Information Retrieval

Size: px
Start display at page:

Download "Information Retrieval"

Transcription

1 Clusteng Technques fo Infomaton Reteval Beln Chen Depatment t of Compute Scence & Infomaton Engneeng Natonal Tawan Nomal Unvesty Refeences:. Chstophe D. Mannng, Pabhaa Raghavan and Hnch Schütze, Intoducton to Infomaton Reteval, Cambdge Unvesty Pess, 008. (Chaptes 6 & 7). Moden Infomaton Reteval, Chaptes 5 & 7 3. "A Gentle Tutoal of the EM Algothm and ts Applcaton to Paamete Estmaton fo Gaussan Mxtue and Hdden Maov Models," Jeff A. Blmes, U.C. Beeley TR-97-0

2 Clusteng Place smla obects n the same goup and assgn dssmla obects to dffeent goups (typcally usng a dstance measue, such as Eucldean dstance) Wod clusteng Neghbo ovelap: wods occu wth the smla left and ght neghbos (such as n and on) ) Document clusteng Documents wth the smla topcs o concepts ae put togetheth But clusteng cannot gve a compehensve descpton of the obect How to label obects shown on the vsual dsplay s a dffcult poblem IR Beln Chen

3 Clusteng vs. Classfcaton Classfcaton s supevsed and eques a set of labeled tanng nstances fo each goup (class) Leanng wth a teache Clusteng s unsupevsed and leans wthout a teache to povde the labelng nfomaton of the tanng data set Also called automatc o unsupevsed classfcaton IR Beln Chen 3

4 Types of Clusteng Algothms Two types of stuctues poduced by clusteng algothms Flat o non-heachcal clusteng Heachcal clusteng Flat clusteng Smply pyconsstng of a cetan numbe of clustes and the elaton between clustes s often undetemned Measuement: constucton eo mnmzaton o pobablstc optmzaton Heachcal clusteng A heachy wth usual ntepetaton that each node stands fo a subclass of ts mothe s node The leaves of the tee ae the sngle obects Each node epesents the cluste that contans all the obects of ts descendants Measuement: smlates of nstances IR Beln Chen 4

5 Had Assgnment vs. Soft Assgnment (/) Anothe mpotant dstncton between clusteng algothms s whethe they pefom soft o had assgnment Had Assgnment Each obect (o document n the context of IR) s assgned to one and only one cluste Soft Assgnment (pobablstc bbl appoach) Each obect may be assgned to multple clustes An obect x has a pobablty dstbuton P ( x ) ove clustes c whee P ( x c ) s the pobablty that x s a membe of c Is somewhat moe appopate n many tass such as NLP, IR, IR Beln Chen 5

6 Had Assgnment vs. Soft Assgnment (/) Heachcal clusteng usually adopts had assgnment Whle n flat clusteng, both types of assgnments ae common IR Beln Chen 6

7 Summazed Attbutes of Clusteng Algothms (/) Heachcal Clusteng Pefeable fo detaled d data analyss Povde moe nfomaton than flat clusteng No sngle best algothm (each of the algothms only optmal fo some applcatons) Less effcent than flat clusteng (mnmally have to compute n x n matx of smlaty coeffcents) IR Beln Chen 7

8 Summazed Attbutes of Clusteng Algothms (/) Flat Clusteng Pefeable f effcency s a consdeaton o data sets ae vey lage K-means s the conceptually feasble method and should pobably be used on a new data because ts esults ae often suffcent K-means assumes a smple Eucldean epesentaton space, and so cannot be used fo many data sets, e.g., nomnal data le colos (o samples wth featues of dffeent scales) The EM algothm s the most choce. It can accommodate defnton of clustes and allocaton of obects based on complex pobablstc models Its extensons can be used to handle topologcal/heachcal odes of samples E.g., Pobablstc Latent Semantc Analyss (PLSA) IR Beln Chen 8

9 Some Applcatons of Clusteng n IR (/5) Cluste Hypothess (fo IR): Documents n the same cluste behave smlaly wth espect to elevance to nfomaton needs Possble applcatons of Clusteng n IR These possble applcatons dffe n The collecton of documents to be clusteed The aspect of the IR system to be mpoved IR Beln Chen 9

10 Some Applcatons of Clusteng n IR (/5). Whole copus analyss/navgaton Bette use nteface (uses pefe bowsng ove seachng snce they ae unsue about whch seach tems to use) E.g., the scatte-gathe appoach (fo a collecton of New Yo Tmes) Uses often pefe bowsng ove seachng, because they ae unsue about whch seach tems to use. IR Beln Chen 0

11 Some Applcatons of Clusteng n IR (3/5). Impove ecall n seach applcatons Acheve bette seach esults by Allevatng the tem-msmatch (synonym) poblem facng the vecto space model found elevant document Estmatng the collecton model of the language modelng (LM) eteval appoach moe accuately N ( Q M ) [ λ P ( w M ) + ( λ ) P ( w ) ] P M D N D C The collecton model can be estmated fom the cluste the document D belongs to, nstead of the ente collecton IR Beln Chen

12 Some Applcatons of Clusteng n IR (4/5) 3. Bette navgaton of seach esults Result set clusteng Effectve use ecall wll be hghe IR Beln Chen

13 Some Applcatons of Clusteng n IR (5/5) 4. Speed up the seach pocess Fo eteval models usng exhaustve matchng (computng the smlaty of the quey to evey document) wthout effcent nveted ndex suppots E.g., latent semantc analyss (LSA), language modelng (LM)? Soluton: cluste-based eteval Fst fnd the clustes that ae closet to the quey and then only consde documents fom these clustes IR Beln Chen 3

14 Evaluaton of Clusteng (/) Intenal cteon fo the qualty of a clusteng esult The typcal obectve s to attan Hgh nta-cluste smlaty (documents wth a cluste ae smla) l Low nte-cluste smlaty (document fom dffeent clustes ae dssmla) The measued qualty depends on both the document epesentaton and the smlaty measue used Good scoes on an ntenal cteon do not necessaly tanslate t nto good effectveness n an applcaton IR Beln Chen 4

15 Evaluaton of Clusteng (/) Extenal cteon fo the qualty of a clusteng esult Evaluate how well the clusteng matches the gold standad classes poduced by human udges That s, the qualty s measued by the ablty of the clusteng algothm to dscove some o all of the hdden pattens o latent (tue) classes Two common ctea Puty Rand Index (RI) IR Beln Chen 5

16 Puty (/) Each cluste s fst assgned to class whch s most fequent n the cluste Then, the accuacy of the assgnment s measued by countng the numbe of coectly assgned documents and dvdng by the sample sze Puty N ( Ω, Γ ) max ω I c { } Ω ω, ω, K, ω K : the set of clustes Γ { c, c, K, c J } : the set of classes : the sample sze N Puty 7 ( Ω, Γ) ( ) 0. 7 IR Beln Chen 6

17 Puty (/) Hgh puty s easy to acheve fo a lage numbe of clustes (?) Puty wll be f each document gets ts own cluste Theefoe, puty cannot be used to tade off the qualty of the clusteng aganst the numbe of clustes IR Beln Chen 7

18 Rand Index (/3) Measue the smlaty between the clustes and the classes n gound tuthth Consde the assgnments of all possble N(N-)/ pas of N dstnct documents n the cluste and the tue class Numbe of Same cluste n Dffeent clustes ponts clusteng n clusteng Same class n TP FN gound tuth (Tue Postve) (False Negatve) Dffeent classes n gound tuth FP (False Postve) TN (Tue Negatve) RI TP + TN TP + FP + FN + TN IR Beln Chen 8

19 Rand Index (/3) ω 3 ω ω TP TN ω ω ω FP ω ω ω 3 ω ω ω ω ω TP ω ω ω 3 ω ω FN ω ω 3 ω all postve pas ω ω ω ω 3 ω ω TN RI ω ω ω ω 3 ω ω 3 IR Beln Chen 9 all negatve pas ( ) 36 / 6 7 / N N all pas 3 3

