Constructive Gravity

Size: px
Start display at page:

Download "Constructive Gravity"

Transcription

1 Constructive Gravity A New Approach to Modified Gravity Theories Marcus C. Werner, Kyoto University Gravity and Cosmology 2018 YITP Long Term Workshop, 27 February 2018

2 Constructive gravity Standard approach to modified gravity: E ective field theory approach: stipulate a modification of the Einstein-Hilbert action.! What about the well-posedness of the initial value problem i.e. predictivity? New approach discussed here: Fundamental approach: derive gravity action such that the theory is predictive. How to implement predictivity on general (e.g. non-metric) backgrounds? How to construct dynamics from kinematics?! Constructive gravity program [Cf. Hojman, Kuchař & Teitelboim (1976); Rätzel, Rivera & Schuller (2011); Giesel, Schuller, Witte & Wohlfarth (2012); Düll, Schuller, Stritzelberger & Wolz (2017); Schuller & Werner (2017)]

3 Generalized spacetime Consider a smooth manifold M with chart (U, x) and some smooth tensor fields G for geometry and F for matter, of arbitrary order. Spacetime geometry is probed by test matter, with linear field equations. The most general such test matter field PDE in (U, x) is " kx d=1 D Aµ 1...µ d B µ F d A =0, with some multi-index A, and highest derivative order k, assumed to be finite. ( )

4 ... Principal polynomial The (reduced) principal polynomial of ( ) isp : T M! R, h i P / det D Aµ 1...µ k B (x)p 1...p µk = P 1... deg P p 1...p deg P, with totally symmetric principal polynomial tensor P 1... deg P. Note: although ( ) was written in a chart, P is indeed tensorial. Then the (generalized) null cone is {p 2 T x M : P(p) =0}. e. g. forquarticp, a product oftwocones in cotangent space ( cf. birefringence )

5 . Cauchy problem We are interested in causal kinematics of the generalized spacetime (M, G, F ), which is determined by the Cauchy problem. Given ( ) and initial data, the Cauchy problem is well-posed if ( ) has a unique solution in U which depends continuously on the initial data. Then necessarily ()), P is hyperbolic: 9 h 6= 0suchthat8 p : P(p + fh) =0, only for f real. FEE MM in timelikecoedos ) fforquartic ( C f. metric : >.. hyperbdicitycone 4 real roots h hyperbolic geometry p

6 Dual polynomial So far, only covectors (momenta) have been considered. However, for predictivity, we also need time-orientation and hence dual vectors (trajectories). It turns out that: If P is hyperbolic, then the dual polynomial P ] : TM! R exists, via the Gauss map p 7! N with P(p) =0, P ] (N) = 0. Note: hyperbolicity of P does not imply hyperbolicity of P ]. Now introduce a time-orientation vector field T 2 TM over U. Denoting a null vector field by N, P ] (N) = 0, then any vector field X can be decomposed as X = N + tt, for some t : U! R.

7 Bihyperbolicity Thus, we obtain 8 X : 0 = P ] (N) =P ] (X tt ), t real, in other words, a hyperbolicity condition for P ]! Hence, a predictive kinematics for (M, G, F )impliesthat P be hyperbolic for causality; then also P ] exists; P ] be hyperbolic as well, for time-orientation. This is called bihyperbolicity. Note: this yields an energy-distinguishing property for observers, that is, p(t ) > 0orp(T ) < 0 8 hyperbolic T,anda unique Legendre map L : T M! TM ( pulling indices ).

8 From kinematics to dynamics Consider a hypersurface embedded in spacetime, :,! M, with 3 tangent (spacetime) vectors e i = µ. The conormal n, satisfyingn(e i ) = 0, with normalization P(n) =1 gives rise to a unique hypersurface normal vector field T = L (n). Thus, one obtains a frame field {T, e 1, e 2, e 3 }. Now writing hypersurface deformations with lapse N and shift N = N i µ = N T µ + N i e µ i, yields a generalized ADM-split.

9 Deformation algebra Now introducing normal and tangential deformation operators, Z Z H (N )= d 3 x N T µ, D(N )= d 3 x N i e µ µ i, µ {z } {z } Hˆ ˆD i the change of a tensor field is F [ ]=(H (N )+D(N ))F [ ]. The spacetime kinematics is defined by the deformation algebra, [D(N ), D(N 0 )] = D( N N 0 ) [D(N ), H (N )] = H ( N N ) [H (N ), H (N 0 )] = D((deg P 1)P ij (N j N N@ j N 0 )@ i ), where P ij is constructed from the principal polynomial tensor.

10 Canonical dynamics for G Hypersurface deformation changes G according to Z G A = d 3 x N H ˆ + N i ˆDi G A = N K A + N,i M Ai + N G A. Passing to canonical variables (G, ), the dynamics G = {G, H}, = {, H} is obtained from an action of the form Z S[G,,N, N i ]= Z with H = R Z dt d 3 x d 3 x G A A N Ĥ + N i ˆD i, H, Ĥ is called superhamiltonian, and ˆD is called supermomentum.

