A Mean-Variance Portfolio Optimal Under Utility Pricing

Size: px
Start display at page:

Download "A Mean-Variance Portfolio Optimal Under Utility Pricing"

Transcription

1 Jural f Mathematcs ad Statstcs (4): , 6 ISSN Scece Publcats Mea-Varace Prtfl Optmal Uder Utlty Prcg Hürlma Werer Feldstrasse 45, CH-84 Zürch, Stzerlad bstract: expected utlty mdel f asset chce, hch taes t accut asset prcg, s csdered. he btaed prtfl select prblem uder utlty prcg s slved uder several assumpts cludg quadratc utlty, expetal utlty ad multvarate symmetrc ellptcal returs. he btaed uque slut, called ptmal utlty prtfl, s sh mea-varace effcet the classcal sese. Varus quests, cludg cdts fr cmplete dversfcat ad the behavr f the ptmal prtfl uder uvarate ad multvarate rderg f rss as ell as rsadusted perfrmace measuremet, are dscussed. Key rds: Prtfl select, utlty prcg, mea-varace effcecy, ellptcal dstrbuts INRODUCION he mea-varace mdel f asset chce by Martz [] s e f the crerste f mder face. Despte ts shrtcmgs ad restrcts (multvarate rmal returs fr arbtrary prefereces r quadratc utlty fr arbtrary dstrbuts) ths fudametal mdel remas ppular, maly due t ts aalytcal tractablty ad ts rch emprcal mplcats. I the preset study, e csder a mdel f prtfl select, hch taes t accut asset prcg. s usual, the gal s maxmzat f expected utlty f the vestr s termal radm ealth. Hever, as sde cstrat, e suppse that asset prces are determed by the utlty prcple, hch expresses the dfferece betee the future radm value ad ts certaty equvalet. he aalyss s restrcted t the case here all assets are rsy. hs assumpt s mst useful fr strategc asset allcat, here eve mey marets are csdered rsy vestmets. Our prtfl select prblem uder utlty prcg s defed Sect ad slved uder several alteratve assumpts. I Sect., e assume quadratc utlty fucts but arbtrary returs ad bta the ptmal quadratc utlty prtfl. ssumg multvarate rmally dstrbuted returs ad a expetal utlty fuct Sect., the slut s called ptmal expetal utlty prtfl. he slut Sect.3, btaed fr multvarate symmetrc ellptcal returs but arbtrary left trucated utlty fucts, s called ptmal ellptcal prtfl. s a remarable ma result, e sh herem 3. that the three derved ptmal utlty prtfls defe a uque ptmal utlty prtfl, hch s mea-varace effcet the classcal sese. I Sect 4, e study the behavr f ths prtfl th respect t sme typcal stuats. he cdts fr cmplete dversfcat are stated. he, e dscuss the behavr f the ptmal prtfl uder uvarate ad multvarate rderg f rss as ell as uder rsadusted perfrmace measuremet.. Prtfl select uder utlty prcg: Csder the prtfl select ver a statc e-perd a ecmy th a fte set f rsy assets, hch has the fllg characterstcs: S : tal vestmet amut R : radm retur the -th rsy asset, =,..., W : prprt f tal amut vested the -th rsy asset, =,..., P : tal prce f the -th rsy asset, =,..., Let S = S be the tal amut vested the -th rsy asset such that = S = S. Defe the prprt λ f shares f the -th rsy asset by the cdt λ P = S, =,...,. (.) We suppse that the tal prces f the rsy assets are utlty prces. Fr ths, let be gve -decreasg ad ccave utlty fucts u (x), =,...,, e fr each rsy asset. he utlty prcple determes prces such a ay that there s dfferece betee recevg the future radm value P (+ R ) ad ts crrespdg certaty equvalet P, that s prces slve the system f equats u ( P) = E u ( P ( R ) ) +, =,...,. (.) Usg these prces, the e-perd crease ealth r radm ga f a prtfl chce λ = ( λ,..., λ ) s gve by λ = G( λ) = P R. (.3) Crrespdg uthr: Hürlma Werer, Feldstrasse 45, CH-84 Zürch, Stzerlad 445

2 Suppse a vestr uses a -decreasg ad ccave utlty fuct u(x). he, the prtfl select prblem f the vestr cssts t maxmze the expected utlty f the termal radm ealth ϕ( λ) = E u( S+ G( λ) ) uder the cdts (.). I the ext three Subsects three typcal stuats are csdered. We beg th the t ell mea-varace legtmated cases f quadratc utlty ad multvarate rmal returs ad exted the latter t the case f multvarate symmetrc ellptcal returs... Quadratc utlty fucts: Csder frst quadratc utlty fucts u (x) = u(x) = x γ x, =,...,. he margal utlty u'(x) = γ x s -egatve prvded x γ, hece satat s reached he x γ. avd ths, e assumes that rates f retur ad tal ealth are such that satat ll t be attaed []. Slvg (.) yelds the quadratc utlty prces P =, =,...,, (.4) γ + (+ ) here, are the meas ad ceffcets f varat f R, =,...,. maxmze ϕ( λ ) t suffces t slve the frst rder cdts ϕλ ( ) = P E R u '( S G( λ) ),,...,. λ + = = (.5) Uder the assumpt f a quadratc utlty fuct, e btas the equvalet cdts γ λ P ( Cv R,R ),,..., γ S + = = (.6) = Let e = (,..., ) be the vectr f expected returs ad let V% = ( Cv R,R + ) = ( E RR ) be the matrx f secd rder mmets, hse verse s assumed t exst. he (.6) has the slut γ λp = ( V% e ), =,...,. (.7) γ S It flls that the ptmal eght vectr = (,..., ), th λp =, =,...,, (.8) λp satsfes the smple relatshp V e = %, % th % = ( V% e), (.9) Where = (,...,) detes a vectr f es. he slut (.9) defes the ptmal quadratc utlty prtfl. Furthermre, e has usg (.7) that γs γ S S = λp = %, that s γ γ % γ = + % S J. Math. & Stat. (4): , 6 (.) 446 Isertg (.) t (.4) e btas the quadratc utlty prces + % P = S, =,...,. (.) + (+ ) % he ptmal quadratc utlty prprts defed (.) are the gve by + (+ ) λ = S= ( V% e ), =,..., (.) P + %.. Multvarate rmal returs ad expetal utlty: ther mprtat stuat, hch alls fr explct aalytcal frmulas, s a multvarate rmal dstrbut f returs ad expetal utlty fucts γ x u (x) = u(x) = ( e ), =,...,, th γ the γ ceffcet f rs avers. ga, dete by, the meas ad ceffcets f varat f R, =,...,. Slvg (.) yelds the expetal utlty prces P =, =,...,. (.3) γ Sce ( R,S + G( λ) ) s bvarate rmal, the applcat f Ste s Lemma yelds Cv R,u '( S + G( λ) ) = E u'' ( S+ G( λ) ) Cv[ R,G( λ) ], =,...,. (as (.6) ppedx). It flls that (.5) s equvalet t the cdts P Cv R,R,,...,. (.4) = γ λ = = Dete by V ( Cv R,R ) = the cvarace matrx, hse verse s assumed t exst. he (.4) has the slut γ λp = ( V e ), =,...,. (.5) he ptmal eght vectr = (,..., ) s gve by V e =, th = ( V e), (.6) ad defes the ptmal expetal utlty prtfl. Wth (.5) e has γs= γ λp =, hece γ = S. Iserted t (.3) yelds the expetal utlty prces S P =,,...,. = (.7) he ptmal expetal utlty prprts (.) are the gve by S ( V λ = = e ), =,..., (.8) P.3. Multvarate ellptcal returs ad left trucated utlty: Suppse that the radm vectr f returs (R,...,R ) flls a multvarate symmetrc ellptcal desty f returs th mea e ad pstve defte cvarace matrx V gve by