20 Rand Index (3/3) The and ndex has a value between 0 and 0 ndcates that the clustes and the classes n gound tuth do not agee on any pa of ponts (documents) ndcates that tthe clustes and dthe classes n gound dtuth thae exactly the same IR Beln Chen 0

21 F-Measue Based on Rand Index F-Measue: hamonc mean of pecson (P) and ecall (R) P TP TP, TP + FP R TP + FN F b ( ) b + b + )PR b b P + R + R P If we want to penalze false negatves (FN) moe stongly than false postves (FP), then we can set b > (sepaatng smla documents s sometmes wose than puttng dssmla l documents n the same cluste) That s,,gvng gmoe weght to ecall (R) IR Beln Chen

22 Nomalzed Mutual Infomaton (NMI) NMI s an nfomaton-theoetcal measue I ( ) ( Ω ; C ) Ω, C ( H ( Ω ) + H ( C ))/ p ( ) ( ) ( ω c ) Ω ; C p ω c log p( ω ) p( c ) NMI I H ( Ω ) p ( ω ) log p ( ω ) ω ω c N N log ω N N ω log ω c c (ML estmate) (ML estmate) NMI wll have a value between 0 and IR Beln Chen

23 Summay of Extenal Evaluaton Measues IR Beln Chen 3

24 Flat Clusteng IR Beln Chen 4

25 Flat Clusteng Stat out wth a patton based on andomly selected seeds (one seed pe cluste) and then efne the ntal patton In a mult-pass manne (ecuson/teatons) Poblems assocated wth non-heachcal clusteng When to stop? What s the ght numbe of clustes (cluste cadnalty)? goup aveage smlaty, lelhood, mutual nfomaton - + Algothms ntoduced hee The K-means algothm Heachcal clusteng The EM algothm also has to face ths poblem IR Beln Chen 5

26 The K-means Algothm (/0) Also called Lnde-Buzo-Gay (LBG) n sgnal pocessng A had clusteng algothm Defne clustes by the cente of mass of the membes Obects (e.g., documents) should be epesented n vecto fom The K-means algothm also can be egaded as A nd of vecto quantzaton Map fom a contnuous space (hgh esoluton) to a dscete space (low esoluton) E.g. colo quantzaton 4 bts/pxel (6 mllon colos) 8 bts/pxel (56 colos) X m A compesson ate of 3 { t } n ndex x F { m } Dm(x t )4 F 8 t : cluste centod o efeence vecto, code wod, code vecto IR Beln Chen 6

27 The K-means Algothm (/0) Total econstucton eo (RSS : esdual sum of squaes) E ({ } ) m X N t f x m t t t b x m, whee b 0 othewse t automatc label mn x t m m t b and ae unnown n advance t b depends on m and ths optmzaton poblem can not be solved analytcally IR Beln Chen 7

28 The K-means Algothm (3/0) Intalzaton A set of ntal cluste centes s needed { } Recuson m t Assgn each obect x to the cluste whose cente s closest t t t f x m mn x m b 0 othewse Then, e-compute the cente of each cluste as the centod o mean (aveage) of ts membes Usng the medod as the cluste cente? (a medod s one of the obects n the cluste that s closest to the centod) t t m m These two steps ae epeated untl m stablzes N t Th t t t d tl t bl t b x N t t b IR Beln Chen 8

29 The K-means Algothm (4/0) Algothm IR Beln Chen 9

30 The K-means Algothm (5/0) Example IR Beln Chen 30

31 Example The K-means Algothm (6/0) govenment fnance spots eseach name IR Beln Chen 3

32 Complexty: O(IKNM) The K-means Algothm (7/0) I: Iteatons; K: cluste numbe; N: obect numbe; M: obect dmensonalty Choce of ntal cluste centes (seeds) s mpotant Pc at andom O, calculate the mean m of all data and geneate ntal centes m by addng small andom vecto to the mean m ± δ O, poect data onto the pncpal component (fst egenvecto), dvde t ange nto equal nteval, and tae the mean of data n each goup as the ntal cente m O, use anothe method such as heachcal clusteng algothm on a subset of the obects E.g., bucshot algothm uses the goup-aveage agglomeatve clusteng to andomly sample of the data that has sze squae oot of the complete set IR Beln Chen 3

33 The K-means Algothm (8/0) Poo seeds wll esult n sub-optmal clusteng IR Beln Chen 33

34 The K-means Algothm (9/0) How to bea tes when n case thee ae seveal centes wth the same dstance fom an obect E.g., andomly assgn the obect to one of the canddate clustes (o assgn the obect to the cluste wth lowest ndex) O, petub obects slghtly Applcatons of the K-means Algothm Clusteng Vecto quantzaton A pepocessng stage befoe classfcaton o egesson Map fom the ognal space to l-dmensonal space/hypecube llogl ( clustes) Nodes on the hypecube A lnea classfe IR Beln Chen 34

35 The K-means Algothm (0/0) E.g., the LBG algothm M M at each teaton By Lnde, Buzo, and Gay {μ,σσ,ω } {μ,σ,ω } Global mean Cluste mean Cluste mean {μ 3,Σ 3,ω 3 } {μ 4,Σ 4,ω 4 } Total Reconstucton eo (esdual sum of E ({ m } X) squaes) N t t b x m t IR Beln Chen 35

36 The EM Algothm (/3) EM (Expectaton-Maxmzaton) algothm A nd of model-based clusteng Also can be vewed as a genealzaton of K-means Each cluste s a model fo geneatng the data The centod s good epesentatve fo each model Geneate an obect (e.g., document) conssts of fst pcng a centod at andom and then addng some nose If the nose s nomally dstbuted, the pocedue wll esult n clustes of sphecal shape Physcal Models fo EM Dscete: Mxtue of multnomal dstbutons Contnuous: Mxtue of Gaussan dstbutons IR Beln Chen 36

37 EM s a soft veson of K-mean The EM Algothm (/3) Each obect could be the membe of multple clustes Clusteng as estmatng a mxtue of (contnuous) pobablty dstbutons x P( ω ) P x P ( ω ) P( ω K ) Lelhood functon fo data samples: P ( X Θ ) n P ( x Θ ) n K P X ω ( ) x ω ω A Mxtue Gaussan HMM (o A Mxtue of Gaussans) K P ( x ω ) P( x Θ ) P( x ω ; Θ ) P( ω Θ ) P x, x, K, x ( x ω ) x ( x ω ; Θ ) P ( ω Θ ) n K P classfca ton max P Contnuous case: ( x ω ; Θ) : ( ω x, Θ) max max ( x ω ; Θ) P( ω Θ) P ( x Θ ) ( x ω ; Θ) P( ω Θ) exp m ( π ) Σ 's { } x X x, x, L, x n T ( x μ ) Σ ( x μ ) aendependent dentcally dstbuted (..d.) IR Beln Chen 37

38 The EM Algothm (/3) ω ω ω ω ω ω IR Beln Chen 38

39 Maxmum Lelhood Estmaton (MLE) (/) Had Assgnment P(B ω )/40.5 cluste ω P(W ω )/40.5 IR Beln Chen 39

40 Maxmum Lelhood Estmaton (/) Soft Assgnment P(ω )( )/ ( ).5/40.65 State ω P(ω )- P(ω )0.375 State ω P(B ω )( )/ ( ).6/ P(B ω )( )/ 0.5)/ ( ) 0.9/ P(B ω )(0.3+0.)/ ( ) ) 0.4/.50.7 P(B ω )( )/ ( ) 0./ IR Beln Chen 40

41 Expectaton-Maxmzaton Updatng Fomulas (/3) Expectaton γ K P l ( x ω, Θ ) P( ω Θ ) P ( x ω, Θ ) P( ω Θ ) l Compute the lelhood that each cluste geneates a document vecto x l ω IR Beln Chen 4

42 Expectaton-Maxmzaton Updatng Fomulas (/3) Maxmzaton n n γ γ Mxtue Weght ( ) Θˆ n P K n γ γ γ ω Mean of Gaussan n x ˆ γ n γ μ IR Beln Chen 4