11 Dynamical evolution algebra Now we stipulate that this dynamical hypersurface evolution coincide with the above hypersurface deformation, that is, H G = {G, Ĥ}, D i G = {G, ˆD i }. These are called closure conditions. Hence,the kinematical deformation algebra gives rise to a dynamical evolution algebra, {D(N ), D(N 0 )} = D( N N 0 ) {D(N ), H(N )} = H( N N ) {H(N ), H(N )} = D((deg P 1)P ij (N j N N@ j N 0 )@ i ). Solving these equations would yield the gravitational dynamics.! This is actually possible!

12 Supermomentum and superhamiltonian The supermomentum obeys a subalgebra and is found explicitly, Z ˆD(N )= d 3 x A ( N G) A. The non-local superhamiltonian part is Ĥ non loc i (M Ai A ), leaving the local part Ĥ loc such that overall Ĥ[G, ]=Ĥ loc [G, ) + Ĥ non loc [G, ]. It defines a canonical velocity of G, K A A, and a Lagrangian with A L[G, K) = A K A Ĥ loc, as required.

13 The closure equations Thus one obtains a functional di erential equation for the gravity Lagrangian L[G, K) from the evolution algebra and the closure conditions. This can be converted to a set of partial di erential equations, called the closure equations, with the ansatz L[G, K) = 1X C[G] A1...A k K A 1...K A k. k=0 For general G, the result is an infinite set of linear, homogeneous PDEs whose solution, if it exists, is L. Hence, predictive gravitational dynamics can be derived from the underlying spacetime kinematics.

14 General relativity and beyond One of those di erential construction equations for the C[G] A1...A k of the gravity Lagrangian reads + A M G j Now suppose that G = g, alorentzianmetric,thenm Ai =0and C can depend on at most second order derivatives of the metric. The full analysis yields C = 1 2applep g(r 2 ) with integration constants apple and, i.e. GR! Cf. also Lovelock s theorem. Applying this formalism to non-metric spacetime kinematics yields gravitational dynamics beyond GR. First results obtained for area metric geometry.

15 Conclusions and outlook Predictive spacetime kinematics can be implemented mathematically with bihyperbolicity in general. The constructive gravity approach allows the derivation of gravitational dynamics from bihyperbolic kinematics. Application to non-metric kinematics yields dynamics beyond GR: the first derived, predictive modified gravity theories. There will be a Constructive Gravity parallel session at the upcoming Marcel Grossmann meeting in Rome in July.

JGRG 26 Conference, Osaka, Japan 24 October Frederic P. Schuller. Constructive gravity. Institute for Quantum Gravity Erlangen, Germany

JGRG 26 Conference, Osaka, Japan 24 October Frederic P. Schuller. Constructive gravity. Institute for Quantum Gravity Erlangen, Germany JGRG 26 Conference, Osaka, Japan 24 October 2016 Constructive gravity Frederic P. Schuller Institute for Quantum Gravity Erlangen, Germany S matter ) S gravity JGRG 26 Conference, Osaka, Japan 24 October

More information

Lecture II: Hamiltonian formulation of general relativity

Lecture II: Hamiltonian formulation of general relativity Lecture II: Hamiltonian formulation of general relativity (Courses in canonical gravity) Yaser Tavakoli December 16, 2014 1 Space-time foliation The Hamiltonian formulation of ordinary mechanics is given

More information

Connection Variables in General Relativity

Connection Variables in General Relativity Connection Variables in General Relativity Mauricio Bustamante Londoño Instituto de Matemáticas UNAM Morelia 28/06/2008 Mauricio Bustamante Londoño (UNAM) Connection Variables in General Relativity 28/06/2008

More information

Causality, hyperbolicity, and shock formation in Lovelock theories

Causality, hyperbolicity, and shock formation in Lovelock theories Causality, hyperbolicity, and shock formation in Lovelock theories Harvey Reall DAMTP, Cambridge University HSR, N. Tanahashi and B. Way, arxiv:1406.3379, 1409.3874 G. Papallo, HSR arxiv:1508.05303 Lovelock

More information

Tensorial spacetime geometries carrying predictive, interpretable and quantizable matter dynamics

Tensorial spacetime geometries carrying predictive, interpretable and quantizable matter dynamics Max-Planck-Institut für Gravitationsphysik Dr Frederic P Schuller Institut für Physik und Astronomie Prof Dr Martin Wilkens Tensorial spacetime geometries carrying predictive, interpretable and quantizable

More information

Bimetric Theory (The notion of spacetime in Bimetric Gravity)

Bimetric Theory (The notion of spacetime in Bimetric Gravity) Bimetric Theory (The notion of spacetime in Bimetric Gravity) Fawad Hassan Stockholm University, Sweden 9th Aegean Summer School on Einstein s Theory of Gravity and its Modifications Sept 18-23, 2017,

More information

Observer dependent background geometries arxiv:

Observer dependent background geometries arxiv: Observer dependent background geometries arxiv:1403.4005 Manuel Hohmann Laboratory of Theoretical Physics Physics Institute University of Tartu DPG-Tagung Berlin Session MP 4 18. März 2014 Manuel Hohmann

More information

A non-strictly hyperbolic system for the Einstein equations with arbitrary lapse and shift

