Extensions of Lorentzian spacetime geometry

Size: px
Start display at page:

Download "Extensions of Lorentzian spacetime geometry"

Transcription

1 Extensions of Lorentzian spacetime geometry From Finsler to Cartan and vice versa Manuel Hohmann Teoreetilise Füüsika Labor Füüsika Instituut Tartu Ülikool LQP33 Workshop 15. November 2013 Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

2 Outline 1 Introduction 2 Cartan geometry on observer space 3 Finsler spacetimes 4 From Finsler geometry to Cartan geometry 5 From Cartan geometry to Finsler geometry 6 Closing the circle 7 Finsler-Cartan-Gravity 8 Conclusion Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

3 Outline 1 Introduction 2 Cartan geometry on observer space 3 Finsler spacetimes 4 From Finsler geometry to Cartan geometry 5 From Cartan geometry to Finsler geometry 6 Closing the circle 7 Finsler-Cartan-Gravity 8 Conclusion Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

4 References This work: MH, Extensions of Lorentzian spacetime geometry: from Finsler to Cartan and vice versa, Phys. Rev. D 87 (2013) [arxiv: [gr-qc]]. Cartan geometry of observer space: S. Gielen and D. K. Wise, Lifting General Relativity to Observer Space, J. Math. Phys. 54 (2013) [arxiv: [gr-qc]]. Finsler spacetimes (see preceding talk by C. Pfeifer): C. Pfeifer and M. N. R. Wohlfarth, Causal structure and electrodynamics on Finsler spacetimes, Phys. Rev. D 84 (2011) [arxiv: [gr-qc]]. C. Pfeifer and M. N. R. Wohlfarth, Finsler geometric extension of Einstein gravity, Phys. Rev. D 85 (2012) [arxiv: [gr-qc]]. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

5 Physical motivation A simple experiment: particle propagation in spacetime (M, g). A supernova occurs at some beacon event x 0 M. Neutrinos from the supernova follow geodesics γ in M. An astronomer observes the neutrinos at another event x M. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

6 Physical motivation A simple experiment: particle propagation in spacetime (M, g). A supernova occurs at some beacon event x 0 M. Neutrinos from the supernova follow geodesics γ in M. An astronomer observes the neutrinos at another event x M. The measured data: Intensity: neutrino rate measured with local clock. Energy / momentum: measured with local frame. Location of the source: relative to local frame. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

7 Physical motivation A simple experiment: particle propagation in spacetime (M, g). A supernova occurs at some beacon event x 0 M. Neutrinos from the supernova follow geodesics γ in M. An astronomer observes the neutrinos at another event x M. The measured data: Intensity: neutrino rate measured with local clock. Energy / momentum: measured with local frame. Location of the source: relative to local frame. Mathematical description of the measured data: General covariance: Physical quantities are tensors. Tensor components are measured with respect to local frame. No measurement without a frame. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

8 Physical motivation A simple experiment: particle propagation in spacetime (M, g). A supernova occurs at some beacon event x 0 M. Neutrinos from the supernova follow geodesics γ in M. An astronomer observes the neutrinos at another event x M. The measured data: Intensity: neutrino rate measured with local clock. Energy / momentum: measured with local frame. Location of the source: relative to local frame. Mathematical description of the measured data: General covariance: Physical quantities are tensors. Tensor components are measured with respect to local frame. No measurement without a frame. Consider observer frames as more fundamental than spacetime. Spacetime emerges from equivalence classes of observer frames. Geometric theory based on this assumption? Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

9 Why Cartan geometry on observer space? Quantum gravity may suggest breaking of general covariance: Loop quantum gravity Spin foam models Causal dynamical triangulations Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

10 Why Cartan geometry on observer space? Quantum gravity may suggest breaking of general covariance: Loop quantum gravity Spin foam models Causal dynamical triangulations Possible breaking of Lorentz symmetry through preferred observers / timelike vector fields.... preferred spatial foliations of spacetime. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

11 Why Cartan geometry on observer space? Quantum gravity may suggest breaking of general covariance: Loop quantum gravity Spin foam models Causal dynamical triangulations Possible breaking of Lorentz symmetry through preferred observers / timelike vector fields.... preferred spatial foliations of spacetime. Problems: Breaking of Copernican principle for observers. No observation of (strongly) broken symmetry. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

12 Why Cartan geometry on observer space? Quantum gravity may suggest breaking of general covariance: Loop quantum gravity Spin foam models Causal dynamical triangulations Possible breaking of Lorentz symmetry through preferred observers / timelike vector fields.... preferred spatial foliations of spacetime. Problems: Breaking of Copernican principle for observers. No observation of (strongly) broken symmetry. Solution: Consider space O of all allowed observers. Describe experiments on observer space instead of spacetime. Observer dependence of physical quantities follows naturally. No preferred observers. Geometry of observer space modeled by Cartan geometry. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

13 Why Finsler geometry of spacetimes? See previous talk by C. Pfeifer. Finsler geometry of space widely used in physics: Approaches to quantum gravity Electrodynamics in anisotropic media Modeling of astronomical data Finsler geometry generalizes Riemannian geometry: Clock postulate: proper time equals arc length along trajectories. Geometry described by Finsler metric. Well-defined notions of connections, curvature, parallel transport... Finsler spacetimes are suitable backgrounds for: Gravity Electrodynamics Other matter field theories Possible explanations of yet unexplained phenomena: Fly-by anomaly Galaxy rotation curves Accelerating expansion of the universe Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

14 Outline 1 Introduction 2 Cartan geometry on observer space 3 Finsler spacetimes 4 From Finsler geometry to Cartan geometry 5 From Cartan geometry to Finsler geometry 6 Closing the circle 7 Finsler-Cartan-Gravity 8 Conclusion Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

15 Toy model: The hamster ball Consider a hamster ball on a two-dimensional surface: Two-dimensional Riemannian manifold (M, g). Orthonormal frame bundle π : P M is principal SO(2)-bundle. Hamster position and orientation marks frame p P. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

16 Toy model: The hamster ball Consider a hamster ball on a two-dimensional surface: Two-dimensional Riemannian manifold (M, g). Orthonormal frame bundle π : P M is principal SO(2)-bundle. Hamster position and orientation marks frame p P. Hamster s degrees of freedom T p P: Rotations around its position x = π(p). Rolling without slippling over M. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

17 Toy model: The hamster ball Consider a hamster ball on a two-dimensional surface: Two-dimensional Riemannian manifold (M, g). Orthonormal frame bundle π : P M is principal SO(2)-bundle. Hamster position and orientation marks frame p P. Hamster s degrees of freedom T p P ball motions g = so(3): Rotations around its position x = π(p): subalgebra h = so(2). Rolling without slippling over M: quotient space z = so(3)/so(2). Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

18 Toy model: The hamster ball Consider a hamster ball on a two-dimensional surface: Two-dimensional Riemannian manifold (M, g). Orthonormal frame bundle π : P M is principal SO(2)-bundle. Hamster position and orientation marks frame p P. Hamster s degrees of freedom T p P ball motions g = so(3): Rotations around its position x = π(p): subalgebra h = so(2). Rolling without slippling over M: quotient space z = so(3)/so(2). Surface M traced by S 2 = SO(3)/ SO(2) = G/H. Geometry of M fully determines Hamster ball motion. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

19 Cartan geometry of spacetime Consider Lorentzian manifold (M, g). Orthonormal frame bundle π : P M. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

20 Cartan geometry of spacetime Consider Lorentzian manifold (M, g). Orthonormal frame bundle π : P M. Split of the tangent spaces T p P: T p P = V p P + H p P Infinitesimal Lorentz transforms V p P. Infinitesimal translations H p P. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

21 Cartan geometry of spacetime Consider Lorentzian manifold (M, g). Orthonormal frame bundle π : P M is principal H-bundle. Split of the tangent spaces T p P = g: T p P = V p P + H p P g = h + z Infinitesimal Lorentz transforms V p P = h. Infinitesimal translations H p P = z. Corresponding split of Poincaré algebra g: Lorentz algebra h. Translations z. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