43 Expectaton-Maxmzaton Updatng Fomulas (3/3) Covaance Matx of Gaussan ( )( ) Σ n T x x ˆ ˆ ˆ μ μ γ Σ n γ ( )( ) n n T x x μˆ μˆ γ γ IR Beln Chen 43

44 Moe facts about The EM Algothm The ntal cluste dstbutons can be estmated usng the K-means algothm, whch EM can then soften up The pocedue temnates when the lelhood functon P ( X Θ ) s conveged o maxmum numbe of teatons s eached IR Beln Chen 44

45 Heachcal Clusteng IR Beln Chen 45

46 Heachcal Clusteng Can be n ethe bottom-up o top-down mannes Bottom-up (agglomeatve) 凝集的 Stat wth ndvdual obects and goupng the most smla ones E.g., wth the mnmum dstance apat sm ( x, y ) dstance measues wll be dscussed late on + ( x, y ) The pocedue temnates when one cluste contanng all obects has been fomed d Top-down (d (dvsve) 分裂的 Stat wth all obects n a goup and dvde them nto goups so as to maxmze wthn-goup smlaty IR Beln Chen 46

47 Heachcal Agglomeatve Clusteng (HAC) A bottom-up appoach Assume a smlaty measue fo detemnng the smlaty of two obects Stat wth all obects n a sepaate cluste (a sngleton) and then epeatedly ons the two clustes that have the most smlaty untl thee s one only cluste suvved The hstoy of megng/clusteng foms a bnay tee o heachy IR Beln Chen 47

48 HAC: Algothm Intalzaton (fo tee leaves): Each obect s a cluste cluste numbe meged as a new cluste The ognal two clustes ae emoved c denotes a specfc cluste hee IR Beln Chen 48

49 Dstance Metcs Eucldan Dstance (L nom) L m ( x, y) ( x y ) Mae sue that all attbutes/dmensons have the same scale (o the same vaance) L Nom (Cty-bloc dstance) L ( x, y) ) m x y Cosne Smlaty (tansfom to a dstance by subtactng fom ) x y db t 0 d x y anged between 0 and IR Beln Chen 49

50 Measues of Cluste Smlaty (/9) Especally fo the bottom-up appoaches. Sngle-ln clusteng The smlaty between two clustes s the smlaty of the two closest obects n the clustes Seach ove all pas of obects that ae fom the two dffeent clustes and select the pa wth the geatest smlaty Elongated clustes ae acheved sm ( ω, ω ) max sm ( x,y ) x ω ω, y ω ω spannng tee cf. the mnmal geatest smlaty IR Beln Chen 50

51 Measues of Cluste Smlaty (/9). Complete-ln clusteng The smlaty between two clustes s the smlaty of the two most dssmla membes Sphee-shaped h clustes ae acheved Pefeable fo most IR and NLP applcatons sm ω, ω mn sm x,y ( ) ( ) x ω ω, y ω ω least smlaty Moe senstve to outles IR Beln Chen 5

52 Measues of Cluste Smlaty (3/9) sngle ln complete ln IR Beln Chen 5

53 Measues of Cluste Smlaty (4/9) IR Beln Chen 53

54 Measues of Cluste Smlaty (5/9) 3. Goup-aveage agglomeatve clusteng A compomse between sngle-ln and complete-ln clusteng The smlaty between two clustes s the aveage smlaty between membes ω ω If the obects ae epesented as length-nomalzed vectos and the smlaty measue s the cosne Thee exsts an fast algothm fo computng the aveage smlaty sm x x ( x, y ) cos ( x, y ) x y y y length-nomalzed vectos IR Beln Chen 54

55 Measues of Cluste Smlaty (6/9) 3. Goup-aveage agglomeatve clusteng (cont.) The aveage smlaty SIM between vectos n a cluste ω s defned as SIM ω ( ) x y ω ω x ω y ω ω ω x ω y ω ( ω ) sm( x, y) ( ) y x The sum of membes n a cluste ω : s SIM ( ω ) s ( ω ) Expess n tems of ( ω ) ( ) x ω x y x s ( ω ) s ( ω ) x s ( ω ) x SIM ( c ) ω ω s x ω x ω y ω ( ω ) SIM ( ω ) ( ω ) SIM ( ω ) ( ω ) s ( ω ) ω ( ω ) ω + + x c ω y length-nomalzed vecto x x IR Beln Chen 55

56 Measues of Cluste Smlaty (7/9) 3. Goup-aveage agglomeatve clusteng (cont.) ( ) -As megng two clustes c and c, the cluste sum s ( ω ) s ω vectos and ae nown n advance s ω s ω + s ω, ω ω + ( New ) ( ) ( ) New ω ω + ω The aveage smlaty fo the unon wll be SIM ( ω ω ) ( s ( ω ) + s ( ω ) s ( ω ) + s ( ω ) ( ) ( ) ω + ω ( ω + ω )( ω + ω ) ω ω s ( ω ) ω ω s ( ω ) IR Beln Chen 56

57 Measues of Cluste Smlaty (8/9) 4. Centod clusteng The smlaty of two clustes s defned as the smlaty of the centods ( ) ( ) ( ) sm ω μ ω μ ω ω, t s x t x s x N x N ω ω s x x t t s x x N N ω ω IR Beln Chen 57

58 Measues of Cluste Smlaty (9/9) Gaphcal summay of fou cluste smlaty measues IR Beln Chen 58

59 Example: Wod Clusteng Wods (obects) ae descbed and clusteed usng a set of featues and values E.g., the left and ght neghbos of toens of wods hghe nodes: deceasng of smlaty be has least smlaty wth the othe wods! IR Beln Chen 59

60 Dvsve Clusteng (/) A top-down appoach Stat wth all obects n a sngle cluste At each teaton, select the least coheent cluste and splt t Contnue the teatons untl a pedefned cteon (e.g., the cluste numbe) s acheved The hstoy of clusteng foms a bnay tee o heachy IR Beln Chen 60

61 Dvsve Clusteng (/) To select the least coheent cluste, the measues used n bottom-up clusteng (e.g. HAC) can be used agan hee Sngle ln measue Complete-ln l measue Goup-aveage measue How to splt a cluste Also s a clusteng tas (fndng two sub-clustes) Any clusteng algothm can be used fo the splttng opeaton, e.g., Bottom-up (agglomeatve) algothms Non-heachcal clusteng algothms (e.g., K-means) IR Beln Chen 6

62 Dvsve Clusteng: Algothm : splt the least coheent cluste Geneate two new clustes and emove the ognal one c u denotes a specfc cluste hee IR Beln Chen 6

63 Heachcal Document Oganzaton (/7) Exploe the Pobablstc Latent Topcal Infomaton TMM/PLSA appoach Two-dmensonal Tee Stuctue fo Oganzed Topcs dst ( T T ) ( x x ) + ( y y ), E ( T, T ) l dst exp π σ ( T, T ) l σ K K P ( w D ) P ( T D ) P ( Tl Y ) P ( w Tl ) l E ( ) ( Tl, T ) P T l Y ( T, T ) Documents ae clusteed by the latent t topcs and oganzed n a twodmensonal tee stuctue, o a two-laye map Those elated documents ae n the same cluste and the elatonshps among the clustes have to do wth the dstance on the map When a cluste has many documents, we can futhe analyze t nto an othe map on the next laye K E s s IR Beln Chen 63

64 Heachcal Document Oganzaton (/7) The model can be taned by maxmzng the total log- lelhood lh of all tems obseved n the document collecton L T N J n N J n c c ( w, D ) log P ( w D ) K K ( w, D ) log P ( T D ) P ( T Y ) P ( w T ) EM tanng can be pefomed l l l N Pˆ ( w ) T J N c c P ˆ T D ( ) J ( w, D ) P ( T w,d ) c ( w, D ) P( T w,d ) ( w, D ) P ( T w ),D c ( D ) whee P ( T w,d ) ( w T ) P( T T ) P( T D ) K P l l l K K P w Tl P Tl T P T l ( ) ( ) ( D ) IR Beln Chen 64

65 Heachcal Document Oganzaton (3/7) Cteon fo Topc Wod Selectng S ( w, T ) N N c c ( w, D ) P( T D ) ( w, D )[ P( T D ) ] IR Beln Chen 65