3 = det(v) (.9) f(x) g (x e) V (x e) Where g :[, ) [, ) s sme apprprate geeratr fuct. he -decreasg almst everyhere dfferetable ccave utlty fuct f the vestr s assumed t tae -egatve values such that u(x) = fr all x λ. he cstat l s chse such that the utlty asscated t udesrable egatve prtfl returs vashes (see the examples bel fr llustrat). pplyg Fag et al. [3], herem.6, p. 43 ad herem.8, p. 45, e tes that ( R,S+ G( λ) ) s bvarate ellptcal ad satsfes the lear regress prperty requred herem. f the ppedx. Sce u(x)= fr x l, the varat (.) f Ste s Lemma yelds the relatshp Cv R,u '( S + G( λ) ) Cv G( λ),u '( S + G( λ) ) (.) = Cv[ R,G( λ) ], =,...,. Var G( λ) [ ] It flls that (.5) s equvalet t the system f equats Cv G( λ),u '( S + G( λ) ) Var[ G( λ) ] E[ u '(S + G( λ)) ] (.) λ PCv R,R =, =,..., = hch has the slut Var[ G( λ) ] E u '( S + G( λ) ) λ = ( ) = Cv G( λ),u ' ( S + G( λ) ) he ptmal eght vectr (.8) s gve by P V e,,..., V e, = th ( V e) J. Math. & Stat. (4): , 6 (.) =, (.3) ad defes the ptmal ellptcal prtfl. By (.6) ths ccdes th the ptmal expetal utlty prtfl. llustrate, e assume the examples bel left trucated expetal utlty fucts such that fr =,..., e sets, x P ( + ), u(x) = (.4) γ ( exp{ γ x P( + ) } ),x P( + ), ad, x S( + ), u(x) = (.5) γ ( exp{ γ [ x S( + )]}), x S( + ), here = E S G( λ) s the mea expected retur f the prtfl. he specal chce f the left trucat mdels the fact that returs bel average are asscated a zer utlty. hs mght be apprprate fr the desg f ptmal prtfls, hse gal s t beat the maret. I ths stuat, the prcg equats (.) are equvalet t E exp( γ PR ) { R } (.6) = exp( γ P ), =,..., 447 here use has bee made f Pr(R ) = (symmetrc margs). Example.: Nrmal verted gamma returs It appears structve t llustrate ur results th a -trval but tractable multvarate ellptcal dstrbut, hch fds de terest bth Isurace ad Face. he mxture f a rmal th verted gamma varace yelds the Pears type VII dstrbut r geeralsed Studet t [4-6]. It has bee prpsed t mdel facal returs by Praetz [7], Blattberg ad Gedes [8], K [9], aylr [], Hürlma [,]. actuaral applcat s fud Hürlma [3]. he multvarate desty ( β + ) + (xe) C (xe) f(x) =, B ( β, ) det(c) (.7) π Γ( β) B ( β, ) =, β >, Γ ( β + ) has lcat-scaled trasfrmed Pears VII margal destes f(x) = B ( β, ) c ( β + ) (.8) x +, =,..., c If ß> the varace σ = Var[ R ] exsts ad e has υ c = ( β ) σ. If β =, υ =,,3,..., e recvers a lcat-scale trasfrmed Studet t th υ degrees f freedm. I partcular β = s a Cauchy ad ß= s a Bers dstrbut. If β the radm varable ( β ) ( R ) c cverges t a stadard rmal radm varable. O the ther had, ay lear R = R,...,R has desty cmbat ( ) ( β + ) x R = ( β ) + f (x) B,, (.9) c c th = e ad c= C [3], herem.6). he aalytcal frmulas bel use the specal tegral fuct a bx I(a,b) = ( + x ) e dx, (.3) hse cmputatal evaluat s dscussed the ppedx B. Uder the assumpt ß> (varaces are fte), e btas after sme calculat the frmulas [ ] + λ = β β + γ [ λ λ ] γ [ λ ] Eu'(S G( )) B( ;) I(, Sc), Cv G( ),u '(S + G( )) = Var G( ) (.3) β B( β; ) I( β, γsc), β hch serted t (.) yeld the relatshps