A non-strictly hyperbolic system for the Einstein equations with arbitrary lapse and shift IFP-UNC-518 TAR-UNC-054 gr-qc/9607006 A non-strictly hyperbolic system for the Einstein equations with arbitrary lapse and shift Andrew Abrahams, Arlen Anderson, Yvonne Choquet-Bruhat[*] and James W. York,

More information

Approaches to Quantum Gravity A conceptual overview

Approaches to Quantum Gravity A conceptual overview Approaches to Quantum Gravity A conceptual overview Robert Oeckl Instituto de Matemáticas UNAM, Morelia Centro de Radioastronomía y Astrofísica UNAM, Morelia 14 February 2008 Outline 1 Introduction 2 Different

More information

8 Symmetries and the Hamiltonian

8 Symmetries and the Hamiltonian 8 Symmetries and the Hamiltonian Throughout the discussion of black hole thermodynamics, we have always assumed energy = M. Now we will introduce the Hamiltonian formulation of GR and show how to define

More information

Tensorial spacetime geometries and background-independent quantum field theory

Tensorial spacetime geometries and background-independent quantum field theory Max-Planck-Institut für Gravitationsphysik Dr. Frederic P. Schuller Institut für Physik und Astronomie der Universität Potsdam Prof. Dr. Martin Wilkens Tensorial spacetime geometries and background-independent

More information

Canonical Cosmological Perturbation Theory using Geometrical Clocks

Canonical Cosmological Perturbation Theory using Geometrical Clocks Canonical Cosmological Perturbation Theory using Geometrical Clocks joint work with Adrian Herzog, Param Singh arxiv: 1712.09878 and arxiv:1801.09630 International Loop Quantum Gravity Seminar 17.04.2018

More information

Lifting General Relativity to Observer Space

Lifting General Relativity to Observer Space Lifting General Relativity to Observer Space Derek Wise Institute for Quantum Gravity University of Erlangen Work with Steffen Gielen: 1111.7195 1206.0658 1210.0019 International Loop Quantum Gravity Seminar

More information

Gravity actions from matter actions

Gravity actions from matter actions Gravity actions from matter actions Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Physik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät

More information

Causality in Gauss-Bonnet Gravity

Causality in Gauss-Bonnet Gravity Causality in Gauss-Bonnet Gravity K.I. Phys. Rev. D 90, 044037 July. 2015 Keisuke Izumi ( 泉圭介 ) (National Taiwan University, LeCosPA) -> (University of Barcelona, ICCUB) From Newton to Einstein Newton

More information

Extensions of Lorentzian spacetime geometry

Extensions of Lorentzian spacetime geometry Extensions of Lorentzian spacetime geometry From Finsler to Cartan and vice versa Manuel Hohmann Teoreetilise Füüsika Labor Füüsika Instituut Tartu Ülikool LQP33 Workshop 15. November 2013 Manuel Hohmann

More information

Lecture I: Constrained Hamiltonian systems

Lecture I: Constrained Hamiltonian systems Lecture I: Constrained Hamiltonian systems (Courses in canonical gravity) Yaser Tavakoli December 15, 2014 1 Introduction In canonical formulation of general relativity, geometry of space-time is given

More information

En búsqueda del mundo cuántico de la gravedad

En búsqueda del mundo cuántico de la gravedad En búsqueda del mundo cuántico de la gravedad Escuela de Verano 2015 Gustavo Niz Grupo de Gravitación y Física Matemática Grupo de Gravitación y Física Matemática Hoy y Viernes Mayor información Quantum

More information

arxiv: v2 [gr-qc] 14 Mar 2012

arxiv: v2 [gr-qc] 14 Mar 2012 Gravitational dynamics for all tensorial spacetimes carrying predictive, interpretable and quantizable matter Kristina Giesel, 1 Frederic P. Schuller, 2, Christof Witte, 2 and Mattias N. R. Wohlfarth 3

More information

Generalized Harmonic Evolutions of Binary Black Hole Spacetimes

Generalized Harmonic Evolutions of Binary Black Hole Spacetimes Generalized Harmonic Evolutions of Binary Black Hole Spacetimes Lee Lindblom California Institute of Technology AMS Meeting :: New Orleans :: 7 January 2007 Lee Lindblom (Caltech) Generalized Harmonic

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

PAPER 52 GENERAL RELATIVITY

PAPER 52 GENERAL RELATIVITY MATHEMATICAL TRIPOS Part III Monday, 1 June, 2015 9:00 am to 12:00 pm PAPER 52 GENERAL RELATIVITY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

LQG, the signature-changing Poincaré algebra and spectral dimension

LQG, the signature-changing Poincaré algebra and spectral dimension LQG, the signature-changing Poincaré algebra and spectral dimension Tomasz Trześniewski Institute for Theoretical Physics, Wrocław University, Poland / Institute of Physics, Jagiellonian University, Poland

More information

An introduction to General Relativity and the positive mass theorem

An introduction to General Relativity and the positive mass theorem An introduction to General Relativity and the positive mass theorem National Center for Theoretical Sciences, Mathematics Division March 2 nd, 2007 Wen-ling Huang Department of Mathematics University of