66 Heachcal Document Oganzaton (4/7) Example IR Beln Chen 66

67 Heachcal Document Oganzaton (5/7) Example (cont.) IR Beln Chen 67

68 Heachcal Document Oganzaton (6/7) Self-Oganzaton Map (SOM) A ecusve egesson pocess (Mappng Laye [ m, m m ] T m,,,...,, n [ m, m m ] T m,,,...,, n Weght Vecto x m Input Laye Input Vecto [ x x ] T x,,..., x n m m x m ( t + c ( x ), t + ) m ( t ) + h ( t )[ x ( t ) m ( )] whee c ( x ) ag mn x m ( x m ) n n, n x m h t) α ( t) exp c ( x ) c( x), ( σ ( t) IR Beln Chen 68

69 Results Heachcal Document Oganzaton (7/7) Model Iteatons dst Between /dst Wthn TMM SOM R Dst dst dst Between Wthn whee dst dst D D Between + Between D D + D D + Wthn D D + f C Between (, ) (, ) f Between dst C Map Between dst (, ) 0 Map (, ) T, T, othewse ( x x ) + ( y y ) (,) (, ) 0 T, T, othewse dst ( ) T Map,, T, fwthn(, ) f Wthn (, ) 0 othewse C Wthn (, ) T, T, CWthn (, ) 0 othewse IR Beln Chen 69

Clustering Techniques

Clustering Techniques Clusteng Tehnques Refeenes: Beln Chen 2003. Moden Infomaton Reteval, haptes 5, 7 2. Foundatons of Statstal Natual Language Poessng, Chapte 4 Clusteng Plae smla obets n the same goup and assgn dssmla obets

More information

Clustering Techniques for Information Retrieval

Clustering Techniques for Information Retrieval Clusteng Tehnques fo Infomaton Reteval Beln Chen Depatment of Compute Sene & Infomaton Engneeng Natonal Tawan Nomal Unvesty Refeenes:. Chstophe D. Mannng, abhaa Raghavan and Hnh Shütze, Intoduton to Infomaton

More information

Clustering Techniques for Information Retrieval

Clustering Techniques for Information Retrieval Clusterng Technques for Informaton Retreval Berln Chen Department of Computer Scence & Informaton Engneerng Natonal Tawan Normal Unversty References:. Chrstopher D. Mannng, Prabhaar Raghavan and Hnrch

More information

Clustering. Outline. Supervised vs. Unsupervised Learning. Clustering. Clustering Example. Applications of Clustering

Clustering. Outline. Supervised vs. Unsupervised Learning. Clustering. Clustering Example. Applications of Clustering Clusteng CS478 Mahne Leanng Spng 008 Thosten Joahms Conell Unvesty Outlne Supevsed vs. Unsupevsed Leanng Heahal Clusteng Heahal Agglomeatve Clusteng (HAC) Non-Heahal Clusteng K-means EM-Algothm Readng:

More information

Correspondence Analysis & Related Methods

Correspondence Analysis & Related Methods Coespondence Analyss & Related Methods Ineta contbutons n weghted PCA PCA s a method of data vsualzaton whch epesents the tue postons of ponts n a map whch comes closest to all the ponts, closest n sense

More information

Machine Learning. Spectral Clustering. Lecture 23, April 14, Reading: Eric Xing 1

Machine Learning. Spectral Clustering. Lecture 23, April 14, Reading: Eric Xing 1 Machne Leanng -7/5 7/5-78, 78, Spng 8 Spectal Clusteng Ec Xng Lectue 3, pl 4, 8 Readng: Ec Xng Data Clusteng wo dffeent ctea Compactness, e.g., k-means, mxtue models Connectvty, e.g., spectal clusteng

More information

Tian Zheng Department of Statistics Columbia University

Tian Zheng Department of Statistics Columbia University Haplotype Tansmsson Assocaton (HTA) An "Impotance" Measue fo Selectng Genetc Makes Tan Zheng Depatment of Statstcs Columba Unvesty Ths s a jont wok wth Pofesso Shaw-Hwa Lo n the Depatment of Statstcs at

More information

Learning the structure of Bayesian belief networks

Learning the structure of Bayesian belief networks Lectue 17 Leanng the stuctue of Bayesan belef netwoks Mlos Hauskecht mlos@cs.ptt.edu 5329 Sennott Squae Leanng of BBN Leanng. Leanng of paametes of condtonal pobabltes Leanng of the netwok stuctue Vaables:

More information

Multistage Median Ranked Set Sampling for Estimating the Population Median

Multistage Median Ranked Set Sampling for Estimating the Population Median Jounal of Mathematcs and Statstcs 3 (: 58-64 007 ISSN 549-3644 007 Scence Publcatons Multstage Medan Ranked Set Samplng fo Estmatng the Populaton Medan Abdul Azz Jeman Ame Al-Oma and Kamaulzaman Ibahm

More information

Set of square-integrable function 2 L : function space F

Set of square-integrable function 2 L : function space F Set of squae-ntegable functon L : functon space F Motvaton: In ou pevous dscussons we have seen that fo fee patcles wave equatons (Helmholt o Schödnge) can be expessed n tems of egenvalue equatons. H E,

More information

8 Baire Category Theorem and Uniform Boundedness

8 Baire Category Theorem and Uniform Boundedness 8 Bae Categoy Theoem and Unfom Boundedness Pncple 8.1 Bae s Categoy Theoem Valdty of many esults n analyss depends on the completeness popety. Ths popety addesses the nadequacy of the system of atonal

More information

Khintchine-Type Inequalities and Their Applications in Optimization

Khintchine-Type Inequalities and Their Applications in Optimization Khntchne-Type Inequaltes and The Applcatons n Optmzaton Anthony Man-Cho So Depatment of Systems Engneeng & Engneeng Management The Chnese Unvesty of Hong Kong ISDS-Kolloquum Unvestaet Wen 29 June 2009

More information

Thermodynamics of solids 4. Statistical thermodynamics and the 3 rd law. Kwangheon Park Kyung Hee University Department of Nuclear Engineering

Thermodynamics of solids 4. Statistical thermodynamics and the 3 rd law. Kwangheon Park Kyung Hee University Department of Nuclear Engineering Themodynamcs of solds 4. Statstcal themodynamcs and the 3 d law Kwangheon Pak Kyung Hee Unvesty Depatment of Nuclea Engneeng 4.1. Intoducton to statstcal themodynamcs Classcal themodynamcs Statstcal themodynamcs

More information

A. Thicknesses and Densities

A. Thicknesses and Densities 10 Lab0 The Eath s Shells A. Thcknesses and Denstes Any theoy of the nteo of the Eath must be consstent wth the fact that ts aggegate densty s 5.5 g/cm (ecall we calculated ths densty last tme). In othe

More information

Using DP for hierarchical discretization of continuous attributes. Amit Goyal (31 st March 2008)

Using DP for hierarchical discretization of continuous attributes. Amit Goyal (31 st March 2008) Usng DP fo heachcal dscetzaton of contnos attbtes Amt Goyal 31 st Mach 2008 Refeence Chng-Cheng Shen and Yen-Lang Chen. A dynamc-pogammng algothm fo heachcal dscetzaton of contnos attbtes. In Eopean Jonal

More information

Dirichlet Mixture Priors: Inference and Adjustment

Dirichlet Mixture Priors: Inference and Adjustment Dchlet Mxtue Pos: Infeence and Adustment Xugang Ye (Wokng wth Stephen Altschul and Y Kuo Yu) Natonal Cante fo Botechnology Infomaton Motvaton Real-wold obects Independent obsevatons Categocal data () (2)

More information

P 365. r r r )...(1 365

P 365. r r r )...(1 365 SCIENCE WORLD JOURNAL VOL (NO4) 008 www.scecncewoldounal.og ISSN 597-64 SHORT COMMUNICATION ANALYSING THE APPROXIMATION MODEL TO BIRTHDAY PROBLEM *CHOJI, D.N. & DEME, A.C. Depatment of Mathematcs Unvesty