4 β I( β +, γsc) λp = γ β I( β, γsc) V e, =,..., ( ) J. Math. & Stat. (4): , 6 (.3) smlar calculat shs that the utlty prcg equats (.6) are equvalet t B( β; ) exp( γ P ) I( β +, γsc) (.33) = exp( γ P ), =,..., Usg (.3) ad S= λpe sees that β I( β +, γsc) γ S= (.34) β I( β, γsc) Whch s a mplct equat fr the parameter γ. Isertg ts umercal value t (.33) t s pssble t determe umercally the crrespdg trucated expetal utlty prces ad the ptmal prprts defed (.). 3. Mea-varace effcecy f the ptmal utlty prtfls: It s rthhle ad structve t cmpare prtfl select uder utlty prcg th the classcal mea-varace prtfl select. Let the set W = = descrbe all prtfl chces. = Recall that a prtfl W belgs t the meavarace budary f ad ly f, fr sme, the prtfl slves the prblem m{ σ = V} W subect t = e=. prtfl W belgs t the mea-varace effcet frter f ad ly f prtfl v W exsts such that v ad σ σ, here at least e f the equaltes s strct. Frm Mert [5] r Huag ad Ltzeberger [], e s that a prtfl belgs t the mea-varace Example.: Symmetrc Ktz type returs budary f ad ly f ther tractable famly f symmetrc ellptcal = g + h, (3.) dstrbuts has the desty here g ad h are the vectrs defed by K N s f ( x) = [( x e) C ( x e) ] exp{ r[ ( x e) C ( x e) ] } (.35), det( C) g = B( V e ) ( V ), D r, s >, N + >, (3.) h = C( V ) ( V e ) D th the rmalzg cstat th s Γ( ) N+ s K = r = (V e), B= e (V e), (.36) (3.3) N+ π Γ( s ) C= (V ), D = BC. hs famly, trduced by Ktz [4], s called he mea-varace effcet frter cssts f symmetrc Ktz type dstrbut Fag et al. [3]. It thse eght vectrs (3.) fr hch. It s reduces t the multvarate rmal dstrbut case C N = s =, r =. he margal destes tae the frm remarable that the ptmal prtfls (.9), (.6) ad (N) s (.3) are all equal ad belg t the mea-varace K x x f(x) = exp r (.37) effcet frter. c c c herem 3.: he ptmal quadratc utlty prtfl, ad the prtfl retur s aga f symmetrc Ktz type the ptmal expetal utlty prtfl ad the ptmal such that ellptcal prtfl ccde ad are mea-varace (N) s K x x effcet. f R (x) = exp r (.38) c c c Prf: he expected retur f the ptmal expetal alytcal evaluat requres the fllg specal tegral fuct e (V e) B utlty prtfl s = e = =. s a rx bx J(a, b,r,s) = x e dx b (.39) Usg (3.) ad (3.) e btas mmedately V e hse cmputatal evaluat s prvded the that g+ h =, hch by (3.) shs that ppedx B. straghtfrard calculat yelds the belgs t the mea-varace budary. Sce frmulas E[ u '(S + G( λ)) ] = KγSc J((N ), γsc,r,s), = B > C (because D = BC > ) the prtfl Cv[ G( λ),u '(S + G( λ)) ] = K γ(sc) J((N ) (.4) s mea-varace effcet. Sce (.3) s detcal t +, γ Sc, r, s). (.6), t remas t sh that (.9) ad (.6) yeld the Prceedg as Example., t s pssble t same ptmal prtfls. Let % ad dete the determe umercally the crrespdg trucated ptmal prtfls defed by (.9) ad (.6). expetal utlty prces ad the ptmal prprts bta them, e slves the lear systems Vx %% = e, (.). 448 v

5 J. Math. & Stat. (4): , 6 Vx = e ad set x% % = x %, x =. Sce x V % = V+ M th M = ( ), e sees mmedately that the equat V ~~ x = e s equvalet t the equat Vx% = ( e x% ) e. But ex% = e ( V% e) = B% s a cstat. It flls that ( B)( V e x% % ) V e % = = = =, hch shs x% ( B% )( V e) the assert. I ve f the preset ufcat result, the V e prtfl defed by the eght vectr = ll smply be called ptmal utlty prtfl. s a addtal prperty, t s mprtat t bserve that ay mea-varace effcet prtfl s ptmal the fllg sese. Fr ay such, vestg the amut S yelds by cstruct a termal radm ealth, hse crrespdg expected utlty satsfes the equalty E u( S+ G( λ) ) E u( S+ G( λ )), here λ s the ptmal prprt vectr defed (.). I the very arr sese f maxmzg ths expected utlty, the ptmal utlty prtfl s the preferred mea-varace effcet prtfl chce. 4. Sme prpertes f the ptmal utlty prtfl: Gve the ptmal utlty prtfl V e =, hch maxmzes the expected utlty f the termal radm ealth uder varus assumpts, t appears useful t study the behavr f ths partcular slut th respect t sme typcal stuats. I the specal case =, fte used as llustrat, e use the tats R,R fr the radm returs stead f R,R. ssume that the bvarate dstrbuted returs have meas,, stadard devats σ, σ ad crrelat ceffcet ρ. he ceffcets f varat are deted σ σ =, =. Quest : Whe s cmplete dversfcat ptmal? I case sme f each rsy asset s purchased, that s > fr all {,...,}, e speas f cmplete dversfcat [6-8]. hs stuat ccurs f ad ly f V e > (each vectr cmpet s strctly pstve). Fr example, f = e has σ ρσσ V e= > ( ρ ) σ σ σ ρσσ (4.) f ad ly f ρ < m, r equvaletly R R R R Cv, < m Var, Var. (4.) I partcular, ths stuat alls fr pstvely crrelated returs, hch are typcally bserved facal marets ad hse facal rs cat be elmated thrugh dversfcat [9]. Quest : H des the ptmal prtfl behave uder uvarate rderg f rss? () () () I geeral, let R = (R,..., R ), =,, be t vectrs f multvarate rmally dstrbuted returs ad () let, =,, the crrespdg ptmal prtfls. he radm returs f the ptmal prtfls are () () deted here R = R, =,. Cmparg ther expected expetal utltes, e s frm stadard rderg f rss thery [] that Eu(R) [ ] Eu(R) [ ] (4.3) f ad ly f R sl R, (4.4) here sl detes the stp-lss rder r equvaletly the creasg cvex rder. Uder rmally dstrbuted returs, the relat (4.4) hlds f ad ly f the meas ad stadard devats are rdered as flls:, σ σ. (4.5) Frm the prf f herem 3., e s B that =, =,, here the cstats,b are defed as (3.3). Usg Huag ad Ltzeberger [], frmula (3..b), e btas further B σ = ( C + B ) =, =,. (4.6) D hese results all fr a umercal evaluat f the crter (4.5), hch s left t the terested reader. Quest 3: H des the ptmal prtfl behave uder multvarate rderg f rss? Gve sme multvarate rderg f relatve rsess betee the t vectrs R () ad R (), h d the crrespdg ptmal eght vectrs W () ad W () behave? hs dffcult quest has ly bee scarcely dscussed the lterature. Fr smlar but dfferet prtfl select prblems, e fds sme results the studes by Fshbur ad Prter [], Ladsberger ad Mels [], Eechudt ad Gller [4], Hürlma [8]. llustrate, let us restrct ur attet t the bvarate stuat = ad let us assume that the rmally () () () () dstrbuted pars (R,R ) ad (R,R ) have equal margs, partcular equal meas,, equal 449