22 Cartan geometry of spacetime Consider Lorentzian manifold (M, g). Orthonormal frame bundle π : P M is principal H-bundle. Split of the tangent spaces T p P = g: T p P = A p = V p P + ω p + H p P e p g = h + z Infinitesimal Lorentz transforms V p P = h. Infinitesimal translations H p P = z. Corresponding split of Poincaré algebra g: Lorentz algebra h. Translations z. Cartan connection A = ω + e Ω 1 (P, g). Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

23 Cartan geometry of spacetime Consider Lorentzian manifold (M, g). Orthonormal frame bundle π : P M is principal H-bundle. Split of the tangent spaces T p P = g: T p P = V p P + H p P A p g = h + Infinitesimal Lorentz transforms V p P = h. Infinitesimal translations H p P = z. Corresponding split of Poincaré algebra g: Lorentz algebra h. Translations z. Cartan connection A = ω + e Ω 1 (P, g). Fundamental vector fields A : g Γ(TP) as inverse of A. z Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

24 Cartan geometry of spacetime Consider Lorentzian manifold (M, g). Orthonormal frame bundle π : P M is principal H-bundle. Split of the tangent spaces T p P = g: T p P = V p P + H p P A p g = h + Infinitesimal Lorentz transforms V p P = h. Infinitesimal translations H p P = z. Corresponding split of Poincaré algebra g: Lorentz algebra h. Translations z. Cartan connection A = ω + e Ω 1 (P, g). Fundamental vector fields A : g Γ(TP) as inverse of A. Geometry of M encoded in A resp. A. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32 z

25 Cartan geometry of observer space Consider Lorentzian manifold (M, g). Future unit timelike vectors O TM. Orthonormal frame bundle π : P O. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

26 Cartan geometry of observer space Consider Lorentzian manifold (M, g). Future unit timelike vectors O TM. Orthonormal frame bundle π : P O is principal K -bundle. Split of the tangent spaces T p P = g: T p P = R p P + B p P + H p P + H 0 pp g = k + y + z + z 0 Infinitesimal rotations R p P = k. Infinitesimal Lorentz boosts B p P = y. Infinitesimal spatial translations H p P = z. Infinitesimal temporal translations H 0 p P = z 0. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

27 Cartan geometry of observer space Consider Lorentzian manifold (M, g). Future unit timelike vectors O TM. Orthonormal frame bundle π : P O is principal K -bundle. Split of the tangent spaces T p P = g: T p P = R p P + B p P + H p P + H 0 pp A p = Ω p + b p + e p + e 0p g = k + y + z + z 0 Infinitesimal rotations R p P = k. Infinitesimal Lorentz boosts B p P = y. Infinitesimal spatial translations H p P = z. Infinitesimal temporal translations H 0 p P = z 0. Cartan connection A = Ω + b + e + e 0 Ω 1 (P, g). Fundamental vector fields A : g Γ(TP) as inverse of A. Geometry of M encoded in A resp. A. [S. Gielen, D. Wise 12] Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

28 Outline 1 Introduction 2 Cartan geometry on observer space 3 Finsler spacetimes 4 From Finsler geometry to Cartan geometry 5 From Cartan geometry to Finsler geometry 6 Closing the circle 7 Finsler-Cartan-Gravity 8 Conclusion Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

29 Brief summary Finsler geometry defined by length functional: τ = t2 Finsler function F : TM R +. t 1 F(x(t), ẋ(t))dt. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

30 Brief summary Finsler geometry defined by length functional: τ = t2 Finsler function F : TM R +. t 1 F(x(t), ẋ(t))dt. Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth 11] Finsler metric with Lorentz signature: gab F (x, y) = 1 2 y a y b F 2 (x, y). Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

31 Brief summary Finsler geometry defined by length functional: τ = t2 Finsler function F : TM R +. t 1 F(x(t), ẋ(t))dt. Finsler geometries suitable for spacetimes exist. [C. Pfeifer, M. Wohlfarth 11] Finsler metric with Lorentz signature: gab F (x, y) = 1 2 y a y b F 2 (x, y). Set Ω x T x M of unit timelike vectors at x M. Ω x contains a closed connected component S x Ω x. Causality: S x corresponds to physical observers. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

32 Outline 1 Introduction 2 Cartan geometry on observer space 3 Finsler spacetimes 4 From Finsler geometry to Cartan geometry 5 From Cartan geometry to Finsler geometry 6 Closing the circle 7 Finsler-Cartan-Gravity 8 Conclusion Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

33 Observer space Recall from the definition of Finsler spacetimes: Set Ω x T x M of unit timelike vectors at x M. Physical observers correspond to S x Ω x. Definition of observer space: O = x M S x. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

34 Observer space Recall from the definition of Finsler spacetimes: Set Ω x T x M of unit timelike vectors at x M. Physical observers correspond to S x Ω x. Definition of observer space: O = x M S x. Tangent vectors y S x satisfy g F ab (x, y)y a y b = 1. Complete y = f 0 to a frame f i with gab F (x, y)f a i fj b = η ij. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

35 Observer space Recall from the definition of Finsler spacetimes: Set Ω x T x M of unit timelike vectors at x M. Physical observers correspond to S x Ω x. Definition of observer space: O = x M S x. Tangent vectors y S x satisfy g F ab (x, y)y a y b = 1. Complete y = f 0 to a frame f i with gab F (x, y)f a i fj b = η ij. Let P be the space of all observer frames. π : P O is a principal SO(3)-bundle. In general no principal SO 0 (3, 1)-bundle π : P M. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

36 Cartan connection Need to construct A Ω 1 (P, g). Recall that g = h z A = ω + e Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

37 Cartan connection Need to construct A Ω 1 (P, g). Recall that g = h z A = ω + e Definition of e: Use the solder form: e i = f 1i adx a. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

38 Cartan connection Need to construct A Ω 1 (P, g). Recall that g = h z A = ω + e Definition of e: Use the solder form: e i = f 1i adx a. Definition of ω: Use the Cartan linear connection: [ ( )] ω i j = f 1i a dfj a + fj b dx c F a bc + (dx d N c d + df0 c )Ca bc. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

39 Cartan connection Need to construct A Ω 1 (P, g). Recall that g = h z A = ω + e Definition of e: Use the solder form: e i = f 1i adx a. Definition of ω: Use the Cartan linear connection: [ ( )] ω i j = f 1i a dfj a + fj b dx c F a bc + (dx d N c d + df0 c )Ca bc Coefficients of Cartan linear connection: N a b = 1 4 b [g ( F aq y p p q F 2 q F 2)], F a bc = 1 ( ) 2 gf ap δ b gpc F + δ c gbp F δ pgbc F, C a bc = 1 ( ) 2 gf ap b gpc F + c gbp F p gbc F.. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

40 Fundamental vector fields Let a = z i Z i hi jh i j g. Define the vector field A(a) = z i f a i ( a f b j F c ab j c ) ( + h i jfi a h i 0fi b fj c C bc) a a j. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

41 Fundamental vector fields Let a = z i Z i hi jh i j g. Define the vector field A(a) = z i f a i ( a f b j F c ab j c ) ( + h i jfi a h i 0fi b fj c C bc) a a j. For all p P we find For all w T p P we find A(A(a)(p)) = a. A(A(w))(p) = w. A p : T p P g and A p : g T p P complement each other. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

42 Fundamental vector fields Let a = z i Z i hi jh i j g. Define the vector field A(a) = z i f a i ( a f b j F c ab j c ) ( + h i jfi a h i 0fi b fj c C bc) a a j. For all p P we find For all w T p P we find A(A(a)(p)) = a. A(A(w))(p) = w. A p : T p P g and A p : g T p P complement each other. Horizontal vector fields A(z): translations. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

43 Fundamental vector fields Let a = z i Z i hi jh i j g. Define the vector field A(a) = z i f a i ( a f b j F c ab j c ) ( + h i jfi a h i 0fi b fj c C bc) a a j. For all p P we find For all w T p P we find A(A(a)(p)) = a. A(A(w))(p) = w. A p : T p P g and A p : g T p P complement each other. Horizontal vector fields A(z): translations. Vertical vector fields A(h): Lorentz transforms. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