More information

Optimization Methods: Linear Programming- Revised Simplex Method. Module 3 Lecture Notes 5. Revised Simplex Method, Duality and Sensitivity analysis

Optimization Methods: Linear Programming- Revised Simplex Method. Module 3 Lecture Notes 5. Revised Simplex Method, Duality and Sensitivity analysis Optmzaton Meods: Lnea Pogammng- Revsed Smple Meod Module Lectue Notes Revsed Smple Meod, Dualty and Senstvty analyss Intoducton In e pevous class, e smple meod was dscussed whee e smple tableau at each

More information

On Maneuvering Target Tracking with Online Observed Colored Glint Noise Parameter Estimation

On Maneuvering Target Tracking with Online Observed Colored Glint Noise Parameter Estimation Wold Academy of Scence, Engneeng and Technology 6 7 On Maneuveng Taget Tacng wth Onlne Obseved Coloed Glnt Nose Paamete Estmaton M. A. Masnad-Sha, and S. A. Banan Abstact In ths pape a compehensve algothm

More information

Machine Learning 4771

Machine Learning 4771 Machne Leanng 4771 Instucto: Tony Jebaa Topc 6 Revew: Suppot Vecto Machnes Pmal & Dual Soluton Non-sepaable SVMs Kenels SVM Demo Revew: SVM Suppot vecto machnes ae (n the smplest case) lnea classfes that

More information

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law Physcs 11b Lectue # Electc Feld Electc Flux Gauss s Law What We Dd Last Tme Electc chage = How object esponds to electc foce Comes n postve and negatve flavos Conseved Electc foce Coulomb s Law F Same

More information

CS649 Sensor Networks IP Track Lecture 3: Target/Source Localization in Sensor Networks

CS649 Sensor Networks IP Track Lecture 3: Target/Source Localization in Sensor Networks C649 enso etwoks IP Tack Lectue 3: Taget/ouce Localaton n enso etwoks I-Jeng Wang http://hng.cs.jhu.edu/wsn06/ png 006 C 649 Taget/ouce Localaton n Weless enso etwoks Basc Poblem tatement: Collaboatve

More information

3. A Review of Some Existing AW (BT, CT) Algorithms

3. A Review of Some Existing AW (BT, CT) Algorithms 3. A Revew of Some Exstng AW (BT, CT) Algothms In ths secton, some typcal ant-wndp algothms wll be descbed. As the soltons fo bmpless and condtoned tansfe ae smla to those fo ant-wndp, the pesented algothms

More information

Re-Ranking Retrieval Model Based on Two-Level Similarity Relation Matrices

Re-Ranking Retrieval Model Based on Two-Level Similarity Relation Matrices Intenatonal Jounal of Softwae Engneeng and Its Applcatons, pp. 349-360 http://dx.do.og/10.1457/sea.015.9.1.31 Re-Rankng Reteval Model Based on Two-Level Smlaty Relaton Matces Hee-Ju Eun Depatment of Compute

More information

Rigid Bodies: Equivalent Systems of Forces

Rigid Bodies: Equivalent Systems of Forces Engneeng Statcs, ENGR 2301 Chapte 3 Rgd Bodes: Equvalent Sstems of oces Intoducton Teatment of a bod as a sngle patcle s not alwas possble. In geneal, the se of the bod and the specfc ponts of applcaton

More information

Generating Functions, Weighted and Non-Weighted Sums for Powers of Second-Order Recurrence Sequences

Generating Functions, Weighted and Non-Weighted Sums for Powers of Second-Order Recurrence Sequences Geneatng Functons, Weghted and Non-Weghted Sums fo Powes of Second-Ode Recuence Sequences Pantelmon Stăncă Aubun Unvesty Montgomey, Depatment of Mathematcs Montgomey, AL 3614-403, USA e-mal: stanca@studel.aum.edu

More information

Chapter Fifiteen. Surfaces Revisited

Chapter Fifiteen. Surfaces Revisited Chapte Ffteen ufaces Revsted 15.1 Vecto Descpton of ufaces We look now at the vey specal case of functons : D R 3, whee D R s a nce subset of the plane. We suppose s a nce functon. As the pont ( s, t)

More information

Exact Simplification of Support Vector Solutions

Exact Simplification of Support Vector Solutions Jounal of Machne Leanng Reseach 2 (200) 293-297 Submtted 3/0; Publshed 2/0 Exact Smplfcaton of Suppot Vecto Solutons Tom Downs TD@ITEE.UQ.EDU.AU School of Infomaton Technology and Electcal Engneeng Unvesty

More information

The M 2 -tree: Processing Complex Multi-Feature Queries with Just One Index

The M 2 -tree: Processing Complex Multi-Feature Queries with Just One Index The M -tee: Pocessng Complex Mult-Featue Quees wth Just ne Index Paolo Cacca, Maco Patella DEIS - CSITE-CNR, Unvesty of Bologna, Italy fpcacca,mpatellag@des.unbo.t Abstact Motvated by the needs fo effcent

More information

APPLICATIONS OF SEMIGENERALIZED -CLOSED SETS

APPLICATIONS OF SEMIGENERALIZED -CLOSED SETS Intenatonal Jounal of Mathematcal Engneeng Scence ISSN : 22776982 Volume Issue 4 (Apl 202) http://www.mes.com/ https://stes.google.com/ste/mesounal/ APPLICATIONS OF SEMIGENERALIZED CLOSED SETS G.SHANMUGAM,

More information

A Brief Guide to Recognizing and Coping With Failures of the Classical Regression Assumptions

A Brief Guide to Recognizing and Coping With Failures of the Classical Regression Assumptions A Bef Gude to Recognzng and Copng Wth Falues of the Classcal Regesson Assumptons Model: Y 1 k X 1 X fxed n epeated samples IID 0, I. Specfcaton Poblems A. Unnecessay explanatoy vaables 1. OLS s no longe

More information

4 SingularValue Decomposition (SVD)

4 SingularValue Decomposition (SVD) /6/00 Z:\ jeh\self\boo Kannan\Jan-5-00\4 SVD 4 SngulaValue Decomposton (SVD) Chapte 4 Pat SVD he sngula value decomposton of a matx s the factozaton of nto the poduct of thee matces = UDV whee the columns

More information

Distinct 8-QAM+ Perfect Arrays Fanxin Zeng 1, a, Zhenyu Zhang 2,1, b, Linjie Qian 1, c

Distinct 8-QAM+ Perfect Arrays Fanxin Zeng 1, a, Zhenyu Zhang 2,1, b, Linjie Qian 1, c nd Intenatonal Confeence on Electcal Compute Engneeng and Electoncs (ICECEE 15) Dstnct 8-QAM+ Pefect Aays Fanxn Zeng 1 a Zhenyu Zhang 1 b Lnje Qan 1 c 1 Chongqng Key Laboatoy of Emegency Communcaton Chongqng

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. "Flux": = da i. "Force": = -Â g a ik k = X i. Â J i X i (7.