6 J. Math. & Stat. (4): , 6 stadard devats σ, σ, but dfferet crrelat ceffcets p () ad p (). We assume that the secd retur s mre rsy tha the frst the sese that the ceffcets f varat satsfy the equalty >. What happes uder the crrelat rder f rsess () () () () (R,R ) c (R,R )? hs ma bvarate rderg f rss has bee csdered amg thers aagmt ad Oamt [3], Cambas et al. [5], che [6], Dhaee ad Gvaerts [7]. I ur specal bvarate stuat, the abve relat hlds exactly () () he ρ ρ. N, the eghts the mre rsy asset are gve by () =, =,. (4.7) () ρ + () ρ () () It s mmedate that ρ ρ ad > mples () (). hs meas that a decs maer ll prprtally vest mre the rser asset f the less crrelated rsy par. hs duces a preferece relat fr l depedece betee returs, hch seems t be accrdace th the usual stadards mder face. Quest 4: H des the ptmal prtfl behave uder rs-adusted perfrmace measuremet? mder vestr decdes up vestmet by lg at the tradeff betee expected retur ad rs, here rs s measured usg a s-called cheret measure f rs [8]. smple ad ppular cheret measure f rs, at least sce Rcafellar ad Uryasev [9], s cdtal value-at-rs t sme cfdece level α, hch fr a rmally dstrbuted radm retur R equals CVaRα [ R] = E R R VaR [ R] > α (4.8) = ϕ Φ ( α) σ, α here VaRα [ R] = f { x Pr(R x) α} s the value-atrs, Φ(x) s the stadard rmal dstrbut, ϕ (x) =Φ '(x) ad, σ are the mea ad stadard devat f R. Fr rs-adusted perfrmace measuremet, e ls at the radm retur per ut f cdtal value-at-rs t a fxed cfdece level α, called CVaR retur rat, hch s defed by R CVaR [ (4.9) α R] he expected value f the CVaR retur rat measures the rs-adusted retur captal. hs ay f cmputg the retur s cmmly called RROC [3] ad s defed by ER [ ] RROCα [ R] = (4.) CVaR R α [ ] N, f a vestr has t decde up the mre prftable f t ptmal prtfls th radm returs R ad R, a decs favr f the secd retur s tae f ad ly f e has RROCα [ R ] RROCα [ R] at gve cfdece levels a. hs preferece crter tells us that a retur s preferred t ather f ts expected value per ut f ecmc rs captal s greater. By (4.8) ad the results fr Quest, e btas the cha f equvalet equaltes RROCα [ R ] RROCα [ R] σ σ = = = = (4.) B B B B. ppedx : varat f Ste s Lemma herem.: Let (,) be a bvarate real radm vectr th dstrbut F (,) (x,y) ad let g(x) be a real dfferetable fuct such that lm g(x) =. x Suppse (, ) satsfes the lear regress prperty (LR) E = y = E[ ] + β ( ye[ ]), Where ß=ß[,] s sme cstat depedg (,). he e has the detty Cv,g() = β Cv,g() (.) [ ] [ ] Prf: Frst, tegrate bth sdes f (LR) th respect t the cdtal dstrbut F( y) t get the detty E [ ] E y = β { E [ ] E y } (.) he cvarace frmula by Heffdg [3] (r Lehma [3], Lemma ) yelds Cv,g() = F (x,y) F (x)f (y) g'(y)dxdy [ ] {, } { } = F(x y) F(x)F(y)g'(y)dxdy F (x) dx F (x)dx = F(y)g'(y)dy F (x y) dx + F (x y)dx E E y F(y)g'(y)dy. [ ] = { [ ] } Isertg (.) e gets Cv[,g() ] y = β I(y)g'(y)dy, th (.3) { [ ] } I(y) = E E y F (y) = E tdy= te dy ( [ ] ) ( [ ]) y (.4) Isertg (.4) t (.3) ad applyg Fub s therem as ell as the assumpt lm g(x) =, e x btas furthermre 45