44 Time translation Consider the fundamental vector field of the time translator Z 0, t = A(Z 0 ) = f a 0 a f a j N b a j b ω i j(t) = 0, e i (t) = δ i 0. Integral curve Γ : R P, λ (x(λ), f (λ)) of t. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

45 Time translation Consider the fundamental vector field of the time translator Z 0, t = A(Z 0 ) = f a 0 a f a j N b a j b ω i j(t) = 0, e i (t) = δ i 0. Integral curve Γ : R P, λ (x(λ), f (λ)) of t. From e i (t) = δ i 0 follows: ẋ a = f a 0. (x, f 0 ) is the canonical lift of a curve from M to O. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

46 Time translation Consider the fundamental vector field of the time translator Z 0, t = A(Z 0 ) = f a 0 a f a j N b a j b ω i j(t) = 0, e i (t) = δ i 0. Integral curve Γ : R P, λ (x(λ), f (λ)) of t. From e i (t) = δ i 0 follows: ẋ a = f a 0. (x, f 0 ) is the canonical lift of a curve from M to O. From ω i 0(t) = 0 follows: (x, f 0 ) is a Finsler geodesic. 0 = ḟ a 0 + Na bẋ b = ẍ a + N a bẋ b. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

47 Time translation Consider the fundamental vector field of the time translator Z 0, t = A(Z 0 ) = f a 0 a f a j N b a j b ω i j(t) = 0, e i (t) = δ i 0. Integral curve Γ : R P, λ (x(λ), f (λ)) of t. From e i (t) = δ i 0 follows: ẋ a = f a 0. (x, f 0 ) is the canonical lift of a curve from M to O. From ω i 0(t) = 0 follows: 0 = ḟ a 0 + Na bẋ b = ẍ a + N a bẋ b. (x, f 0 ) is a Finsler geodesic. From ω α β(t) = 0 follows: ( ) 0 = ḟ α a + fα b ẋ c F a bc + (ẋ d N c d + ḟ 0 c )Ca bc = (ẋ, ḟ 0 ) f α a. Frame f is parallely transported. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

48 Time translation Consider the fundamental vector field of the time translator Z 0, t = A(Z 0 ) = f a 0 a f a j N b a j b ω i j(t) = 0, e i (t) = δ i 0. Integral curve Γ : R P, λ (x(λ), f (λ)) of t. From e i (t) = δ i 0 follows: ẋ a = f a 0. (x, f 0 ) is the canonical lift of a curve from M to O. From ω i 0(t) = 0 follows: 0 = ḟ a 0 + Na bẋ b = ẍ a + N a bẋ b. (x, f 0 ) is a Finsler geodesic. From ω α β(t) = 0 follows: ( ) 0 = ḟ α a + fα b ẋ c F a bc + (ẋ d N c d + ḟ 0 c )Ca bc = (ẋ, ḟ 0 ) f α a. Frame f is parallely transported. Integral curves of t define freely falling observers. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

49 Curvature of the Cartan connection Curvature F = F h + F z Ω 2 (P, g) defined by F = da + 1 [A, A]. 2 Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

50 Curvature of the Cartan connection Curvature F = F h + F z Ω 2 (P, g) defined by F = da + 1 [A, A]. 2 Translational part F z Ω 2 (P, z) ( torsion ): F z = de i + ω i j e j = f 1i ac a bcdx b δf c 0 with δf c 0 = Nc ddx d + df c 0. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

51 Curvature of the Cartan connection Curvature F = F h + F z Ω 2 (P, g) defined by F = da + 1 [A, A]. 2 Translational part F z Ω 2 (P, z) ( torsion ): F z = de i + ω i j e j = f 1i ac a bcdx b δf c 0 with δf0 c = Nc ddx d + df0 c. Boost / rotational part F h Ω 2 (P, h): F h = dω i j + ω i k ω k j = 1 ( 2 f 1i d f j c R d cabdx a dx b + 2P d cabdx a δf b 0 + Sd cabδf a 0 δf b 0 ). Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

52 Curvature of the Cartan connection Curvature F = F h + F z Ω 2 (P, g) defined by F = da + 1 [A, A]. 2 Translational part F z Ω 2 (P, z) ( torsion ): F z = de i + ω i j e j = f 1i ac a bcdx b δf c 0 with δf0 c = Nc ddx d + df0 c. Boost / rotational part F h Ω 2 (P, h): F h = dω i j + ω i k ω k j = 1 ( 2 f 1i d f j c R d cabdx a dx b + 2P d cabdx a δf b 0 + Sd cabδf a 0 δf b 0 R d cab, P d cab, S d cab: curvature of Cartan linear connection. Cartan geometry reproduces well-known Finsler objects. ). Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

53 Outline 1 Introduction 2 Cartan geometry on observer space 3 Finsler spacetimes 4 From Finsler geometry to Cartan geometry 5 From Cartan geometry to Finsler geometry 6 Closing the circle 7 Finsler-Cartan-Gravity 8 Conclusion Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

54 Spacetime Start from observer space Cartan geometry (π : P O, A). Condition 1: boost distribution A(h) must be integrable. A(h) can be integrated to a foliation F with leaf space M. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

55 Spacetime Start from observer space Cartan geometry (π : P O, A). Condition 1: boost distribution A(h) must be integrable. A(h) can be integrated to a foliation F with leaf space M. Condition 2: foliation F must be strictly simple. Leaf space M is a smooth manifold. Canonical projection π : P M is a submersion. Canonical projections π = π π: P π O π M π Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

56 Observer trajectories Four-velocity of an observer? Embedding of observer space O into TM? Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

57 Observer trajectories Four-velocity of an observer? Embedding of observer space O into TM? Fundamental vector field t = A(Z 0 ) Γ(TP) of time translation. t transforms trivially under spatial rotations. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

58 Observer trajectories Four-velocity of an observer? Embedding of observer space O into TM? Fundamental vector field t = A(Z 0 ) Γ(TP) of time translation. t transforms trivially under spatial rotations. Unique vector field r Γ(TO) such that: P π O t r TP π TO Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

59 Observer trajectories Four-velocity of an observer? Embedding of observer space O into TM? Fundamental vector field t = A(Z 0 ) Γ(TP) of time translation. t transforms trivially under spatial rotations. Unique vector field r Γ(TO) such that: P π O t r TP π TO π TM σ Integral curves λ o(λ) O of r must be canonical lifts: σ(o(λ)) = d dλ π (o(λ)) = π (ȯ(λ)) = π (r(o(λ))). Uniquely defined map σ = π r. Condition 3: σ must be an embedding. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

60 Finsler geometry Finsler function must be positively homogeneous of degree one: F(x, λy) = λ F(x, y) Unit timelike condition: F(σ(o)) = 1 for all observers o O. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

61 Finsler geometry Finsler function must be positively homogeneous of degree one: F(x, λy) = λ F(x, y) Unit timelike condition: F(σ(o)) = 1 for all observers o O. Define F(λσ(o)) = λ on double cone Rσ(O). Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

62 Finsler geometry Finsler function must be positively homogeneous of degree one: F(x, λy) = λ F(x, y) Unit timelike condition: F(σ(o)) = 1 for all observers o O. Define F(λσ(o)) = λ on double cone Rσ(O). Condition 4: σ(o) must intersect each line (x, Ry) at most once. Condition 5: Finsler metric gab F must have Lorentz signature: gab F = 1 2 a b F 2 Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

63 Finsler geometry Finsler function must be positively homogeneous of degree one: F(x, λy) = λ F(x, y) Unit timelike condition: F(σ(o)) = 1 for all observers o O. Define F(λσ(o)) = λ on double cone Rσ(O). Condition 4: σ(o) must intersect each line (x, Ry) at most once. Condition 5: Finsler metric gab F must have Lorentz signature: gab F = 1 2 a b F 2 Finsler spacetime geometry on Rσ(O). No Finsler geometry on TM \ Rσ(O). Cartan geometry describes only geometry visible to observers. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

64 Outline 1 Introduction 2 Cartan geometry on observer space 3 Finsler spacetimes 4 From Finsler geometry to Cartan geometry 5 From Cartan geometry to Finsler geometry 6 Closing the circle 7 Finsler-Cartan-Gravity 8 Conclusion Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