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. Flux: = da i. Force: = -Â g a ik k = X i. Â J i X i (7. Themodynamcs and Knetcs of Solds 71 V. Pncples of Ievesble Themodynamcs 5. Onsage s Teatment s = S - S 0 = s( a 1, a 2,...) a n = A g - A n (7.6) Equlbum themodynamcs detemnes the paametes of an equlbum

More information

Experimental study on parameter choices in norm-r support vector regression machines with noisy input

Experimental study on parameter choices in norm-r support vector regression machines with noisy input Soft Comput 006) 0: 9 3 DOI 0.007/s00500-005-0474-z ORIGINAL PAPER S. Wang J. Zhu F. L. Chung Hu Dewen Expemental study on paamete choces n nom- suppot vecto egesson machnes wth nosy nput Publshed onlne:

More information

SOME NEW SELF-DUAL [96, 48, 16] CODES WITH AN AUTOMORPHISM OF ORDER 15. KEYWORDS: automorphisms, construction, self-dual codes

SOME NEW SELF-DUAL [96, 48, 16] CODES WITH AN AUTOMORPHISM OF ORDER 15. KEYWORDS: automorphisms, construction, self-dual codes Факултет по математика и информатика, том ХVІ С, 014 SOME NEW SELF-DUAL [96, 48, 16] CODES WITH AN AUTOMORPHISM OF ORDER 15 NIKOLAY I. YANKOV ABSTRACT: A new method fo constuctng bnay self-dual codes wth

More information

UNIT10 PLANE OF REGRESSION

UNIT10 PLANE OF REGRESSION UIT0 PLAE OF REGRESSIO Plane of Regesson Stuctue 0. Intoducton Ojectves 0. Yule s otaton 0. Plane of Regesson fo thee Vaales 0.4 Popetes of Resduals 0.5 Vaance of the Resduals 0.6 Summay 0.7 Solutons /

More information

A Novel Ordinal Regression Method with Minimum Class Variance Support Vector Machine

A Novel Ordinal Regression Method with Minimum Class Variance Support Vector Machine Intenatonal Confeence on Mateals Engneeng and Infomaton echnology Applcatons (MEIA 05) A ovel Odnal Regesson Method wth Mnmum Class Vaance Suppot Vecto Machne Jnong Hu,, a, Xaomng Wang and Zengx Huang

More information

Chapter 23: Electric Potential

Chapter 23: Electric Potential Chapte 23: Electc Potental Electc Potental Enegy It tuns out (won t show ths) that the tostatc foce, qq 1 2 F ˆ = k, s consevatve. 2 Recall, fo any consevatve foce, t s always possble to wte the wok done

More information

The Greatest Deviation Correlation Coefficient and its Geometrical Interpretation

The Greatest Deviation Correlation Coefficient and its Geometrical Interpretation By Rudy A. Gdeon The Unvesty of Montana The Geatest Devaton Coelaton Coeffcent and ts Geometcal Intepetaton The Geatest Devaton Coelaton Coeffcent (GDCC) was ntoduced by Gdeon and Hollste (987). The GDCC

More information

Information Retrieval Advanced IR models. Luca Bondi

Information Retrieval Advanced IR models. Luca Bondi Advanced IR models Luca Bondi Advanced IR models 2 (LSI) Pobabilistic Latent Semantic Analysis (plsa) Vecto Space Model 3 Stating point: Vecto Space Model Documents and queies epesented as vectos in the

More information

Scalars and Vectors Scalar

Scalars and Vectors Scalar Scalas and ectos Scala A phscal quantt that s completel chaacteed b a eal numbe (o b ts numecal value) s called a scala. In othe wods a scala possesses onl a magntude. Mass denst volume tempeatue tme eneg

More information

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M Dola Bagayoko (0) Integal Vecto Opeatons and elated Theoems Applcatons n Mechancs and E&M Ι Basc Defnton Please efe to you calculus evewed below. Ι, ΙΙ, andιιι notes and textbooks fo detals on the concepts

More information

A NOVEL DWELLING TIME DESIGN METHOD FOR LOW PROBABILITY OF INTERCEPT IN A COMPLEX RADAR NETWORK

A NOVEL DWELLING TIME DESIGN METHOD FOR LOW PROBABILITY OF INTERCEPT IN A COMPLEX RADAR NETWORK Z. Zhang et al., Int. J. of Desgn & Natue and Ecodynamcs. Vol. 0, No. 4 (205) 30 39 A NOVEL DWELLING TIME DESIGN METHOD FOR LOW PROBABILITY OF INTERCEPT IN A COMPLEX RADAR NETWORK Z. ZHANG,2,3, J. ZHU

More information

LASER ABLATION ICP-MS: DATA REDUCTION

LASER ABLATION ICP-MS: DATA REDUCTION Lee, C-T A Lase Ablaton Data educton 2006 LASE ABLATON CP-MS: DATA EDUCTON Cn-Ty A. Lee 24 Septembe 2006 Analyss and calculaton of concentatons Lase ablaton analyses ae done n tme-esolved mode. A ~30 s

More information

Approximate Abundance Histograms and Their Use for Genome Size Estimation

Approximate Abundance Histograms and Their Use for Genome Size Estimation J. Hlaváčová (Ed.): ITAT 2017 Poceedngs, pp. 27 34 CEUR Wokshop Poceedngs Vol. 1885, ISSN 1613-0073, c 2017 M. Lpovský, T. Vnař, B. Bejová Appoxmate Abundance Hstogams and The Use fo Genome Sze Estmaton

More information

CHAPTER 7. Multivariate effect sizes indices

CHAPTER 7. Multivariate effect sizes indices CHAPTE 7 Multvaate effect szes ndces Seldom does one fnd that thee s only a sngle dependent vaable nvolved n a study. In Chapte 3 s Example A we have the vaables BDI, POMS_S and POMS_B, n Example E thee

More information

Pattern Analyses (EOF Analysis) Introduction Definition of EOFs Estimation of EOFs Inference Rotated EOFs

Pattern Analyses (EOF Analysis) Introduction Definition of EOFs Estimation of EOFs Inference Rotated EOFs Patten Analyses (EOF Analyss) Intoducton Defnton of EOFs Estmaton of EOFs Infeence Rotated EOFs . Patten Analyses Intoducton: What s t about? Patten analyses ae technques used to dentfy pattens of the

More information

N = N t ; t 0. N is the number of claims paid by the

N = N t ; t 0. N is the number of claims paid by the Iulan MICEA, Ph Mhaela COVIG, Ph Canddate epatment of Mathematcs The Buchaest Academy of Economc Studes an CECHIN-CISTA Uncedt Tac Bank, Lugoj SOME APPOXIMATIONS USE IN THE ISK POCESS OF INSUANCE COMPANY

More information

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems Engneeng echancs oce esultants, Toques, Scala oducts, Equvalent oce sstems Tata cgaw-hll Companes, 008 Resultant of Two oces foce: acton of one bod on anothe; chaacteed b ts pont of applcaton, magntude,

More information

If there are k binding constraints at x then re-label these constraints so that they are the first k constraints.

If there are k binding constraints at x then re-label these constraints so that they are the first k constraints. Mathematcal Foundatons -1- Constaned Optmzaton Constaned Optmzaton Ma{ f ( ) X} whee X {, h ( ), 1,, m} Necessay condtons fo to be a soluton to ths mamzaton poblem Mathematcally, f ag Ma{ f ( ) X}, then

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 54 Detecton and Etmaton Theoy Joeph A. O Sullvan Samuel C. Sach Pofeo Electonc Sytem and Sgnal Reeach Laboatoy Electcal and Sytem Engneeng Wahngton Unvety 411 Jolley Hall 314-935-4173 (Lnda anwe) jao@wutl.edu

More information

Constraint Score: A New Filter Method for Feature Selection with Pairwise Constraints

Constraint Score: A New Filter Method for Feature Selection with Pairwise Constraints onstant Scoe: A New Flte ethod fo Featue Selecton wth Pawse onstants Daoqang Zhang, Songcan hen and Zh-Hua Zhou Depatment of ompute Scence and Engneeng Nanjng Unvesty of Aeonautcs and Astonautcs, Nanjng

More information

24-2: Electric Potential Energy. 24-1: What is physics

24-2: Electric Potential Energy. 24-1: What is physics D. Iyad SAADEDDIN Chapte 4: Electc Potental Electc potental Enegy and Electc potental Calculatng the E-potental fom E-feld fo dffeent chage dstbutons Calculatng the E-feld fom E-potental Potental of a

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

4 Recursive Linear Predictor

4 Recursive Linear Predictor 4 Recusve Lnea Pedcto The man objectve of ths chapte s to desgn a lnea pedcto wthout havng a po knowledge about the coelaton popetes of the nput sgnal. In the conventonal lnea pedcto the known coelaton

More information

Physics 202, Lecture 2. Announcements

Physics 202, Lecture 2. Announcements Physcs 202, Lectue 2 Today s Topcs Announcements Electc Felds Moe on the Electc Foce (Coulomb s Law The Electc Feld Moton of Chaged Patcles n an Electc Feld Announcements Homewok Assgnment #1: WebAssgn