7 J. Math. & Stat. (4): , 6 I(y)g '(y)dy = ( t E[ ] ) df (t) g '(y)dy y t = g'(y)dy ( t E [ ]) df(t) = ( te [ ]) g(t)df(t) = E ( E[ ] ) g() = Cv[,g() ], Whch shs the desred detty. I the specal case f a bvarate rmal radm vectr, e has Cv[,] β = Var[ ] ad the detty [33] Lemma. Cv[,g() ] = E[ g'() ] Var[ ], (.5) hch mples the relatshp Cv[,g() ] = E[ g'() ] Cv[,], (.6) I the lterature ths s attrbuted t Ste [34,35], Huag ad Ltzeberger []. Sce a lt f bvarate radm mdels satsfy the requred lear regress prperty, the dsplayed cvarace detty has a de applcat. mg the may multvarate mdels satsfyg lear regress prpertes, let us met the fllg fe but mprtat classes ad famles f multvarate dstrbuts: * he class f symmetrc ellptcal dstrbuts [3] * Bvarate ad multvarate dstrbuts f Pears type [36,37] * Bvarate ad multvarate Paret dstrbuts f the frst d [38] * Bvarate ad multvarate dstrbuts cstructed frm lear Spearma r Fréchet cpulas th margs frm lcat-scale famles [,,37,39] ppedx B: Numercal evaluat f t specal tegral fucts Frst, e sh h t cmpute the tegral (.3), that s a bx I = I(a,b) = ( + x ) e dx (B.) Dvde the tegral t t parts such that I= I+ I th a bx I = (+ x ) e dx (B.) a bx I = (+ x ) e dx (B.3) Recall the bmal seres expas α α α ( + z) = z, z <, (B.4) αα ( )...( α + ) =! hch s vald fr all real umbers α. Iserted t (B.) e btas a bx I = x e dx = (B.5) a Γ ( + ) = + G(b; + ) b x α t here G(x; α) =Γ( α) t e dt detes the cmplete gamma fuct. Fr (B.3) te that a a a ( + x ) = x ( + x ) ad apply (B.4) the secd term. Oe btas a a bx I = J, J = x e dx, (B.6) here the tegrals ca be calculated recursvely as flls (use partal tegrat) : b b b J = ( bj e ) e, a + a + (B.7) Γ (a + ),J = a [ G(b;a+ ) ]. + b he evaluat f the secd specal tegral (.39) s smpler. Usg the expetal seres ( ) r s s exp( rz ) = z, e btas the Gamma! fuct seres expas a rx s J(a,b,r,s) = x e bx dx b ( ) r Γ (a+ s+ ) = a+ s+.! b REFERENCES (B.8). Martz, H.M., 95. Prtfl select. he J. Face, pp: Huag, C. ad R.H. Ltzeberger, 988. Fudats fr Facal Ecmcs. Elsever Scece Publshg Cmpay. 3. Fag, K.-., S. Ktz ad K.-W. Ng, 99. Symmetrc Multvarate ad Related Dstrbuts. Chapma ad Hall. 4. Hgg, R. ad S. Klugma, 984. Lss Dstrbuts. Jh Wley. Ne r. 5. Helma, W.-R., 989. Decs theretc fudats f credblty thery. Isurace: Mathematcs ad Ecmcs, 8: Jhs, N.L.,. Ktz ad N. Balarsha, 995. Ctuus Uvarate Dstrbuts. (d Ed.). Jh Wley, Ne r. 7. Praetz, P.D., 97. he dstrbut f share prce chages. J. Busess, 45: Blattberg, R.C. ad N.J. Gedes, 974. cmpars f the stable ad Studet dstrbuts as statstcal mdels fr stc prces. J. Busess, 47: K, S.J., 984. Mdels f stc returs - cmpars. J. Face, 39: aylr, S.J., 99. Mdelg Facal me Seres. (3rd reprt). Jh Wley.. Hürlma, W., a. Facal data aalyss th t symmetrc dstrbuts. SIN Bullet, 3:

8 J. Math. & Stat. (4): , 6. Hürlma, W., 4a. Fttg bvarate cumulatve returs th cpulas. Cmputatal Statstcs ad Data alyss, 45: Hürlma, W., 995. Predctve stp-lss premums ad Studet s t-dstrbut. Isurace: Mathematcs ad Ecmcs, 6: Ktz, S., 975. Multvarate dstrbuts at a crss-rad. I Patl, G.P., Ktz S. ad J.K. Ord (Eds.). Statstcal Dstrbuts Scetfc Wr,. D. Redel Publ. C. 5. Mert, R., 97. aalytcal dervat f the effcet prtfl frter. J. Facal ad Quat. alyss, 7: Samuels, P.., 967. Geeral prf that dversfcat pays. J. Face ad Quat. alyss, : -3. Reprted Mert, R.C. 97, Vl Wrght, R., 987. Expectat depedece f radm varables, th a applcat prtfl thery. hery ad Decs, : Hürlma, W.,. O a classcal prtfl prblem: Dversfcat, cmparatve statc ad ther ssues. Prceedgs f the th Itl. FIR Cllquum, Nray. 9. Sharpe, W.F., 985. Ivestmets. Pretce-Hall Iteratal. 3rd Ed.. Kaas, R., Heeraarde, va.e. ad M.J. Gvaerts, 994. Orderg f ctuaral Rss. CIRE Educat Seres, Brussels.. Fshbur, P. ad B. Prter, 976. Optmal prtfls th e safe ad e rsy asset: effects f chages rate f retur ad rs. Maagemet Sc., : Ladsberger, M. ad I. Mels, 99. Demad fr rsy facal assets: prtfl aalyss. J. Ecmc hery, 5: Eechudt, L. ad C. Gller, 995. Demad fr rsy assets ad the mte prbablty rat rder. J. Rs ad Ucertaty, : aagmt,. ad M. Oamt, 969. Partal rdergs f permutats ad mtcty f a ra crrelat statstc. als Isttute f Statstcal Mathematcs, : Cambas, S., G. Sms ad W. Stut, 976. Iequaltes fr E(,) he the margals are fxed. Zetschrft für Wahrschelchetsthere ud ver. Gebete, 36: che,.h., 98. Iequaltes fr dstrbuts th gve margals. he. Prbab., 8: Dhaee, J. ad M.J. Gvaerts, 996. Depedecy f rss ad stp-lss rder. SIN Bullet, 6: rtzer, P., F. Delbae, J.M. Eber ad D. Heath, 999. Cheret measures f rs. Mathematcal Face, 9: Rcafellar, R.. ad S. Uryasev,. Cdtal value-at-rs fr geeral lss dstrbuts. Jural f Bag ad Face, 6: Matte, C., 996. Maagg Ba Captal. J. Wley, Chchester. 3. Heffdg, W., 94. Massstabvarate Krrelatsthere. Schrfte des Math. Isttuts ud des Isttuts für geadte Mathemat der Uverstät Berl, 5: Eglsh traslat Fsher ad Se, 994, pp: Lehma, E.L., 966. Sme ccepts f depedece.. Math. Stat., 37: Haff, L.R. ad R.W. Jhs, 986. he superharmc cdt fr smultaeus estmat f meas expetal famles. Caada J. Stat., 4: Ste, C.M., 97. bud fr the errr the rmal apprxmat t the dstrbut f a sum f depedet radm varables. Prc. 6th Bereley Symp. Mathematcal Statstcs ad Prbablty, : Ste, C.M., 98. Estmat f the mea f a multvarate rmal dstrbut. he. Stat., 9: Jhs, N.L.,. Ktz ad N. Balarsha,. Ctuus Multvarate Dstrbuts, vl.. Mdels ad pplcats (d Ed.). Jh Wley, Ne r. 37. Hürlma, W., b. alteratve apprach t prtfl select. Prc. f the th Itl. FIR Cllquum, Cacu, Mexc. 38. Stey, H.S., 96. O regress prpertes f multvarate prbablty fucts f Pears s types. Prc. f the Ryal cad. f Sc., msterdam, 63: Hürlma, W., 4b. Multvarate Fréchet cpulas ad cdtal value-at-rs. Itl. J. Math. ad Math. Sc., 7:

The Simple Linear Regression Model: Theory

The Simple Linear Regression Model: Theory Chapter 3 The mple Lear Regress Mdel: Ther 3. The mdel 3.. The data bservats respse varable eplaatr varable : : Plttg the data.. Fgure 3.: Dsplag the cable data csdered b Che at al (993). There are 79

More information

Basics of heteroskedasticity

Basics of heteroskedasticity Sect 8 Heterskedastcty ascs f heterskedastcty We have assumed up t w ( ur SR ad MR assumpts) that the varace f the errr term was cstat acrss bservats Ths s urealstc may r mst ecmetrc applcats, especally

More information

What regression does. so β. β β β

What regression does. so β. β β β Sect Smple Regress What regress des Relatshp Ofte ecmcs we beleve that there s a (perhaps causal) relatshp betwee tw varables Usually mre tha tw, but that s deferred t ather day Frm Is the relatshp lear?

More information

Data Mining: Concepts and Techniques

Data Mining: Concepts and Techniques Data Mg: cepts ad Techques 3 rd ed. hapter 10 1 Evaluat f lusterg lusterg evaluat assesses the feasblty f clusterg aalyss a data set ad the qualty f the results geerated by a clusterg methd. Three mar

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

Goal of the Lecture. Lecture Structure. FWF 410: Analysis of Habitat Data I: Definitions and Descriptive Statistics

Goal of the Lecture. Lecture Structure. FWF 410: Analysis of Habitat Data I: Definitions and Descriptive Statistics FWF : Aalyss f Habtat Data I: Defts ad Descrptve tatstcs Number f Cveys A A B Bur Dsk Bur/Dsk Habtat Treatmet Matthew J. Gray, Ph.D. Cllege f Agrcultural ceces ad Natural Resurces Uversty f Teessee-Kvlle

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Multivariate Transformation of Variables and Maximum Likelihood Estimation Marquette Uversty Multvarate Trasformato of Varables ad Maxmum Lkelhood Estmato Dael B. Rowe, Ph.D. Assocate Professor Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 03 by Marquette Uversty

More information

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables Joural of Sceces, Islamc Republc of Ira 8(4): -6 (007) Uversty of Tehra, ISSN 06-04 http://sceces.ut.ac.r Complete Covergece ad Some Maxmal Iequaltes for Weghted Sums of Radom Varables M. Am,,* H.R. Nl

More information

PY3101 Optics. Learning objectives. Wave propagation in anisotropic media Poynting walk-off The index ellipsoid Birefringence. The Index Ellipsoid

PY3101 Optics. Learning objectives. Wave propagation in anisotropic media Poynting walk-off The index ellipsoid Birefringence. The Index Ellipsoid The Ide Ellpsd M.P. Vaugha Learg bjectves Wave prpagat astrpc meda Ptg walk-ff The de ellpsd Brefrgece 1 Wave prpagat astrpc meda The wave equat Relatve permttvt I E. Assumg free charges r currets E. Substtutg

More information

MATHEMATICAL PROGRAMMING-BASED PERTURBATION ANALYSIS FOR GI/G/1 QUEUES. He Zhang Wai Kin (Victor) Chan

MATHEMATICAL PROGRAMMING-BASED PERTURBATION ANALYSIS FOR GI/G/1 QUEUES. He Zhang Wai Kin (Victor) Chan Prceedgs f the 007 Wter Smulat Cferece S. G. Heders,. ller, M.-H. Hseh, J. Shrtle, J. D. ew, ad R. R. art, eds. MAHEMAICAL PROGRAMMING-ASED PERURAION ANALYSIS FOR GI/G/ QUEUES He Zhag Wa K (Vctr Cha Departmet

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

arxiv:math/ v1 [math.gm] 8 Dec 2005

arxiv:math/ v1 [math.gm] 8 Dec 2005 arxv:math/05272v [math.gm] 8 Dec 2005 A GENERALIZATION OF AN INEQUALITY FROM IMO 2005 NIKOLAI NIKOLOV The preset paper was spred by the thrd problem from the IMO 2005. A specal award was gve to Yure Boreko

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measure of Cetral Tedecy: Measures of Cetral Tedecy ad Dsperso ) Mathematcal Average: a) Arthmetc mea (A.M.) b) Geometrc mea (G.M.) c) Harmoc mea (H.M.) ) Averages of Posto: a) Meda

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

ON THE LAGRANGIAN RHEONOMIC MECHANICAL SYSTEMS

ON THE LAGRANGIAN RHEONOMIC MECHANICAL SYSTEMS THE PUBISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Seres A, OF THE ROMANIAN ACADEMY Vlume 1, Number 1/9, pp. ON THE AGRANGIAN RHEONOMIC MECHANICA SYSTEMS Radu MIRON*, Tmak KAWAGUCHI**, Hrak KAWAGUCHI***

More information

Lecture 2. Basic Semiconductor Physics

Lecture 2. Basic Semiconductor Physics Lecture Basc Semcductr Physcs I ths lecture yu wll lear: What are semcductrs? Basc crystal structure f semcductrs Electrs ad hles semcductrs Itrsc semcductrs Extrsc semcductrs -ded ad -ded semcductrs Semcductrs

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

The fuzzy decision of transformer economic operation

The fuzzy decision of transformer economic operation The fuzzy decs f trasfrmer ecmc perat WENJUN ZHNG, HOZHONG CHENG, HUGNG XIONG, DEXING JI Departmet f Electrcal Egeerg hagha Jatg Uversty 954 Huasha Rad, 3 hagha P. R. CHIN bstract: - Ths paper presets

More information

CHAPTER 3 POSTERIOR DISTRIBUTIONS

CHAPTER 3 POSTERIOR DISTRIBUTIONS CHAPTER 3 POSTERIOR DISTRIBUTIONS If scece caot measure the degree of probablt volved, so much the worse for scece. The practcal ma wll stck to hs apprecatve methods utl t does, or wll accept the results