65 Reconstruction of a given Finsler spacetime Idea: Start from a Finsler spacetime (M, F ). Construct a Cartan observer space (π : P O, A). Construct a new Finsler spacetime ( ˆM, ˆF ). Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

66 Reconstruction of a given Finsler spacetime Idea: Start from a Finsler spacetime (M, F ). Construct a Cartan observer space (π : P O, A). Construct a new Finsler spacetime ( ˆM, ˆF ). Equivalence of Finsler spacetimes (M, F) and ( ˆM, ˆF)? Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

67 Reconstruction of a given Finsler spacetime Idea: Start from a Finsler spacetime (M, F ). Construct a Cartan observer space (π : P O, A). Construct a new Finsler spacetime ( ˆM, ˆF ). Equivalence of Finsler spacetimes (M, F) and ( ˆM, ˆF)? There exists a diffeomorphism µ: TM M π µ ˆπ T ˆM TO σ r O π µ ˆπ ˆM Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

68 Reconstruction of a given Finsler spacetime Idea: Start from a Finsler spacetime (M, F ). Construct a Cartan observer space (π : P O, A). Construct a new Finsler spacetime ( ˆM, ˆF ). Equivalence of Finsler spacetimes (M, F) and ( ˆM, ˆF)? There exists a diffeomorphism µ: TM M π µ ˆπ T ˆM TO σ r O π µ ˆπ ˆM µ preserves the Finsler function on timelike vectors. Reconstruction of the original Finsler geometry. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

69 Reconstruction of a given Cartan observer space Idea: Start from a Cartan observer space (π : P O, A). Construct a Finsler spacetime (M, F). Construct a new Cartan observer space (ˆπ : ˆP Ô, Â). Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

70 Reconstruction of a given Cartan observer space Idea: Start from a Cartan observer space (π : P O, A). Construct a Finsler spacetime (M, F). Construct a new Cartan observer space (ˆπ : ˆP Ô, Â). Equivalence of (π : P O, A) and (ˆπ : ˆP Ô, Â)? Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

71 Reconstruction of a given Cartan observer space Idea: Start from a Cartan observer space (π : P O, A). Construct a Finsler spacetime (M, F). Construct a new Cartan observer space (ˆπ : ˆP Ô, Â). Equivalence of (π : P O, A) and (ˆπ : ˆP Ô, Â)? Only if a Cartan morphism χ exists: M π ˆπ O Ô σ π ˆπ χ P ˆP A(a) TP χ T ˆP Â(a) Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

72 Reconstruction of a given Cartan observer space Idea: Start from a Cartan observer space (π : P O, A). Construct a Finsler spacetime (M, F). Construct a new Cartan observer space (ˆπ : ˆP Ô, Â). Equivalence of (π : P O, A) and (ˆπ : ˆP Ô, Â)? Only if a Cartan morphism χ exists: M π ˆπ O Ô σ π ˆπ χ P ˆP A(a) TP χ π TO σ π T ˆP T Ô ˆπ Â(a) ˆπ Every Cartan morphism χ = (x, f ) takes the form x(p) = π (π(p)), f i (p) = π (π (A(Z i )(p))) Simple test for equivalence of (π : P O, A) and (ˆπ : ˆP Ô, Â). Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32 TM

73 Outline 1 Introduction 2 Cartan geometry on observer space 3 Finsler spacetimes 4 From Finsler geometry to Cartan geometry 5 From Cartan geometry to Finsler geometry 6 Closing the circle 7 Finsler-Cartan-Gravity 8 Conclusion Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

74 Gravity from Cartan to Finsler MacDowell-Mansouri gravity on observer space: [S. Gielen, D. Wise 12] S G = ɛ αβγ tr h (F h F h ) b α b β b γ O Hodge operator on h. Non-degenerate H-invariant inner product tr h on h. Boost part b Ω 1 (P, y) of the Cartan connection. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

75 Gravity from Cartan to Finsler MacDowell-Mansouri gravity on observer space: [S. Gielen, D. Wise 12] S G = ɛ αβγ tr h (F h F h ) b α b β b γ O Hodge operator on h. Non-degenerate H-invariant inner product tr h on h. Boost part b Ω 1 (P, y) of the Cartan connection. Translate terms into Finsler language (with R = dω [ω, ω]): Curvature scalar: Cosmological constant: Gauss-Bonnet term: [e, e] R g F ab R c acb dv. [e, e] [e, e] dv. R R ɛ abcd ɛ efgh R abef R cdgh dv. Gravity theory on Finsler spacetime. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

76 Gravity from Finsler to Cartan Finsler gravity action: [C. Pfeifer, M. Wohlfarth 11] S G = O Sasaki metric G on O. Non-linear curvature R a ab. d 4 x d 3 y GR a aby b. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

77 Gravity from Finsler to Cartan Finsler gravity action: [C. Pfeifer, M. Wohlfarth 11] S G = O Sasaki metric G on O. Non-linear curvature R a ab. d 4 x d 3 y GR a aby b. Translate terms into Cartan language: d 4 x d 3 y G = ɛ ijkl ɛ αβγ e i e j e k e l b α b β b γ, R a aby b = b α [A(Z α ), A(Z 0 )]. Gravity theory on observer space. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

78 Outline 1 Introduction 2 Cartan geometry on observer space 3 Finsler spacetimes 4 From Finsler geometry to Cartan geometry 5 From Cartan geometry to Finsler geometry 6 Closing the circle 7 Finsler-Cartan-Gravity 8 Conclusion Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

79 Summary Observer space: Lift physics from spacetime to the space of observers. Describe observer space geometry using Cartan geometry. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

80 Summary Observer space: Lift physics from spacetime to the space of observers. Describe observer space geometry using Cartan geometry. Finsler spacetime: Based on generalized length functional. Finsler metric is observer dependent. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

81 Summary Observer space: Lift physics from spacetime to the space of observers. Describe observer space geometry using Cartan geometry. Finsler spacetime: Based on generalized length functional. Finsler metric is observer dependent. From Finsler to Cartan: Cartan geometry on observer space derived from Finsler geometry. Connection calculated from Cartan linear connection. Parallely transported observer frames given by the flow of time. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

82 Summary Observer space: Lift physics from spacetime to the space of observers. Describe observer space geometry using Cartan geometry. Finsler spacetime: Based on generalized length functional. Finsler metric is observer dependent. From Finsler to Cartan: Cartan geometry on observer space derived from Finsler geometry. Connection calculated from Cartan linear connection. Parallely transported observer frames given by the flow of time. From Cartan to Finsler: Spacetime can (sometimes) be constructed from Cartan geometry. Observer dependent Finsler metric from Cartan connection. Observers have timelike four-velocities in TM. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

83 Summary Observer space: Lift physics from spacetime to the space of observers. Describe observer space geometry using Cartan geometry. Finsler spacetime: Based on generalized length functional. Finsler metric is observer dependent. From Finsler to Cartan: Cartan geometry on observer space derived from Finsler geometry. Connection calculated from Cartan linear connection. Parallely transported observer frames given by the flow of time. From Cartan to Finsler: Spacetime can (sometimes) be constructed from Cartan geometry. Observer dependent Finsler metric from Cartan connection. Observers have timelike four-velocities in TM. Both constructions complement each other. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

84 Summary Observer space: Lift physics from spacetime to the space of observers. Describe observer space geometry using Cartan geometry. Finsler spacetime: Based on generalized length functional. Finsler metric is observer dependent. From Finsler to Cartan: Cartan geometry on observer space derived from Finsler geometry. Connection calculated from Cartan linear connection. Parallely transported observer frames given by the flow of time. From Cartan to Finsler: Spacetime can (sometimes) be constructed from Cartan geometry. Observer dependent Finsler metric from Cartan connection. Observers have timelike four-velocities in TM. Both constructions complement each other. Gravity: MacDowell-Mansouri gravity from Cartan to Finsler. Finsler gravity from Finsler to Cartan. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

85 Outlook Current projects: Finsler-Cartan electrodynamics. Derive gravitational equations of motion. Translate more terms between both languages. Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