More information

Dynamics in Stationary, Non-Globally Hyperbolic Spacetimes

Dynamics in Stationary, Non-Globally Hyperbolic Spacetimes Dynamics in Stationary, Non-Globally Hyperbolic Spacetimes (gr-qc/0310016) Enrico Fermi Institute and Department of Physics University of Chicago GR17, Dublin July 22, 2004 The Bottom Line There always

More information

QUANTUM EINSTEIN S EQUATIONS AND CONSTRAINTS ALGEBRA

QUANTUM EINSTEIN S EQUATIONS AND CONSTRAINTS ALGEBRA QUANTUM EINSTEIN S EQUATIONS AND CONSTRAINTS ALGEBRA FATIMAH SHOJAI Physics Department, Iran University of Science and Technology, P.O.Box 16765 163, Narmak, Tehran, IRAN and Institute for Studies in Theoretical

More information

Gravitation: Tensor Calculus

Gravitation: Tensor Calculus An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

Gravitational scalar-tensor theory

Gravitational scalar-tensor theory Gravitational scalar-tensor theory Atsushi NARUKO (TiTech = To-Ko-Dai) with : Daisuke Yoshida (TiTech) Shinji Mukohyama (YITP) plan of my talk 1. Introduction 2. Model 3. Generalisation 4. Summary & Discussion

More information

Null Cones to Infinity, Curvature Flux, and Bondi Mass

Null Cones to Infinity, Curvature Flux, and Bondi Mass Null Cones to Infinity, Curvature Flux, and Bondi Mass Arick Shao (joint work with Spyros Alexakis) University of Toronto May 22, 2013 Arick Shao (University of Toronto) Null Cones to Infinity May 22,

More information

view that the mathematics of quantum mechanics (in particular a positive denite scalar product) emerges only at an approximate level in a semiclassica

view that the mathematics of quantum mechanics (in particular a positive denite scalar product) emerges only at an approximate level in a semiclassica Mode decomposition and unitarity in quantum cosmology Franz Embacher Institut fur Theoretische Physik, Universitat Wien, Boltzmanngasse 5, A-090 Wien E-mail: fe@pap.univie.ac.at UWThPh-996-67 gr-qc/96055

More information

Quasi-local Mass in General Relativity

Quasi-local Mass in General Relativity Quasi-local Mass in General Relativity Shing-Tung Yau Harvard University For the 60th birthday of Gary Horowtiz U. C. Santa Barbara, May. 1, 2015 This talk is based on joint work with Po-Ning Chen and

More information

Quantum Gravity and Black Holes

Quantum Gravity and Black Holes Quantum Gravity and Black Holes Viqar Husain March 30, 2007 Outline Classical setting Quantum theory Gravitational collapse in quantum gravity Summary/Outlook Role of metrics In conventional theories the

More information

Research Article New Examples of Einstein Metrics in Dimension Four

Research Article New Examples of Einstein Metrics in Dimension Four International Mathematics and Mathematical Sciences Volume 2010, Article ID 716035, 9 pages doi:10.1155/2010/716035 Research Article New Examples of Einstein Metrics in Dimension Four Ryad Ghanam Department

More information

Einstein-Hilbert action on Connes-Landi noncommutative manifolds

Einstein-Hilbert action on Connes-Landi noncommutative manifolds Einstein-Hilbert action on Connes-Landi noncommutative manifolds Yang Liu MPIM, Bonn Analysis, Noncommutative Geometry, Operator Algebras Workshop June 2017 Motivations and History Motivation: Explore

More information

Quasi-local Mass and Momentum in General Relativity

Quasi-local Mass and Momentum in General Relativity Quasi-local Mass and Momentum in General Relativity Shing-Tung Yau Harvard University Stephen Hawking s 70th Birthday University of Cambridge, Jan. 7, 2012 I met Stephen Hawking first time in 1978 when

More information

Generalized Harmonic Coordinates Using Abigel

Generalized Harmonic Coordinates Using Abigel Outline Introduction The Abigel Code Jennifer Seiler jennifer.seiler@aei.mpg.de Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) Oberjoch, Germany 10th June 2006 Outline Introduction

More information

Umbilic cylinders in General Relativity or the very weird path of trapped photons

Umbilic cylinders in General Relativity or the very weird path of trapped photons Umbilic cylinders in General Relativity or the very weird path of trapped photons Carla Cederbaum Universität Tübingen European Women in Mathematics @ Schloss Rauischholzhausen 2015 Carla Cederbaum (Tübingen)

More information

arxiv: v1 [gr-qc] 22 Aug 2014

arxiv: v1 [gr-qc] 22 Aug 2014 Radar orthogonality and radar length in Finsler and metric spacetime geometry Christian Pfeifer Institute for Theoretical Physics, Universität Hannover, Appelstrasse 2, 30167 Hannover, Germany arxiv:1408.5306v1

More information

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory Anisotropic Interior Solutions in and Einstein-Æther Theory CENTRA, Instituto Superior Técnico based on DV and S. Carloni, arxiv:1706.06608 [gr-qc] Gravity and Cosmology 2018 Yukawa Institute for Theoretical