More information

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations HP 30S Statstcs Averages ad Stadard Devatos Average ad Stadard Devato Practce Fdg Averages ad Stadard Devatos HP 30S Statstcs Averages ad Stadard Devatos Average ad stadard devato The HP 30S provdes several

More information

To use adaptive cluster sampling we must first make some definitions of the sampling universe:

To use adaptive cluster sampling we must first make some definitions of the sampling universe: 8.3 ADAPTIVE SAMPLING Most of the methods dscussed samplg theory are lmted to samplg desgs hch the selecto of the samples ca be doe before the survey, so that oe of the decsos about samplg deped ay ay

More information

ECON 5360 Class Notes GMM

ECON 5360 Class Notes GMM ECON 560 Class Notes GMM Geeralzed Method of Momets (GMM) I beg by outlg the classcal method of momets techque (Fsher, 95) ad the proceed to geeralzed method of momets (Hase, 98).. radtoal Method of Momets

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for Chapter 4-5 Notes: Although all deftos ad theorems troduced our lectures ad ths ote are mportat ad you should be famlar wth, but I put those

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Marginal Distribution Plots for Proportional Hazards Models with Time-Dependent Covariates or Time-Varying Regression Coefficients

Marginal Distribution Plots for Proportional Hazards Models with Time-Dependent Covariates or Time-Varying Regression Coefficients Ope Jural f Statstcs 27 7 92- http://wwwscrprg/jural/js ISSN Ole: 26-798 ISSN Prt: 26-78X Margal Dstrbut Plts fr Prprtal Hazards Mdels wth Tme-Depedet Cvarates r Tme-Varyg Regress Ceffcets Qqg u Juy Dg

More information

Qualifying Exam Statistical Theory Problem Solutions August 2005

Qualifying Exam Statistical Theory Problem Solutions August 2005 Qualfyg Exam Statstcal Theory Problem Solutos August 5. Let X, X,..., X be d uform U(,),

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

On the Borda Method for Multicriterial Decision-Making

On the Borda Method for Multicriterial Decision-Making O the Brda Methd r Multcrteral Decs-Makg Radu A. Pău Iteratal Metary Fud Isttute 700 9 th Street, N.W. Washgt, D.C. 2043 rpau@m.rg r radupau@yah.cm Abstract The preset paper dscusses tw ssues wth multcrteral

More information

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean Research Joural of Mathematcal ad Statstcal Sceces ISS 30 6047 Vol. 1(), 5-1, ovember (013) Res. J. Mathematcal ad Statstcal Sc. Comparso of Dual to Rato-Cum-Product Estmators of Populato Mea Abstract

More information

Lecture Notes Types of economic variables

Lecture Notes Types of economic variables Lecture Notes 3 1. Types of ecoomc varables () Cotuous varable takes o a cotuum the sample space, such as all pots o a le or all real umbers Example: GDP, Polluto cocetrato, etc. () Dscrete varables fte

More information

Byeong-Joo Lee

Byeong-Joo Lee yeg-j Lee OSECH - MSE calphad@pstech.ac.r yeg-j Lee www.pstech.ac.r/~calphad Fudametals Mcrscpc vs. Macrscpc Vew t State fuct vs. rcess varable Frst Law f hermdyamcs Specal prcesses 1. Cstat-Vlume rcess:

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

Maps on Triangular Matrix Algebras

Maps on Triangular Matrix Algebras Maps o ragular Matrx lgebras HMED RMZI SOUROUR Departmet of Mathematcs ad Statstcs Uversty of Vctora Vctora, BC V8W 3P4 CND sourour@mathuvcca bstract We surveys results about somorphsms, Jorda somorphsms,

More information

Equilibrium corporate nance

Equilibrium corporate nance Equlbrum crprate ace Albert s NYU Per Gttard EUI Gud Ruta NYU ad EUI Octber 2, 2009 Abstract We study a geeral equlbrum mdel wth prduct where acal markets are cmplete. I ths evrmet rms crprate acg decss

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

Analysis of Variance with Weibull Data

Analysis of Variance with Weibull Data Aalyss of Varace wth Webull Data Lahaa Watthaacheewaul Abstract I statstcal data aalyss by aalyss of varace, the usual basc assumptos are that the model s addtve ad the errors are radomly, depedetly, ad

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

4 Inner Product Spaces

4 Inner Product Spaces 11.MH1 LINEAR ALGEBRA Summary Notes 4 Ier Product Spaces Ier product s the abstracto to geeral vector spaces of the famlar dea of the scalar product of two vectors or 3. I what follows, keep these key

More information

Chapter 10 Two Stage Sampling (Subsampling)

Chapter 10 Two Stage Sampling (Subsampling) Chapter 0 To tage amplg (usamplg) I cluster samplg, all the elemets the selected clusters are surveyed oreover, the effcecy cluster samplg depeds o sze of the cluster As the sze creases, the effcecy decreases

More information

Ordinary Differential Equations. Orientation. Lesson Objectives. Ch. 25. ODE s. Runge-Kutta Methods. Motivation Mathematical Background

Ordinary Differential Equations. Orientation. Lesson Objectives. Ch. 25. ODE s. Runge-Kutta Methods. Motivation Mathematical Background Ordar Deretal Equats C. 5 Oretat ODE s Mtvat Matematcal Bacgrud Ruge-Kutta Metds Euler s Metd Hue ad Mdpt metds Less Objectves Be able t class ODE s ad dstgus ODE s rm PDE s. Be able t reduce t rder ODE

More information

A NEW LOG-NORMAL DISTRIBUTION

A NEW LOG-NORMAL DISTRIBUTION Joural of Statstcs: Advaces Theory ad Applcatos Volume 6, Number, 06, Pages 93-04 Avalable at http://scetfcadvaces.co. DOI: http://dx.do.org/0.864/jsata_700705 A NEW LOG-NORMAL DISTRIBUTION Departmet of

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Abstract. Introduction

Abstract. Introduction THE IMPACT OF USING LOG-ERROR CERS OUTSIDE THE DATA RANGE AND PING FACTOR By Dr. Shu-Pg Hu Teclte Research Ic. 566 Hllster Ave. Ste. 30 Sata Barbara, CA 93 Abstract Ths paper dscusses the prs ad cs f usg