86 Outlook Current projects: Finsler-Cartan electrodynamics. Derive gravitational equations of motion. Translate more terms between both languages. Future projects: Consistent matter coupling. Study of exact solutions. Effects of deviations from metric geometry? Geometrodynamics of Finsler spacetimes.... Manuel Hohmann (Tartu Ülikool) Finsler vs. Cartan 15. November / 32

Extensions of Lorentzian spacetime geometry

Extensions of Lorentzian spacetime geometry Extensions of Lorentzian spacetime geometry From Finsler to Cartan and vice versa Manuel Hohmann Teoreetilise Füüsika Labor Füüsika Instituut Tartu Ülikool 13. November 2013 Manuel Hohmann (Tartu Ülikool)

More information

Vooludünaamika laiendatud geomeetrias

Vooludünaamika laiendatud geomeetrias Vooludünaamika laiendatud geomeetrias Manuel Hohmann Teoreetilise Füüsika Labor Füüsika Instituut Tartu Ülikool 28. oktoober 2014 Manuel Hohmann (Tartu Ülikool) Vooludünaamika 28. oktoober 2014 1 / 25

More information

Observer dependent background geometries arxiv:

Observer dependent background geometries arxiv: Observer dependent background geometries arxiv:1403.4005 Manuel Hohmann Laboratory of Theoretical Physics Physics Institute University of Tartu DPG-Tagung Berlin Session MP 4 18. März 2014 Manuel Hohmann

More information

Lifting General Relativity to Observer Space

Lifting General Relativity to Observer Space Lifting General Relativity to Observer Space Derek Wise Institute for Quantum Gravity University of Erlangen Work with Steffen Gielen: 1111.7195 1206.0658 1210.0019 International Loop Quantum Gravity Seminar

More information

The Erlangen Program and General Relativity

The Erlangen Program and General Relativity The Erlangen Program and General Relativity Derek K. Wise University of Erlangen Department of Mathematics & Institute for Quantum Gravity Colloquium, Utah State University January 2014 What is geometry?

More information

Holographic Special Relativity:

Holographic Special Relativity: Holographic Special Relativity: Observer Space from Conformal Geometry Derek K. Wise University of Erlangen Based on 1305.3258 International Loop Quantum Gravity Seminar 15 October 2013 1 Holographic special

More information

Cartan Geometrodynamics

Cartan Geometrodynamics Cartan Geometrodynamics Derek Wise (joint work with Steffen Gielen) Universität Erlangen Nürnberg 27 February 2012 Geometrodynamics GR as evolving spatial geometry, rather than spacetime geometry. As Wheeler

More information

arxiv: v1 [gr-qc] 22 Aug 2014

arxiv: v1 [gr-qc] 22 Aug 2014 Radar orthogonality and radar length in Finsler and metric spacetime geometry Christian Pfeifer Institute for Theoretical Physics, Universität Hannover, Appelstrasse 2, 30167 Hannover, Germany arxiv:1408.5306v1

More information

Multimetric cosmology and structure formation

Multimetric cosmology and structure formation Multimetric cosmology and structure formation Manuel Hohmann Teoreetilise füüsika labor Füüsikainstituut Tartu Ülikool 3. oktoober 2012 Manuel Hohmann (Tartu Ülikool) Multimetric gravity 3. oktoober 2012

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

Gravitation: Tensor Calculus

Gravitation: Tensor Calculus An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

Connection Variables in General Relativity

Connection Variables in General Relativity Connection Variables in General Relativity Mauricio Bustamante Londoño Instituto de Matemáticas UNAM Morelia 28/06/2008 Mauricio Bustamante Londoño (UNAM) Connection Variables in General Relativity 28/06/2008

More information

Integration of non linear conservation laws?

Integration of non linear conservation laws? Integration of non linear conservation laws? Frédéric Hélein, Institut Mathématique de Jussieu, Paris 7 Advances in Surface Theory, Leicester, June 13, 2013 Harmonic maps Let (M, g) be an oriented Riemannian

More information

Solvable Lie groups and the shear construction

Solvable Lie groups and the shear construction Solvable Lie groups and the shear construction Marco Freibert jt. with Andrew Swann Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel 19.05.2016 1 Swann s twist 2 The shear construction The

More information

Aspects of multimetric gravity

Aspects of multimetric gravity Aspects of multimetric gravity Manuel Hohmann Teoreetilise füüsika labor Füüsikainstituut Tartu Ülikool 4. september 2012 Manuel Hohmann (Tartu Ülikool) Multimetric gravity 4. september 2012 1 / 32 Outline

More information

The generally covariant locality principle and an extension to gauge symmetries

The generally covariant locality principle and an extension to gauge symmetries The generally covariant locality principle and an extension to gauge symmetries Jochen Zahn Universität Wien Seminar Mathematische Physik, November 2012 Outline We review the framework of locally covariant

More information

An introduction to General Relativity and the positive mass theorem

An introduction to General Relativity and the positive mass theorem An introduction to General Relativity and the positive mass theorem National Center for Theoretical Sciences, Mathematics Division March 2 nd, 2007 Wen-ling Huang Department of Mathematics University of

More information

Chapter 7 Curved Spacetime and General Covariance

Chapter 7 Curved Spacetime and General Covariance Chapter 7 Curved Spacetime and General Covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 145 146 CHAPTER 7. CURVED SPACETIME

More information

Einstein Toolkit Workshop. Joshua Faber Apr

Einstein Toolkit Workshop. Joshua Faber Apr Einstein Toolkit Workshop Joshua Faber Apr 05 2012 Outline Space, time, and special relativity The metric tensor and geometry Curvature Geodesics Einstein s equations The Stress-energy tensor 3+1 formalisms

More information

t, H = 0, E = H E = 4πρ, H df = 0, δf = 4πJ.

t, H = 0, E = H E = 4πρ, H df = 0, δf = 4πJ. Lecture 3 Cohomologies, curvatures Maxwell equations The Maxwell equations for electromagnetic fields are expressed as E = H t, H = 0, E = 4πρ, H E t = 4π j. These equations can be simplified if we use

More information

Relativistic Mechanics

Relativistic Mechanics Physics 411 Lecture 9 Relativistic Mechanics Lecture 9 Physics 411 Classical Mechanics II September 17th, 2007 We have developed some tensor language to describe familiar physics we reviewed orbital motion

More information

Curved Spacetime I. Dr. Naylor

Curved Spacetime I. Dr. Naylor Curved Spacetime I Dr. Naylor Last Week Einstein's principle of equivalence We discussed how in the frame of reference of a freely falling object we can construct a locally inertial frame (LIF) Space tells

More information

Bondi mass of Einstein-Maxwell-Klein-Gordon spacetimes

Bondi mass of Einstein-Maxwell-Klein-Gordon spacetimes of of Institute of Theoretical Physics, Charles University in Prague April 28th, 2014 scholtz@troja.mff.cuni.cz 1 / 45 Outline of 1 2 3 4 5 2 / 45 Energy-momentum in special Lie algebra of the Killing

More information

A brief introduction to modified theories of gravity

A brief introduction to modified theories of gravity (Vinc)Enzo Vitagliano CENTRA, Lisboa May, 14th 2015 IV Amazonian Workshop on Black Holes and Analogue Models of Gravity Belém do Pará The General Theory of Relativity dynamics of the Universe behavior

More information

Manifestly diffeomorphism invariant classical Exact Renormalization Group

Manifestly diffeomorphism invariant classical Exact Renormalization Group Manifestly diffeomorphism invariant classical Exact Renormalization Group Anthony W. H. Preston University of Southampton Supervised by Prof. Tim R. Morris Talk prepared for Asymptotic Safety seminar,

More information

Symmetry protected entanglement between gravity and matter

Symmetry protected entanglement between gravity and matter Symmetry protected entanglement between gravity and matter Nikola Paunković SQIG Security and Quantum Information Group, IT Departamento de Matemática, IST in collaboration with Marko Vojinović GPF Group

More information

Curved spacetime and general covariance

Curved spacetime and general covariance Chapter 7 Curved spacetime and general covariance In this chapter we generalize the discussion of preceding chapters to extend covariance to more general curved spacetimes. 219 220 CHAPTER 7. CURVED SPACETIME