More information

Emergent symmetries in the Canonical Tensor Model

Emergent symmetries in the Canonical Tensor Model Emergent symmetries in the Canonical Tensor Model Naoki Sasakura Yukawa Institute for Theoretical Physics, Kyoto University Based on collaborations with Dennis Obster arxiv:1704.02113 and a paper coming

More information

Holographic Lattices

Holographic Lattices Holographic Lattices Jerome Gauntlett with Aristomenis Donos Christiana Pantelidou Holographic Lattices CFT with a deformation by an operator that breaks translation invariance Why? Translation invariance

More information

Inflation in Flatland

Inflation in Flatland Inflation in Flatland Austin Joyce Center for Theoretical Physics Columbia University Kurt Hinterbichler, AJ, Justin Khoury, 1609.09497 Theoretical advances in particle cosmology, University of Chicago,

More information

arxiv: v2 [hep-th] 5 Jan 2011

arxiv: v2 [hep-th] 5 Jan 2011 Geometry of physical dispersion relations Dennis Rätzel, Sergio Rivera, and Frederic P. Schuller Albert Einstein Institute Max Planck Institute for Gravitational Physics Am Mühlenberg 1, 14476 Golm, Germany

More information

Canonical Gravity: Spacetime Covariance, Quantization and a New Classical Identity

Canonical Gravity: Spacetime Covariance, Quantization and a New Classical Identity Canonical Gravity: Spacetime Covariance, Quantization and a New Classical Identity Madhavan Varadarajan (Raman Research Institute) Canonical Gravity: Spacetime Covariance, Quantization and a New Classical

More information

From holonomy reductions of Cartan geometries to geometric compactifications

From holonomy reductions of Cartan geometries to geometric compactifications From holonomy reductions of Cartan geometries to geometric compactifications 1 University of Vienna Faculty of Mathematics Berlin, November 11, 2016 1 supported by project P27072 N25 of the Austrian Science

More information

mult V f, where the sum ranges over prime divisor V X. We say that two divisors D 1 and D 2 are linearly equivalent, denoted by sending

mult V f, where the sum ranges over prime divisor V X. We say that two divisors D 1 and D 2 are linearly equivalent, denoted by sending 2. The canonical divisor In this section we will introduce one of the most important invariants in the birational classification of varieties. Definition 2.1. Let X be a normal quasi-projective variety

More information

Towards Discrete Exterior Calculus and Discrete Mechanics for Numerical Relativity

Towards Discrete Exterior Calculus and Discrete Mechanics for Numerical Relativity Towards Discrete Exterior Calculus and Discrete Mechanics for Numerical Relativity Melvin Leok Mathematics, University of Michigan, Ann Arbor. Joint work with Mathieu Desbrun, Anil Hirani, and Jerrold

More information

The Helically Reduced Wave Equation as a Symmetric Positive System

The Helically Reduced Wave Equation as a Symmetric Positive System Utah State University DigitalCommons@USU All Physics Faculty Publications Physics 2003 The Helically Reduced Wave Equation as a Symmetric Positive System Charles G. Torre Utah State University Follow this

More information

Inequivalence of First and Second Order Formulations in D=2 Gravity Models 1

Inequivalence of First and Second Order Formulations in D=2 Gravity Models 1 BRX TH-386 Inequivalence of First and Second Order Formulations in D=2 Gravity Models 1 S. Deser Department of Physics Brandeis University, Waltham, MA 02254, USA The usual equivalence between the Palatini

More information

Mathematical and Physical Foundations of Extended Gravity (I)

Mathematical and Physical Foundations of Extended Gravity (I) Mathematical and Physical Foundations of Extended Gravity (I) -Conceptual Aspects- Salvatore Capozziello! Università di Napoli Federico II INFN, Sez. di Napoli SIGRAV 1! Summary! Foundation: gravity and

More information

Initial-Value Problems in General Relativity

Initial-Value Problems in General Relativity Initial-Value Problems in General Relativity Michael Horbatsch March 30, 2006 1 Introduction In this paper the initial-value formulation of general relativity is reviewed. In section (2) domains of dependence,

More information

Background on c-projective geometry

Background on c-projective geometry Second Kioloa Workshop on C-projective Geometry p. 1/26 Background on c-projective geometry Michael Eastwood [ following the work of others ] Australian National University Second Kioloa Workshop on C-projective

More information

Holographic Space Time

Holographic Space Time Holographic Space Time Tom Banks (work with W.Fischler) April 1, 2015 The Key Points General Relativity as Hydrodynamics of the Area Law - Jacobson The Covariant Entropy/Holographic Principle - t Hooft,

More information

THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY

THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY SAM KAUFMAN Abstract. The (Cauchy) initial value formulation of General Relativity is developed, and the maximal vacuum Cauchy development theorem is

More information

Kadath: a spectral solver and its application to black hole spacetimes

Kadath: a spectral solver and its application to black hole spacetimes Kadath: a spectral solver and its application to black hole spacetimes Philippe Grandclément Laboratoire de l Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris F-92195 Meudon, France philippe.grandclement@obspm.fr