More information

PHY126 Summer Session I, 2008

PHY126 Summer Session I, 2008 PHY6 Summe Sesson I, 8 Most of nfomaton s avalable at: http://nngoup.phscs.sunsb.edu/~chak/phy6-8 ncludng the sllabus and lectue sldes. Read sllabus and watch fo mpotant announcements. Homewok assgnment

More information

A Tutorial on Low Density Parity-Check Codes

A Tutorial on Low Density Parity-Check Codes A Tutoal on Low Densty Paty-Check Codes Tuan Ta The Unvesty of Texas at Austn Abstact Low densty paty-check codes ae one of the hottest topcs n codng theoy nowadays. Equpped wth vey fast encodng and decodng

More information

Vibration Input Identification using Dynamic Strain Measurement

Vibration Input Identification using Dynamic Strain Measurement Vbaton Input Identfcaton usng Dynamc Stan Measuement Takum ITOFUJI 1 ;TakuyaYOSHIMURA ; 1, Tokyo Metopoltan Unvesty, Japan ABSTRACT Tansfe Path Analyss (TPA) has been conducted n ode to mpove the nose

More information

State Estimation. Ali Abur Northeastern University, USA. Nov. 01, 2017 Fall 2017 CURENT Course Lecture Notes

State Estimation. Ali Abur Northeastern University, USA. Nov. 01, 2017 Fall 2017 CURENT Course Lecture Notes State Estmaton Al Abu Notheasten Unvesty, USA Nov. 0, 07 Fall 07 CURENT Couse Lectue Notes Opeatng States of a Powe System Al Abu NORMAL STATE SECURE o INSECURE RESTORATIVE STATE EMERGENCY STATE PARTIAL

More information

Amplifier Constant Gain and Noise

Amplifier Constant Gain and Noise Amplfe Constant Gan and ose by Manfed Thumm and Wene Wesbeck Foschungszentum Kalsuhe n de Helmholtz - Gemenschaft Unvestät Kalsuhe (TH) Reseach Unvesty founded 85 Ccles of Constant Gan (I) If s taken to

More information

Professor Wei Zhu. 1. Sampling from the Normal Population

Professor Wei Zhu. 1. Sampling from the Normal Population AMS570 Pofesso We Zhu. Samplg fom the Nomal Populato *Example: We wsh to estmate the dstbuto of heghts of adult US male. It s beleved that the heght of adult US male follows a omal dstbuto N(, ) Def. Smple

More information

Some Approximate Analytical Steady-State Solutions for Cylindrical Fin

Some Approximate Analytical Steady-State Solutions for Cylindrical Fin Some Appoxmate Analytcal Steady-State Solutons fo Cylndcal Fn ANITA BRUVERE ANDRIS BUIIS Insttute of Mathematcs and Compute Scence Unvesty of Latva Rana ulv 9 Rga LV459 LATVIA Astact: - In ths pape we

More information

A. P. Sakis Meliopoulos Power System Modeling, Analysis and Control. Chapter 7 3 Operating State Estimation 3

A. P. Sakis Meliopoulos Power System Modeling, Analysis and Control. Chapter 7 3 Operating State Estimation 3 DRAF and INCOMPLEE able of Contents fom A. P. Saks Melopoulos Powe System Modelng, Analyss and Contol Chapte 7 3 Opeatng State Estmaton 3 7. Intoducton 3 7. SCADA System 4 7.3 System Netwok Confguato 7

More information

Groupoid and Topological Quotient Group

Groupoid and Topological Quotient Group lobal Jounal of Pue and Appled Mathematcs SSN 0973-768 Volume 3 Numbe 7 07 pp 373-39 Reseach nda Publcatons http://wwwpublcatoncom oupod and Topolocal Quotent oup Mohammad Qasm Manna Depatment of Mathematcs

More information

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o?

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o? Test 1 phy 0 1. a) What s the pupose of measuement? b) Wte all fou condtons, whch must be satsfed by a scala poduct. (Use dffeent symbols to dstngush opeatons on ectos fom opeatons on numbes.) c) What

More information

The Backpropagation Algorithm

The Backpropagation Algorithm The Backpopagaton Algothm Achtectue of Feedfowad Netwok Sgmodal Thehold Functon Contuctng an Obectve Functon Tanng a one-laye netwok by teepet decent Tanng a two-laye netwok by teepet decent Copyght Robet

More information

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4 CSJM Unvesty Class: B.Sc.-II Sub:Physcs Pape-II Ttle: Electomagnetcs Unt-: Electostatcs Lectue: to 4 Electostatcs: It deals the study of behavo of statc o statonay Chages. Electc Chage: It s popety by

More information

SURVEY OF APPROXIMATION ALGORITHMS FOR SET COVER PROBLEM. Himanshu Shekhar Dutta. Thesis Prepared for the Degree of MASTER OF SCIENCE

SURVEY OF APPROXIMATION ALGORITHMS FOR SET COVER PROBLEM. Himanshu Shekhar Dutta. Thesis Prepared for the Degree of MASTER OF SCIENCE SURVEY OF APPROXIMATION ALGORITHMS FOR SET COVER PROBLEM Hmanshu Shekha Dutta Thess Pepaed fo the Degee of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS Decembe 2009 APPROVED: Fahad Shahokh, Mao Pofesso

More information

Retrieval Models: Language models

Retrieval Models: Language models CS-590I Informaton Retreval Retreval Models: Language models Luo S Department of Computer Scence Purdue Unversty Introducton to language model Ungram language model Document language model estmaton Maxmum

More information

Part V: Velocity and Acceleration Analysis of Mechanisms

Part V: Velocity and Acceleration Analysis of Mechanisms Pat V: Velocty an Acceleaton Analyss of Mechansms Ths secton wll evew the most common an cuently pactce methos fo completng the knematcs analyss of mechansms; escbng moton though velocty an acceleaton.

More information

A NOTE ON ELASTICITY ESTIMATION OF CENSORED DEMAND

A NOTE ON ELASTICITY ESTIMATION OF CENSORED DEMAND Octobe 003 B 003-09 A NOT ON ASTICITY STIATION OF CNSOD DAND Dansheng Dong an Hay. Kase Conell nvesty Depatment of Apple conomcs an anagement College of Agcultue an fe Scences Conell nvesty Ithaca New

More information

Backward Haplotype Transmission Association (BHTA) Algorithm. Tian Zheng Department of Statistics Columbia University. February 5 th, 2002

Backward Haplotype Transmission Association (BHTA) Algorithm. Tian Zheng Department of Statistics Columbia University. February 5 th, 2002 Backwad Haplotype Tansmsson Assocaton (BHTA) Algothm A Fast ult-pont Sceenng ethod fo Complex Tats Tan Zheng Depatment of Statstcs Columba Unvesty Febuay 5 th, 2002 Ths s a jont wok wth Pofesso Shaw-Hwa

More information

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle 1 PHYS 705: Classcal Mechancs Devaton of Lagange Equatons fom D Alembet s Pncple 2 D Alembet s Pncple Followng a smla agument fo the vtual dsplacement to be consstent wth constants,.e, (no vtual wok fo

More information

Light Time Delay and Apparent Position

Light Time Delay and Apparent Position Light Time Delay and ppaent Position nalytical Gaphics, Inc. www.agi.com info@agi.com 610.981.8000 800.220.4785 Contents Intoduction... 3 Computing Light Time Delay... 3 Tansmission fom to... 4 Reception

More information

Remember: When an object falls due to gravity its potential energy decreases.