More information

Comparison for infinitesimal automorphisms. of parabolic geometries

Comparison for infinitesimal automorphisms. of parabolic geometries Comparison techniques for infinitesimal automorphisms of parabolic geometries University of Vienna Faculty of Mathematics Srni, January 2012 This talk reports on joint work in progress with Karin Melnick

More information

arxiv: v1 [gr-qc] 11 Sep 2014

arxiv: v1 [gr-qc] 11 Sep 2014 Frascati Physics Series Vol. 58 (2014) Frontier Objects in Astrophysics and Particle Physics May 18-24, 2014 arxiv:1409.3370v1 [gr-qc] 11 Sep 2014 OPEN PROBLEMS IN GRAVITATIONAL PHYSICS S. Capozziello

More information

ESSENTIAL KILLING FIELDS OF PARABOLIC GEOMETRIES: PROJECTIVE AND CONFORMAL STRUCTURES. 1. Introduction

ESSENTIAL KILLING FIELDS OF PARABOLIC GEOMETRIES: PROJECTIVE AND CONFORMAL STRUCTURES. 1. Introduction ESSENTIAL KILLING FIELDS OF PARABOLIC GEOMETRIES: PROJECTIVE AND CONFORMAL STRUCTURES ANDREAS ČAP AND KARIN MELNICK Abstract. We use the general theory developed in our article [1] in the setting of parabolic

More information

MacDowell Mansouri Gravity and Cartan Geometry

MacDowell Mansouri Gravity and Cartan Geometry MacDowell Mansouri Gravity and Cartan Geometry arxiv:gr-qc/0611154 v1 30 Nov 2006 Derek K. Wise Department of Mathematics University of California Riverside, CA 92521, USA email: derek@math.ucr.edu November

More information

Holography and Unitarity in Gravitational Physics

Holography and Unitarity in Gravitational Physics Holography and Unitarity in Gravitational Physics Don Marolf 01/13/09 UCSB ILQG Seminar arxiv: 0808.2842 & 0808.2845 This talk is about: Diffeomorphism Invariance and observables in quantum gravity The

More information

Approaches to Quantum Gravity A conceptual overview

Approaches to Quantum Gravity A conceptual overview Approaches to Quantum Gravity A conceptual overview Robert Oeckl Instituto de Matemáticas UNAM, Morelia Centro de Radioastronomía y Astrofísica UNAM, Morelia 14 February 2008 Outline 1 Introduction 2 Different

More information

Geometry of SpaceTime Einstein Theory. of Gravity II. Max Camenzind CB Oct-2010-D7

Geometry of SpaceTime Einstein Theory. of Gravity II. Max Camenzind CB Oct-2010-D7 Geometry of SpaceTime Einstein Theory of Gravity II Max Camenzind CB Oct-2010-D7 Textbooks on General Relativity Geometry of SpaceTime II Connection and curvature on manifolds. Sectional Curvature. Geodetic

More information

Reduction of Homogeneous Riemannian structures

Reduction of Homogeneous Riemannian structures Geometric Structures in Mathematical Physics, 2011 Reduction of Homogeneous Riemannian structures M. Castrillón López 1 Ignacio Luján 2 1 ICMAT (CSIC-UAM-UC3M-UCM) Universidad Complutense de Madrid 2 Universidad

More information

Black Holes and Thermodynamics I: Classical Black Holes

Black Holes and Thermodynamics I: Classical Black Holes Black Holes and Thermodynamics I: Classical Black Holes Robert M. Wald General references: R.M. Wald General Relativity University of Chicago Press (Chicago, 1984); R.M. Wald Living Rev. Rel. 4, 6 (2001).

More information

Causal RG equation for Quantum Einstein Gravity

Causal RG equation for Quantum Einstein Gravity Causal RG equation for Quantum Einstein Gravity Stefan Rechenberger Uni Mainz 14.03.2011 arxiv:1102.5012v1 [hep-th] with Elisa Manrique and Frank Saueressig Stefan Rechenberger (Uni Mainz) Causal RGE for

More information

1. Geometry of the unit tangent bundle

1. Geometry of the unit tangent bundle 1 1. Geometry of the unit tangent bundle The main reference for this section is [8]. In the following, we consider (M, g) an n-dimensional smooth manifold endowed with a Riemannian metric g. 1.1. Notations

More information

Gravity as Machian Shape Dynamics

Gravity as Machian Shape Dynamics Gravity as Machian Shape Dynamics Julian Barbour Alternative Title: Was Spacetime a Glorious Historical Accident? Time will not be fused with space but emerge from the timeless shape dynamics of space.

More information

Diffeomorphism Invariant Gauge Theories

Diffeomorphism Invariant Gauge Theories Diffeomorphism Invariant Gauge Theories Kirill Krasnov (University of Nottingham) Oxford Geometry and Analysis Seminar 25 Nov 2013 Main message: There exists a large new class of gauge theories in 4 dimensions

More information

Conification of Kähler and hyper-kähler manifolds and supergr

Conification of Kähler and hyper-kähler manifolds and supergr Conification of Kähler and hyper-kähler manifolds and supergravity c-map Masaryk University, Brno, Czech Republic and Institute for Information Transmission Problems, Moscow, Russia Villasimius, September

More information

Gauge Theory of Gravitation: Electro-Gravity Mixing

Gauge Theory of Gravitation: Electro-Gravity Mixing Gauge Theory of Gravitation: Electro-Gravity Mixing E. Sánchez-Sastre 1,2, V. Aldaya 1,3 1 Instituto de Astrofisica de Andalucía, Granada, Spain 2 Email: sastre@iaa.es, es-sastre@hotmail.com 3 Email: valdaya@iaa.es

More information

UNIVERSITY OF DUBLIN

UNIVERSITY OF DUBLIN UNIVERSITY OF DUBLIN TRINITY COLLEGE JS & SS Mathematics SS Theoretical Physics SS TSM Mathematics Faculty of Engineering, Mathematics and Science school of mathematics Trinity Term 2015 Module MA3429

More information

Minkowski spacetime. Pham A. Quang. Abstract: In this talk we review the Minkowski spacetime which is the spacetime of Special Relativity.

Minkowski spacetime. Pham A. Quang. Abstract: In this talk we review the Minkowski spacetime which is the spacetime of Special Relativity. Minkowski spacetime Pham A. Quang Abstract: In this talk we review the Minkowski spacetime which is the spacetime of Special Relativity. Contents 1 Introduction 1 2 Minkowski spacetime 2 3 Lorentz transformations

More information

String Theory and Nonrelativistic Gravity

String Theory and Nonrelativistic Gravity String Theory and Nonrelativistic Gravity Eric Bergshoeff Groningen University work done in collaboration with Ceyda Şimşek, Jaume Gomis, Kevin Grosvenor and Ziqi Yan A topical conference on elementary

More information

Quantum Field Theory Notes. Ryan D. Reece

Quantum Field Theory Notes. Ryan D. Reece Quantum Field Theory Notes Ryan D. Reece November 27, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation

More information

Quantising Gravitational Instantons

Quantising Gravitational Instantons Quantising Gravitational Instantons Kirill Krasnov (Nottingham) GARYFEST: Gravitation, Solitons and Symmetries MARCH 22, 2017 - MARCH 24, 2017 Laboratoire de Mathématiques et Physique Théorique Tours This

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 3 August, 2012 Einstein equations (vacuum) The spacetime is a four dimensional manifold M with

More information

Towards a manifestly diffeomorphism invariant Exact Renormalization Group

Towards a manifestly diffeomorphism invariant Exact Renormalization Group Towards a manifestly diffeomorphism invariant Exact Renormalization Group Anthony W. H. Preston University of Southampton Supervised by Prof. Tim R. Morris Talk prepared for UK QFT-V, University of Nottingham,

More information

Constrained BF theory as gravity

Constrained BF theory as gravity Constrained BF theory as gravity (Remigiusz Durka) XXIX Max Born Symposium (June 2010) 1 / 23 Content of the talk 1 MacDowell-Mansouri gravity 2 BF theory reformulation 3 Supergravity 4 Canonical analysis

More information

Introduction to General Relativity

Introduction to General Relativity Introduction to General Relativity Lectures by Igor Pesando Slides by Pietro Fré Virgo Site May 22nd 2006 The issue of reference frames Since oldest and observers antiquity the Who is at motion? The Sun

More information

Connections and geodesics in the space of metrics The exponential parametrization from a geometric perspective

Connections and geodesics in the space of metrics The exponential parametrization from a geometric perspective Connections and geodesics in the space of metrics The exponential parametrization from a geometric perspective Andreas Nink Institute of Physics University of Mainz September 21, 2015 Based on: M. Demmel

More information

Math 426H (Differential Geometry) Final Exam April 24, 2006.