More information

Geometrical mechanics on algebroids

Geometrical mechanics on algebroids Geometrical mechanics on algebroids Katarzyna Grabowska, Janusz Grabowski, Paweł Urbański Mathematical Institute, Polish Academy of Sciences Department of Mathematical Methods in Physics, University of

More information

Large D Black Hole Membrane Dynamics

Large D Black Hole Membrane Dynamics Large D Black Hole Membrane Dynamics Parthajit Biswas NISER Bhubaneswar February 11, 2018 Parthajit Biswas Large D Black Hole Membrane Dynamics 1 / 26 References The talk is mainly based on S. Bhattacharyya,

More information

16. Einstein and General Relativistic Spacetimes

16. Einstein and General Relativistic Spacetimes 16. Einstein and General Relativistic Spacetimes Problem: Special relativity does not account for the gravitational force. To include gravity... Geometricize it! Make it a feature of spacetime geometry.

More information

A loop quantum multiverse?

A loop quantum multiverse? Space-time structure p. 1 A loop quantum multiverse? Martin Bojowald The Pennsylvania State University Institute for Gravitation and the Cosmos University Park, PA arxiv:1212.5150 Space-time structure

More information

Extensions of Lorentzian spacetime geometry

Extensions of Lorentzian spacetime geometry Extensions of Lorentzian spacetime geometry From Finsler to Cartan and vice versa Manuel Hohmann Teoreetilise Füüsika Labor Füüsika Instituut Tartu Ülikool 13. November 2013 Manuel Hohmann (Tartu Ülikool)

More information

General Relativity (2nd part)

General Relativity (2nd part) General Relativity (2nd part) Electromagnetism Remember Maxwell equations Conservation Electromagnetism Can collect E and B in a tensor given by And the charge density Can be constructed from and current

More information

The Causal Interpretation of Quantum Mechanics and The Singularity Problem in Quantum Cosmology

The Causal Interpretation of Quantum Mechanics and The Singularity Problem in Quantum Cosmology arxiv:gr-qc/9611028v1 11 Nov 1996 The Causal Interpretation of Quantum Mechanics and The Singularity Problem in Quantum Cosmology J. Acacio de Barros a and N. Pinto-Neto b a Departamento de Física - ICE

More information

12. Hilbert Polynomials and Bézout s Theorem

12. Hilbert Polynomials and Bézout s Theorem 12. Hilbert Polynomials and Bézout s Theorem 95 12. Hilbert Polynomials and Bézout s Theorem After our study of smooth cubic surfaces in the last chapter, let us now come back to the general theory of

More information

Internal Time Formalism for Spacetimes with Two Killing Vectors

Internal Time Formalism for Spacetimes with Two Killing Vectors Utah State University DigitalCommons@USU All Physics Faculty Publications Physics 1996 Internal Time Formalism for Spacetimes with Two Killing Vectors Joseph D. Romano University of Utah and University

More information

The Hamiltonian formulation of gauge theories

The Hamiltonian formulation of gauge theories The Hamiltonian formulation of gauge theories I [p, q] = dt p i q i H(p, q) " # q i = @H @p i =[q i, H] ṗ i = @H =[p @q i i, H] 1. Symplectic geometry, Hamilton-Jacobi theory,... 2. The first (general)

More information

Quasi-local mass and isometric embedding

Quasi-local mass and isometric embedding Quasi-local mass and isometric embedding Mu-Tao Wang, Columbia University September 23, 2015, IHP Recent Advances in Mathematical General Relativity Joint work with Po-Ning Chen and Shing-Tung Yau. The

More information

Recovering General Relativity from Hořava Theory

Recovering General Relativity from Hořava Theory Recovering General Relativity from Hořava Theory Jorge Bellorín Department of Physics, Universidad Simón Bolívar, Venezuela Quantum Gravity at the Southern Cone Sao Paulo, Sep 10-14th, 2013 In collaboration

More information

Totally umbilic null hypersurfaces in generalized Robertson-Walker spaces. 1. Introduction. Manuel Gutiérrez Benjamín Olea

Totally umbilic null hypersurfaces in generalized Robertson-Walker spaces. 1. Introduction. Manuel Gutiérrez Benjamín Olea XI Encuentro Andaluz de Geometría IMUS Universidad de Sevilla, 5 de mayo de 205, págs. 2328 Totally umbilic null hypersurfaces in generalized Robertson-Walker spaces Manuel Gutiérrez Benjamín Olea Abstract.

More information

Liouville integrability of Hamiltonian systems and spacetime symmetry

Liouville integrability of Hamiltonian systems and spacetime symmetry Seminar, Kobe U., April 22, 2015 Liouville integrability of Hamiltonian systems and spacetime symmetry Tsuyoshi Houri with D. Kubiznak (Perimeter Inst.), C. Warnick (Warwick U.) Y. Yasui (OCU Setsunan

More information

Twistors and Conformal Higher-Spin. Theory. Tristan Mc Loughlin Trinity College Dublin

Twistors and Conformal Higher-Spin. Theory. Tristan Mc Loughlin Trinity College Dublin Twistors and Conformal Higher-Spin Tristan Mc Loughlin Trinity College Dublin Theory Based on work with Philipp Hähnel & Tim Adamo 1604.08209, 1611.06200. Given the deep connections between twistors, the