Remember: When an object falls due to gravity its potential energy decreases. Chapte 5: lectc Potental As mentoned seveal tmes dung the uate Newton s law o gavty and Coulomb s law ae dentcal n the mathematcal om. So, most thngs that ae tue o gavty ae also tue o electostatcs! Hee

More information

Background. 3D Object recognition. Modeling polyhedral objects. Modeling polyhedral objects. Object and world coordinate systems

Background. 3D Object recognition. Modeling polyhedral objects. Modeling polyhedral objects. Object and world coordinate systems 3D Object ecognton Backgound Backgound n-pont pespectve algothms Geometc hashng Vew-based ecognton Recognton as pose estmaton Object pose defnes t embeddng n thee dmensonal space 3 degees of postonal feedom

More information

Energy in Closed Systems

Energy in Closed Systems Enegy n Closed Systems Anamta Palt palt.anamta@gmal.com Abstact The wtng ndcates a beakdown of the classcal laws. We consde consevaton of enegy wth a many body system n elaton to the nvese squae law and

More information

Recursive Least-Squares Estimation in Case of Interval Observation Data

Recursive Least-Squares Estimation in Case of Interval Observation Data Recusve Least-Squaes Estmaton n Case of Inteval Obsevaton Data H. Kuttee ), and I. Neumann 2) ) Geodetc Insttute, Lebnz Unvesty Hannove, D-3067 Hannove, Gemany, kuttee@gh.un-hannove.de 2) Insttute of Geodesy

More information

An Approach to Inverse Fuzzy Arithmetic

An Approach to Inverse Fuzzy Arithmetic An Appoach to Invese Fuzzy Athmetc Mchael Hanss Insttute A of Mechancs, Unvesty of Stuttgat Stuttgat, Gemany mhanss@mechaun-stuttgatde Abstact A novel appoach of nvese fuzzy athmetc s ntoduced to successfully

More information

A Bijective Approach to the Permutational Power of a Priority Queue

A Bijective Approach to the Permutational Power of a Priority Queue A Bijective Appoach to the Pemutational Powe of a Pioity Queue Ia M. Gessel Kuang-Yeh Wang Depatment of Mathematics Bandeis Univesity Waltham, MA 02254-9110 Abstact A pioity queue tansfoms an input pemutation

More information

VParC: A Compression Scheme for Numeric Data in Column-Oriented Databases

VParC: A Compression Scheme for Numeric Data in Column-Oriented Databases The Intenatonal Aab Jounal of Infomaton Technology VPaC: A Compesson Scheme fo Numec Data n Column-Oented Databases Ke Yan, Hong Zhu, and Kevn Lü School of Compute Scence and Technology, Huazhong Unvesty

More information

MULTILAYER PERCEPTRONS

MULTILAYER PERCEPTRONS Last updated: Nov 26, 2012 MULTILAYER PERCEPTRONS Outline 2 Combining Linea Classifies Leaning Paametes Outline 3 Combining Linea Classifies Leaning Paametes Implementing Logical Relations 4 AND and OR

More information

Goodness-of-fit for composite hypotheses.

Goodness-of-fit for composite hypotheses. Section 11 Goodness-of-fit fo composite hypotheses. Example. Let us conside a Matlab example. Let us geneate 50 obsevations fom N(1, 2): X=nomnd(1,2,50,1); Then, unning a chi-squaed goodness-of-fit test

More information

DISC-GLASSO: DISCRIMINATIVE GRAPH LEARNING WITH SPARSITY REGULARIZATION. 201 Broadway, Cambridge, MA 02139, USA

DISC-GLASSO: DISCRIMINATIVE GRAPH LEARNING WITH SPARSITY REGULARIZATION. 201 Broadway, Cambridge, MA 02139, USA DISC-GLASSO: DISCRIMINATIVE GRAPH LEARNING WITH SPARSITY REGULARIZATION Jun-Yu Kao,2 Dong Tan Hassan Mansou Antono Otega 2 Anthony Veto Mtsubsh Electc Reseach Labs (MERL), 20 Boadway, Cambdge, MA 0239,

More information

Space of ML Problems. CSE 473: Artificial Intelligence. Parameter Estimation and Bayesian Networks. Learning Topics

Space of ML Problems. CSE 473: Artificial Intelligence. Parameter Estimation and Bayesian Networks. Learning Topics /7/7 CSE 73: Artfcal Intellgence Bayesan - Learnng Deter Fox Sldes adapted from Dan Weld, Jack Breese, Dan Klen, Daphne Koller, Stuart Russell, Andrew Moore & Luke Zettlemoyer What s Beng Learned? Space

More information

Open Shop Scheduling Problems with Late Work Criteria

Open Shop Scheduling Problems with Late Work Criteria Open Shop Schedulng Poblems wth Late Wo Ctea Jace Błażewcz 1), Ewn Pesch 2), Małgozata Stena 3), Fan Wene 4) 1) Insttute of Computng Scence, Poznań Unvesty of Technology Potowo 3A, 60-965 Poznań, Poland

More information

SVM and a Novel POOL Method Coupled with THEMATICS for. Protein Active Site Prediction

SVM and a Novel POOL Method Coupled with THEMATICS for. Protein Active Site Prediction SVM and a Novel POOL Method Coupled wth THEMATICS fo Poten Actve Ste Pedcton A DISSERTATION SUBMITTED TO THE COLLEGE OF COMPUTER AND INFORMATION SCIENCE OF NORTHEASTERN UNIVERSITY IN PARTIAL FULFILLMENT

More information

Monte Carlo comparison of back-propagation, conjugate-gradient, and finite-difference training algorithms for multilayer perceptrons

Monte Carlo comparison of back-propagation, conjugate-gradient, and finite-difference training algorithms for multilayer perceptrons Rocheste Insttute of Technology RIT Schola Woks Theses Thess/Dssetaton Collectons 20 Monte Calo compason of back-popagaton, conugate-gadent, and fnte-dffeence tanng algothms fo multlaye peceptons Stephen

More information

Physics 2A Chapter 11 - Universal Gravitation Fall 2017

Physics 2A Chapter 11 - Universal Gravitation Fall 2017 Physcs A Chapte - Unvesal Gavtaton Fall 07 hese notes ae ve pages. A quck summay: he text boxes n the notes contan the esults that wll compse the toolbox o Chapte. hee ae thee sectons: the law o gavtaton,

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

4/18/2005. Statistical Learning Theory

4/18/2005. Statistical Learning Theory Statistical Leaning Theoy Statistical Leaning Theoy A model of supevised leaning consists of: a Envionment - Supplying a vecto x with a fixed but unknown pdf F x (x b Teache. It povides a desied esponse

More information

an application to HRQoL

an application to HRQoL AlmaMate Studoum Unvesty of Bologna A flexle IRT Model fo health questonnae: an applcaton to HRQoL Seena Boccol Gula Cavn Depatment of Statstcal Scence, Unvesty of Bologna 9 th Intenatonal Confeence on

More information

Bayesian Assessment of Availabilities and Unavailabilities of Multistate Monotone Systems

Bayesian Assessment of Availabilities and Unavailabilities of Multistate Monotone Systems Dept. of Math. Unvesty of Oslo Statstcal Reseach Repot No 3 ISSN 0806 3842 June 2010 Bayesan Assessment of Avalabltes and Unavalabltes of Multstate Monotone Systems Bent Natvg Jøund Gåsemy Tond Retan June

More information

Maximum Likelihood Directed Enumeration Method in Piecewise-Regular Object Recognition

Maximum Likelihood Directed Enumeration Method in Piecewise-Regular Object Recognition Maxmum Lkelhood Dected Enumeaton Method n Pecewse-Regula Obect Recognton Andey Savchenko Abstact We exploe the poblems of classfcaton of composte obect (mages, speech sgnals wth low numbe of models pe

More information

The geometric construction of Ewald sphere and Bragg condition:

The geometric construction of Ewald sphere and Bragg condition: The geometic constuction of Ewald sphee and Bagg condition: The constuction of Ewald sphee must be done such that the Bagg condition is satisfied. This can be done as follows: i) Daw a wave vecto k in

More information

Statistical pattern recognition

Statistical pattern recognition Statstcal pattern recognton Bayes theorem Problem: decdng f a patent has a partcular condton based on a partcular test However, the test s mperfect Someone wth the condton may go undetected (false negatve

More information

Neural networks. Nuno Vasconcelos ECE Department, UCSD

Neural networks. Nuno Vasconcelos ECE Department, UCSD Neural networs Nuno Vasconcelos ECE Department, UCSD Classfcaton a classfcaton problem has two types of varables e.g. X - vector of observatons (features) n the world Y - state (class) of the world x X

More information