Math 426H (Differential Geometry) Final Exam April 24, 2006. Math 426H Differential Geometry Final Exam April 24, 6. 8 8 8 6 1. Let M be a surface and let : [0, 1] M be a smooth loop. Let φ be a 1-form on M. a Suppose φ is exact i.e. φ = df for some f : M R. Show

More information

WICK ROTATIONS AND HOLOMORPHIC RIEMANNIAN GEOMETRY

WICK ROTATIONS AND HOLOMORPHIC RIEMANNIAN GEOMETRY WICK ROTATIONS AND HOLOMORPHIC RIEMANNIAN GEOMETRY Geometry and Lie Theory, Eldar Strøme 70th birthday Sigbjørn Hervik, University of Stavanger Work sponsored by the RCN! (Toppforsk-Fellesløftet) REFERENCES

More information

Classical aspects of Poincaré gauge theory of gravity

Classical aspects of Poincaré gauge theory of gravity Classical aspects of Poincaré gauge theory of gravity Jens Boos jboos@perimeterinstitute.ca Perimeter Institute for Theoretical Physics Wednesday, Nov 11, 2015 Quantum Gravity group meeting Perimeter Institute

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.81 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.81 F008 Lecture 11: CFT continued;

More information

Stability and Instability of Black Holes

Stability and Instability of Black Holes Stability and Instability of Black Holes Stefanos Aretakis September 24, 2013 General relativity is a successful theory of gravitation. Objects of study: (4-dimensional) Lorentzian manifolds (M, g) which

More information

MATH 4030 Differential Geometry Lecture Notes Part 4 last revised on December 4, Elementary tensor calculus

MATH 4030 Differential Geometry Lecture Notes Part 4 last revised on December 4, Elementary tensor calculus MATH 4030 Differential Geometry Lecture Notes Part 4 last revised on December 4, 205 Elementary tensor calculus We will study in this section some basic multilinear algebra and operations on tensors. Let

More information

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3 Syllabus May 3, 2017 Contents 1 Special relativity 1 2 Differential geometry 3 3 General Relativity 13 3.1 Physical Principles.......................................... 13 3.2 Einstein s Equation..........................................

More information

Modern Geometric Structures and Fields

Modern Geometric Structures and Fields Modern Geometric Structures and Fields S. P. Novikov I.A.TaJmanov Translated by Dmitry Chibisov Graduate Studies in Mathematics Volume 71 American Mathematical Society Providence, Rhode Island Preface

More information

Nonsingular big-bounce cosmology from spin and torsion

Nonsingular big-bounce cosmology from spin and torsion Nonsingular big-bounce cosmology from spin and torsion Nikodem J. Popławski Department of Physics, Indiana University, Bloomington, IN 22 nd Midwest Relativity Meeting University of Chicago, Chicago, IL

More information

New conformal gauging and the electromagnetic theory of Weyl

New conformal gauging and the electromagnetic theory of Weyl Utah State University DigitalCommons@USU All Physics Faculty Publications Physics 1998 New conformal gauging and the electromagnetic theory of Weyl James Thomas Wheeler Utah State University Follow this

More information

Metrics and Curvature

Metrics and Curvature Metrics and Curvature How to measure curvature? Metrics Euclidian/Minkowski Curved spaces General 4 dimensional space Cosmological principle Homogeneity and isotropy: evidence Robertson-Walker metrics

More information

CHAPTER 1 PRELIMINARIES

CHAPTER 1 PRELIMINARIES CHAPTER 1 PRELIMINARIES 1.1 Introduction The aim of this chapter is to give basic concepts, preliminary notions and some results which we shall use in the subsequent chapters of the thesis. 1.2 Differentiable

More information

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1 Assistant: Saskia Voss Sheet 1 1. Conformal change of Riemannian metrics [3 points] Let (M, g) be a Riemannian manifold. A conformal change is a nonnegative function λ : M (0, ). Such a function defines

More information

Problem 1, Lorentz transformations of electric and magnetic

Problem 1, Lorentz transformations of electric and magnetic Problem 1, Lorentz transformations of electric and magnetic fields We have that where, F µν = F µ ν = L µ µ Lν ν F µν, 0 B 3 B 2 ie 1 B 3 0 B 1 ie 2 B 2 B 1 0 ie 3 ie 2 ie 2 ie 3 0. Note that we use the

More information

16. Einstein and General Relativistic Spacetimes

16. Einstein and General Relativistic Spacetimes 16. Einstein and General Relativistic Spacetimes Problem: Special relativity does not account for the gravitational force. To include gravity... Geometricize it! Make it a feature of spacetime geometry.

More information

Elements of differential geometry

Elements of differential geometry Elements of differential geometry R.Beig (Univ. Vienna) ESI-EMS-IAMP School on Mathematical GR, 28.7. - 1.8. 2014 1. tensor algebra 2. manifolds, vector and covector fields 3. actions under diffeos and

More information

A CONSTRUCTION OF TRANSVERSE SUBMANIFOLDS

A CONSTRUCTION OF TRANSVERSE SUBMANIFOLDS UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLI 2003 A CONSTRUCTION OF TRANSVERSE SUBMANIFOLDS by J. Szenthe Abstract. In case of Riemannian manifolds isometric actions admitting submanifolds

More information

2-Group Global Symmetry

2-Group Global Symmetry 2-Group Global Symmetry Clay Córdova School of Natural Sciences Institute for Advanced Study April 14, 2018 References Based on Exploring 2-Group Global Symmetry in collaboration with Dumitrescu and Intriligator

More information

1 Hermitian symmetric spaces: examples and basic properties

1 Hermitian symmetric spaces: examples and basic properties Contents 1 Hermitian symmetric spaces: examples and basic properties 1 1.1 Almost complex manifolds............................................ 1 1.2 Hermitian manifolds................................................

More information

Exercise 1 Classical Bosonic String

Exercise 1 Classical Bosonic String Exercise 1 Classical Bosonic String 1. The Relativistic Particle The action describing a free relativistic point particle of mass m moving in a D- dimensional Minkowski spacetime is described by ) 1 S

More information

Bimetric Theory (The notion of spacetime in Bimetric Gravity)

Bimetric Theory (The notion of spacetime in Bimetric Gravity) Bimetric Theory (The notion of spacetime in Bimetric Gravity) Fawad Hassan Stockholm University, Sweden 9th Aegean Summer School on Einstein s Theory of Gravity and its Modifications Sept 18-23, 2017,

More information

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor. Übungen zu RT2 SS 2010 (1) Show that the tensor field g µν (x) = η µν is invariant under Poincaré transformations, i.e. x µ x µ = L µ νx ν + c µ, where L µ ν is a constant matrix subject to L µ ρl ν ση

More information

Causality in Gauss-Bonnet Gravity

Causality in Gauss-Bonnet Gravity Causality in Gauss-Bonnet Gravity K.I. Phys. Rev. D 90, 044037 July. 2015 Keisuke Izumi ( 泉圭介 ) (National Taiwan University, LeCosPA) -> (University of Barcelona, ICCUB) From Newton to Einstein Newton

More information

Geometry of almost-product (pseudo-)riemannian manifold. manifolds and the dynamics of the observer. Aneta Wojnar

Geometry of almost-product (pseudo-)riemannian manifold. manifolds and the dynamics of the observer. Aneta Wojnar Geometry of almost-product (pseudo-)riemannian manifolds and the dynamics of the observer University of Wrocªaw Barcelona Postgrad Encounters on Fundamental Physics, October 2012 Outline 1 Motivation 2

More information

Week 9: Einstein s field equations

Week 9: Einstein s field equations Week 9: Einstein s field equations Riemann tensor and curvature We are looking for an invariant characterisation of an manifold curved by gravity. As the discussion of normal coordinates showed, the first

More information

Moduli spaces of Type A geometries EGEO 2016 La Falda, Argentina. Peter B Gilkey

Moduli spaces of Type A geometries EGEO 2016 La Falda, Argentina. Peter B Gilkey EGEO 2016 La Falda, Argentina Mathematics Department, University of Oregon, Eugene OR USA email: gilkey@uoregon.edu a Joint work with M. Brozos-Vázquez, E. García-Río, and J.H. Park a Partially supported

More information

A loop quantum multiverse?