More information

arxiv:gr-qc/ v4 22 Mar 2007

arxiv:gr-qc/ v4 22 Mar 2007 Intersecting hypersurfaces, topological densities and Lovelock Gravity arxiv:gr-qc/0401062v4 22 Mar 2007 Elias Gravanis 1 and Steven illison 1,2 1 Department of Physics, Kings College, Strand, London C2R

More information

Myths, Facts and Dreams in General Relativity

Myths, Facts and Dreams in General Relativity Princeton university November, 2010 MYTHS (Common Misconceptions) MYTHS (Common Misconceptions) 1 Analysts prove superfluous existence results. MYTHS (Common Misconceptions) 1 Analysts prove superfluous

More information

Level sets of the lapse function in static GR

Level sets of the lapse function in static GR Level sets of the lapse function in static GR Carla Cederbaum Mathematisches Institut Universität Tübingen Auf der Morgenstelle 10 72076 Tübingen, Germany September 4, 2014 Abstract We present a novel

More information

On deparametrized models in LQG

On deparametrized models in LQG On deparametrized models in LQG Mehdi Assanioussi Faculty of Physics, University of Warsaw ILQGS, November 2015 Plan of the talk 1 Motivations 2 Classical models General setup Examples 3 LQG quantum models

More information

General Relativity Histories Theory

General Relativity Histories Theory Brazilian Journal of Physics, vol. 35, no. 2A, June, 2005 307 General Relativity Histories Theory Ntina Savvidou Physics Department, Theory Group, Imperial College, South Kensington, London SW72BZ, UK

More information

Notes on General Relativity (Wald, 1984)

Notes on General Relativity (Wald, 1984) Notes on General Relativity (Wald, 1984) Robert B. Scott, 1,2 1 Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, USA 2 Department of Physics, University

More information

Modern Geometric Structures and Fields

Modern Geometric Structures and Fields Modern Geometric Structures and Fields S. P. Novikov I.A.TaJmanov Translated by Dmitry Chibisov Graduate Studies in Mathematics Volume 71 American Mathematical Society Providence, Rhode Island Preface

More information

Summary of Prof. Yau s lecture, Monday, April 2 [with additional references and remarks] (for people who missed the lecture)

Summary of Prof. Yau s lecture, Monday, April 2 [with additional references and remarks] (for people who missed the lecture) Building Geometric Structures: Summary of Prof. Yau s lecture, Monday, April 2 [with additional references and remarks] (for people who missed the lecture) A geometric structure on a manifold is a cover

More information

(Non-)Causality in General Relativity

(Non-)Causality in General Relativity (Non-)Causality in General Relativity The Gödel universe Atle Hahn GFM, Universidade de Lisboa Lisbon, 12th March 2010 Contents: 1 Review 2 The Gödel solutions, part I 3 Mathematical Intermezzo 4 The Gödel

More information

HAMILTONIAN FORMULATION OF f (Riemann) THEORIES OF GRAVITY

HAMILTONIAN FORMULATION OF f (Riemann) THEORIES OF GRAVITY ABSTRACT We present a canonical formulation of gravity theories whose Lagrangian is an arbitrary function of the Riemann tensor, which, for example, arises in the low-energy limit of superstring theories.

More information

Problem 1. Mathematics of rotations

Problem 1. Mathematics of rotations Problem 1. Mathematics of rotations (a) Show by algebraic means (i.e. no pictures) that the relationship between ω and is: φ, ψ, θ Feel free to use computer algebra. ω X = φ sin θ sin ψ + θ cos ψ (1) ω

More information

Cartan Geometrodynamics

Cartan Geometrodynamics Cartan Geometrodynamics Derek Wise (joint work with Steffen Gielen) Universität Erlangen Nürnberg 27 February 2012 Geometrodynamics GR as evolving spatial geometry, rather than spacetime geometry. As Wheeler

More information

Classical-quantum Correspondence and Wave Packet Solutions of the Dirac Equation in a Curved Spacetime

Classical-quantum Correspondence and Wave Packet Solutions of the Dirac Equation in a Curved Spacetime Classical-quantum Correspondence and Wave Packet Solutions of the Dirac Equation in a Curved Spacetime Mayeul Arminjon 1,2 and Frank Reifler 3 1 CNRS (Section of Theoretical Physics) 2 Lab. Soils, Solids,

More information

Cosmological Nonlinear Density and Velocity Power Spectra. J. Hwang UFES Vitória November 11, 2015

Cosmological Nonlinear Density and Velocity Power Spectra. J. Hwang UFES Vitória November 11, 2015 Cosmological Nonlinear Density and Velocity Power Spectra J. Hwang UFES Vitória November 11, 2015 Perturbation method: Perturbation expansion All perturbation variables are small Weakly nonlinear Strong

More information

Quintic Quasitopological Gravity

Quintic Quasitopological Gravity Quintic Quasitopological Gravity Luis Guajardo 1 in collaboration with Adolfo Cisterna 2 Mokthar Hassaïne 1 Julio Oliva 3 1 Universidad de Talca 2 Universidad Central de Chile 3 Universidad de Concepción

