7 Curved spacetime and general covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 219 220 CHAPTER 7. CURVED SPACETIME

More information

Approaches to Quantum Gravity A conceptual overview

Approaches to Quantum Gravity A conceptual overview Approaches to Quantum Gravity A conceptual overview Robert Oeckl Instituto de Matemáticas UNAM, Morelia Centro de Radioastronomía y Astrofísica UNAM, Morelia 14 February 2008 Outline 1 Introduction 2 Different

More information

Practice Qualifying Exam Questions, Differentiable Manifolds, Fall, 2009.

Practice Qualifying Exam Questions, Differentiable Manifolds, Fall, 2009. Practice Qualifying Exam Questions, Differentiable Manifolds, Fall, 2009. Solutions (1) Let Γ be a discrete group acting on a manifold M. (a) Define what it means for Γ to act freely. Solution: Γ acts

More information

Section 2. Basic formulas and identities in Riemannian geometry

Section 2. Basic formulas and identities in Riemannian geometry Section 2. Basic formulas and identities in Riemannian geometry Weimin Sheng and 1. Bianchi identities The first and second Bianchi identities are R ijkl + R iklj + R iljk = 0 R ijkl,m + R ijlm,k + R ijmk,l

More information

From holonomy reductions of Cartan geometries to geometric compactifications

From holonomy reductions of Cartan geometries to geometric compactifications From holonomy reductions of Cartan geometries to geometric compactifications 1 University of Vienna Faculty of Mathematics Berlin, November 11, 2016 1 supported by project P27072 N25 of the Austrian Science

More information

Relativistic Mechanics

Relativistic Mechanics Physics 411 Lecture 9 Relativistic Mechanics Lecture 9 Physics 411 Classical Mechanics II September 17th, 2007 We have developed some tensor language to describe familiar physics we reviewed orbital motion

More information

ON SUBMAXIMAL DIMENSION OF THE GROUP OF ALMOST ISOMETRIES OF FINSLER METRICS.

ON SUBMAXIMAL DIMENSION OF THE GROUP OF ALMOST ISOMETRIES OF FINSLER METRICS. ON SUBMAXIMAL DIMENSION OF THE GROUP OF ALMOST ISOMETRIES OF FINSLER METRICS. VLADIMIR S. MATVEEV Abstract. We show that the second greatest possible dimension of the group of (local) almost isometries

More information

Euler Characteristic of Two-Dimensional Manifolds

Euler Characteristic of Two-Dimensional Manifolds Euler Characteristic of Two-Dimensional Manifolds M. Hafiz Khusyairi August 2008 In this work we will discuss an important notion from topology, namely Euler Characteristic and we will discuss several

More information

THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY

THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY SAM KAUFMAN Abstract. The (Cauchy) initial value formulation of General Relativity is developed, and the maximal vacuum Cauchy development theorem is

More information

COHOMOLOGY OF ARITHMETIC GROUPS AND EISENSTEIN SERIES: AN INTRODUCTION, II

COHOMOLOGY OF ARITHMETIC GROUPS AND EISENSTEIN SERIES: AN INTRODUCTION, II COHOMOLOGY OF ARITHMETIC GROUPS AND EISENSTEIN SERIES: AN INTRODUCTION, II LECTURES BY JOACHIM SCHWERMER, NOTES BY TONY FENG Contents 1. Review 1 2. Lifting differential forms from the boundary 2 3. Eisenstein

More information

Lecture: Lorentz Invariant Dynamics

Lecture: Lorentz Invariant Dynamics Chapter 5 Lecture: Lorentz Invariant Dynamics In the preceding chapter we introduced the Minkowski metric and covariance with respect to Lorentz transformations between inertial systems. This was shown

More information

Level sets of the lapse function in static GR

Level sets of the lapse function in static GR Level sets of the lapse function in static GR Carla Cederbaum Mathematisches Institut Universität Tübingen Auf der Morgenstelle 10 72076 Tübingen, Germany September 4, 2014 Abstract We present a novel

More information

OBSTRUCTION TO POSITIVE CURVATURE ON HOMOGENEOUS BUNDLES

OBSTRUCTION TO POSITIVE CURVATURE ON HOMOGENEOUS BUNDLES OBSTRUCTION TO POSITIVE CURVATURE ON HOMOGENEOUS BUNDLES KRISTOPHER TAPP Abstract. Examples of almost-positively and quasi-positively curved spaces of the form M = H\((G, h) F ) were discovered recently

More information

Problem 1, Lorentz transformations of electric and magnetic

Problem 1, Lorentz transformations of electric and magnetic Problem 1, Lorentz transformations of electric and magnetic fields We have that where, F µν = F µ ν = L µ µ Lν ν F µν, 0 B 3 B 2 ie 1 B 3 0 B 1 ie 2 B 2 B 1 0 ie 3 ie 2 ie 2 ie 3 0. Note that we use the

More information

Causal Sets Approach to Quantum Gravity

Causal Sets Approach to Quantum Gravity Causal Sets Approach to Quantum Gravity Mir Emad Aghili 1 1 Department of Physics and Astronomy, University of Mississippi, 38677 Introduction The fact that singularities happen in general relativity is

More information

Bredon, Introduction to compact transformation groups, Academic Press

Bredon, Introduction to compact transformation groups, Academic Press 1 Introduction Outline Section 3: Topology of 2-orbifolds: Compact group actions Compact group actions Orbit spaces. Tubes and slices. Path-lifting, covering homotopy Locally smooth actions Smooth actions

More information

THE GEOMETRY OF B-FIELDS. Nigel Hitchin (Oxford) Odense November 26th 2009

THE GEOMETRY OF B-FIELDS. Nigel Hitchin (Oxford) Odense November 26th 2009 THE GEOMETRY OF B-FIELDS Nigel Hitchin (Oxford) Odense November 26th 2009 THE B-FIELD IN PHYSICS B = i,j B ij dx i dx j flux: db = H a closed three-form Born-Infeld action: det(g ij + B ij ) complexified

More information

Left-invariant Einstein metrics

Left-invariant Einstein metrics on Lie groups August 28, 2012 Differential Geometry seminar Department of Mathematics The Ohio State University these notes are posted at http://www.math.ohio-state.edu/ derdzinski.1/beamer/linv.pdf LEFT-INVARIANT

More information