A loop quantum multiverse? Space-time structure p. 1 A loop quantum multiverse? Martin Bojowald The Pennsylvania State University Institute for Gravitation and the Cosmos University Park, PA arxiv:1212.5150 Space-time structure

More information

LECTURE 9: MOVING FRAMES IN THE NONHOMOGENOUS CASE: FRAME BUNDLES. 1. Introduction

LECTURE 9: MOVING FRAMES IN THE NONHOMOGENOUS CASE: FRAME BUNDLES. 1. Introduction LECTURE 9: MOVING FRAMES IN THE NONHOMOGENOUS CASE: FRAME BUNDLES 1. Introduction Until now we have been considering homogenous spaces G/H where G is a Lie group and H is a closed subgroup. The natural

More information

Differential Geometry MTG 6257 Spring 2018 Problem Set 4 Due-date: Wednesday, 4/25/18

Differential Geometry MTG 6257 Spring 2018 Problem Set 4 Due-date: Wednesday, 4/25/18 Differential Geometry MTG 6257 Spring 2018 Problem Set 4 Due-date: Wednesday, 4/25/18 Required problems (to be handed in): 2bc, 3, 5c, 5d(i). In doing any of these problems, you may assume the results

More information

Non-relativistic holography

Non-relativistic holography University of Amsterdam AdS/CMT, Imperial College, January 2011 Why non-relativistic holography? Gauge/gravity dualities have become an important new tool in extracting strong coupling physics. The best

More information

Week 1. 1 The relativistic point particle. 1.1 Classical dynamics. Reading material from the books. Zwiebach, Chapter 5 and chapter 11

Week 1. 1 The relativistic point particle. 1.1 Classical dynamics. Reading material from the books. Zwiebach, Chapter 5 and chapter 11 Week 1 1 The relativistic point particle Reading material from the books Zwiebach, Chapter 5 and chapter 11 Polchinski, Chapter 1 Becker, Becker, Schwartz, Chapter 2 1.1 Classical dynamics The first thing

More information

INTRODUCTION TO GEOMETRY

INTRODUCTION TO GEOMETRY INTRODUCTION TO GEOMETRY ERIKA DUNN-WEISS Abstract. This paper is an introduction to Riemannian and semi-riemannian manifolds of constant sectional curvature. We will introduce the concepts of moving frames,

More information

Constructive Gravity

Constructive Gravity Constructive Gravity A New Approach to Modified Gravity Theories Marcus C. Werner, Kyoto University Gravity and Cosmology 2018 YITP Long Term Workshop, 27 February 2018 Constructive gravity Standard approach

More information

Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields

Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields Chapter 16 Isometries, Local Isometries, Riemannian Coverings and Submersions, Killing Vector Fields 16.1 Isometries and Local Isometries Recall that a local isometry between two Riemannian manifolds M

More information

Purely magnetic vacuum solutions

Purely magnetic vacuum solutions Purely magnetic vacuum solutions Norbert Van den Bergh Faculty of Applied Sciences TW16, Gent University, Galglaan, 9000 Gent, Belgium 1. Introduction Using a +1 formalism based on a timelike congruence

More information

Spin(10,1)-metrics with a parallel null spinor and maximal holonomy

Spin(10,1)-metrics with a parallel null spinor and maximal holonomy Spin(10,1)-metrics with a parallel null spinor and maximal holonomy 0. Introduction. The purpose of this addendum to the earlier notes on spinors is to outline the construction of Lorentzian metrics in

More information

The existence of light-like homogeneous geodesics in homogeneous Lorentzian manifolds. Sao Paulo, 2013

The existence of light-like homogeneous geodesics in homogeneous Lorentzian manifolds. Sao Paulo, 2013 The existence of light-like homogeneous geodesics in homogeneous Lorentzian manifolds Zdeněk Dušek Sao Paulo, 2013 Motivation In a previous project, it was proved that any homogeneous affine manifold (and

More information

Loos Symmetric Cones. Jimmie Lawson Louisiana State University. July, 2018

Loos Symmetric Cones. Jimmie Lawson Louisiana State University. July, 2018 Louisiana State University July, 2018 Dedication I would like to dedicate this talk to Joachim Hilgert, whose 60th birthday we celebrate at this conference and with whom I researched and wrote a big blue

More information

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory Anisotropic Interior Solutions in and Einstein-Æther Theory CENTRA, Instituto Superior Técnico based on DV and S. Carloni, arxiv:1706.06608 [gr-qc] Gravity and Cosmology 2018 Yukawa Institute for Theoretical

More information

Spacelike surfaces with positive definite second fundamental form in 3-dimensional Lorentzian manifolds

Spacelike surfaces with positive definite second fundamental form in 3-dimensional Lorentzian manifolds Spacelike surfaces with positive definite second fundamental form in 3-dimensional Lorentzian manifolds Alfonso Romero Departamento de Geometría y Topología Universidad de Granada 18071-Granada Web: http://www.ugr.es/

More information

Entanglement and the Bekenstein-Hawking entropy

Entanglement and the Bekenstein-Hawking entropy Entanglement and the Bekenstein-Hawking entropy Eugenio Bianchi relativity.phys.lsu.edu/ilqgs International Loop Quantum Gravity Seminar Black hole entropy Bekenstein-Hawking 1974 Process: matter falling

More information

SPACETIME FROM ENTANGLEMENT - journal club notes -

SPACETIME FROM ENTANGLEMENT - journal club notes - SPACETIME FROM ENTANGLEMENT - journal club notes - Chris Heinrich 1 Outline 1. Introduction Big picture: Want a quantum theory of gravity Best understanding of quantum gravity so far arises through AdS/CFT

More information

Lecture: Lorentz Invariant Dynamics

Lecture: Lorentz Invariant Dynamics Chapter 5 Lecture: Lorentz Invariant Dynamics In the preceding chapter we introduced the Minkowski metric and covariance with respect to Lorentz transformations between inertial systems. This was shown

More information

Euler Characteristic of Two-Dimensional Manifolds

Euler Characteristic of Two-Dimensional Manifolds Euler Characteristic of Two-Dimensional Manifolds M. Hafiz Khusyairi August 2008 In this work we will discuss an important notion from topology, namely Euler Characteristic and we will discuss several

More information

A Schrödinger approach to Newton-Cartan gravity. Miami 2015

A Schrödinger approach to Newton-Cartan gravity. Miami 2015 A Schrödinger approach to Newton-Cartan gravity Eric Bergshoeff Groningen University Miami 2015 A topical conference on elementary particles, astrophysics, and cosmology Fort Lauderdale, December 21 2015

More information

Aspects of Spontaneous Lorentz Violation

Aspects of Spontaneous Lorentz Violation Aspects of Spontaneous Lorentz Violation Robert Bluhm Colby College IUCSS School on CPT & Lorentz Violating SME, Indiana University, June 2012 Outline: I. Review & Motivations II. Spontaneous Lorentz Violation

More information

8 Symmetries and the Hamiltonian

8 Symmetries and the Hamiltonian 8 Symmetries and the Hamiltonian Throughout the discussion of black hole thermodynamics, we have always assumed energy = M. Now we will introduce the Hamiltonian formulation of GR and show how to define

More information

Lorentzian Geometry from Discrete Causal Structure

Lorentzian Geometry from Discrete Causal Structure Lorentzian Geometry from Discrete Causal Structure Sumati Surya Raman Research Institute FTAG Sept 2013 (RRI) March 2013 1 / 25 Outline An Introduction to the Causal Set Approach to Quantum Gravity LBombelli,

More information