More information

Dynamics of Entanglement Entropy From Einstein Equation

Dynamics of Entanglement Entropy From Einstein Equation YITP Workshop on Quantum Information Physics@YITP Dynamics of Entanglement Entropy From Einstein Equation Tokiro Numasawa Kyoto University, Yukawa Institute for Theoretical Physics based on arxiv:1304.7100

More information

Diffraction by Edges. András Vasy (with Richard Melrose and Jared Wunsch)

Diffraction by Edges. András Vasy (with Richard Melrose and Jared Wunsch) Diffraction by Edges András Vasy (with Richard Melrose and Jared Wunsch) Cambridge, July 2006 Consider the wave equation Pu = 0, Pu = D 2 t u gu, on manifolds with corners M; here g 0 the Laplacian, D

More information

Minimalism in Modified Gravity

Minimalism in Modified Gravity Minimalism in Modified Gravity Shinji Mukohyama (YITP, Kyoto U) Based on collaborations with Katsuki Aoki, Nadia Bolis, Antonio De Felice, Tomohiro Fujita, Sachiko Kuroyanagi, Francois Larrouturou, Chunshan

More information

Five-dimensional electromagnetism

Five-dimensional electromagnetism Five-dimensional electromagnetism By D. H. Delphenich ( ) Spring Valley, OH USA Abstract: The usual pre-metric Maxwell equations of electromagnetism in Minkowski space are extended to five dimensions,

More information

Causal Structure of General Relativistic Spacetimes

Causal Structure of General Relativistic Spacetimes Causal Structure of General Relativistic Spacetimes A general relativistic spacetime is a pair M; g ab where M is a di erentiable manifold and g ab is a Lorentz signature metric (+ + +::: ) de ned on all

More information

Holographic Lattices

Holographic Lattices Holographic Lattices Jerome Gauntlett with Aristomenis Donos Christiana Pantelidou Holographic Lattices CFT with a deformation by an operator that breaks translation invariance Why? Translation invariance

More information

Holographic entanglement entropy

Holographic entanglement entropy Holographic entanglement entropy Mohsen Alishahiha School of physics, Institute for Research in Fundamental Sciences (IPM) 21th Spring Physics Conference, 1393 1 Plan of the talk Entanglement entropy Holography

More information

Chapters of Advanced General Relativity

Chapters of Advanced General Relativity Chapters of Advanced General Relativity Notes for the Amsterdam-Brussels-Geneva-Paris doctoral school 2014 & 2016 In preparation Glenn Barnich Physique Théorique et Mathématique Université Libre de Bruxelles

More information

Vooludünaamika laiendatud geomeetrias

Vooludünaamika laiendatud geomeetrias Vooludünaamika laiendatud geomeetrias Manuel Hohmann Teoreetilise Füüsika Labor Füüsika Instituut Tartu Ülikool 28. oktoober 2014 Manuel Hohmann (Tartu Ülikool) Vooludünaamika 28. oktoober 2014 1 / 25

More information

Higher Dimensions & Higher Orders in EFT for Gravitational Waves. Ofek Birnholtz. 14 July th Marcel Grossmann Meeting, La Sapienza, Roma

Higher Dimensions & Higher Orders in EFT for Gravitational Waves. Ofek Birnholtz. 14 July th Marcel Grossmann Meeting, La Sapienza, Roma Higher Dimensions & Higher Orders in EFT for Gravitational Waves a OB, Shahar Hadar & Barak Kol, Phys. Rev. D 88, 104037 (2013) OB & Shahar Hadar, Phys. Rev. D 89, 045003 (2014) OB, Shahar Hadar & Barak

More information

Numerical Relativity

Numerical Relativity Numerical Relativity Mark A. Scheel Walter Burke Institute for Theoretical Physics Caltech July 7, 2015 Mark A. Scheel Numerical Relativity July 7, 2015 1 / 34 Outline: Motivation 3+1 split and ADM equations

More information

Dark energy & Modified gravity in scalar-tensor theories. David Langlois (APC, Paris)

Dark energy & Modified gravity in scalar-tensor theories. David Langlois (APC, Paris) Dark energy & Modified gravity in scalar-tensor theories David Langlois (APC, Paris) Introduction So far, GR seems compatible with all observations. Several motivations for exploring modified gravity Quantum

More information

Curved Spacetime I. Dr. Naylor

Curved Spacetime I. Dr. Naylor Curved Spacetime I Dr. Naylor Last Week Einstein's principle of equivalence We discussed how in the frame of reference of a freely falling object we can construct a locally inertial frame (LIF) Space tells

More information

Math 797W Homework 4

Math 797W Homework 4 Math 797W Homework 4 Paul Hacking December 5, 2016 We work over an algebraically closed field k. (1) Let F be a sheaf of abelian groups on a topological space X, and p X a point. Recall the definition

More information

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3

Syllabus. May 3, Special relativity 1. 2 Differential geometry 3 Syllabus May 3, 2017 Contents 1 Special relativity 1 2 Differential geometry 3 3 General Relativity 13 3.1 Physical Principles.......................................... 13 3.2 Einstein s Equation..........................................

More information