More information

Dr. Shalabh. Indian Institute of Technology Kanpur

Dr. Shalabh. Indian Institute of Technology Kanpur Aalyss of Varace ad Desg of Expermets-I MODULE -I LECTURE - SOME RESULTS ON LINEAR ALGEBRA, MATRIX THEORY AND DISTRIBUTIONS Dr. Shalabh Departmet t of Mathematcs t ad Statstcs t t Ida Isttute of Techology

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

LINEAR REGRESSION ANALYSIS

LINEAR REGRESSION ANALYSIS LINEAR REGRESSION ANALYSIS MODULE V Lecture - Correctg Model Iadequaces Through Trasformato ad Weghtg Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Aalytcal methods for

More information

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties

F. Inequalities. HKAL Pure Mathematics. 進佳數學團隊 Dr. Herbert Lam 林康榮博士. [Solution] Example Basic properties 進佳數學團隊 Dr. Herbert Lam 林康榮博士 HKAL Pure Mathematcs F. Ieualtes. Basc propertes Theorem Let a, b, c be real umbers. () If a b ad b c, the a c. () If a b ad c 0, the ac bc, but f a b ad c 0, the ac bc. Theorem

More information

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk Math Medley #45 of Gottschalk s Gestalts A Seres Illustratg Iovatve Forms of the Orgazato & Exposto of Mathematcs by Walter Gottschalk Ifte Vstas Press PVD RI 2001 GG45-1 (30) 2001 Walter Gottschalk 500

More information

Laboratory I.10 It All Adds Up

Laboratory I.10 It All Adds Up Laboratory I. It All Adds Up Goals The studet wll work wth Rema sums ad evaluate them usg Derve. The studet wll see applcatos of tegrals as accumulatos of chages. The studet wll revew curve fttg sklls.

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

A New Family of Transformations for Lifetime Data

A New Family of Transformations for Lifetime Data Proceedgs of the World Cogress o Egeerg 4 Vol I, WCE 4, July - 4, 4, Lodo, U.K. A New Famly of Trasformatos for Lfetme Data Lakhaa Watthaacheewakul Abstract A famly of trasformatos s the oe of several

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables ppled Mathematcal Sceces, Vol 4, 00, o 3, 637-64 xted the Borel-Catell Lemma to Sequeces of No-Idepedet Radom Varables olah Der Departmet of Statstc, Scece ad Research Campus zad Uversty of Tehra-Ira der53@gmalcom

More information

Exergy Analysis of Large ME-TVC Desalination System

Exergy Analysis of Large ME-TVC Desalination System Exergy Aalyss f arge ME-V esalat System Awar O. Bamer Water & Eergy Prgram\Research rectrate Kuwat udat fr the Advacemet f Sceces (KAS) he 0 th Gulf Water ferece, -4 Aprl 0, ha- Qatar Outles Itrduct Prcess

More information

Lecture 02: Bounding tail distributions of a random variable

Lecture 02: Bounding tail distributions of a random variable CSCI-B609: A Theorst s Toolkt, Fall 206 Aug 25 Lecture 02: Boudg tal dstrbutos of a radom varable Lecturer: Yua Zhou Scrbe: Yua Xe & Yua Zhou Let us cosder the ubased co flps aga. I.e. let the outcome

More information

Recall MLR 5 Homskedasticity error u has the same variance given any values of the explanatory variables Var(u x1,...,xk) = 2 or E(UU ) = 2 I

Recall MLR 5 Homskedasticity error u has the same variance given any values of the explanatory variables Var(u x1,...,xk) = 2 or E(UU ) = 2 I Chapter 8 Heterosedastcty Recall MLR 5 Homsedastcty error u has the same varace gve ay values of the eplaatory varables Varu,..., = or EUU = I Suppose other GM assumptos hold but have heterosedastcty.

More information

22 Nonparametric Methods.

22 Nonparametric Methods. 22 oparametrc Methods. I parametrc models oe assumes apror that the dstrbutos have a specfc form wth oe or more ukow parameters ad oe tres to fd the best or atleast reasoably effcet procedures that aswer

More information

The Arithmetic-Geometric mean inequality in an external formula. Yuki Seo. October 23, 2012

The Arithmetic-Geometric mean inequality in an external formula. Yuki Seo. October 23, 2012 Sc. Math. Japocae Vol. 00, No. 0 0000, 000 000 1 The Arthmetc-Geometrc mea equalty a exteral formula Yuk Seo October 23, 2012 Abstract. The classcal Jese equalty ad ts reverse are dscussed by meas of terally

More information

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes

Midterm Exam 1, section 2 (Solution) Thursday, February hour, 15 minutes coometrcs, CON Sa Fracsco State Uverst Mchael Bar Sprg 5 Mdterm xam, secto Soluto Thursda, Februar 6 hour, 5 mutes Name: Istructos. Ths s closed book, closed otes exam.. No calculators of a kd are allowed..

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 3 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER I STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad

More information

,m = 1,...,n; 2 ; p m (1 p) n m,m = 0,...,n; E[X] = np; n! e λ,n 0; E[X] = λ.

,m = 1,...,n; 2 ; p m (1 p) n m,m = 0,...,n; E[X] = np; n! e λ,n 0; E[X] = λ. CS70: Lecture 21. Revew: Dstrbutos Revew: Idepedece Varace; Iequaltes; WLLN 1. Revew: Dstrbutos 2. Revew: Idepedece 3. Varace 4. Iequaltes Markov Chebyshev 5. Weak Law of Large Numbers U[1,...,] : Pr[X

More information

Research Article Some Strong Limit Theorems for Weighted Product Sums of ρ-mixing Sequences of Random Variables

Research Article Some Strong Limit Theorems for Weighted Product Sums of ρ-mixing Sequences of Random Variables Hdaw Publshg Corporato Joural of Iequaltes ad Applcatos Volume 2009, Artcle ID 174768, 10 pages do:10.1155/2009/174768 Research Artcle Some Strog Lmt Theorems for Weghted Product Sums of ρ-mxg Sequeces

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES

02/15/04 INTERESTING FINITE AND INFINITE PRODUCTS FROM SIMPLE ALGEBRAIC IDENTITIES 0/5/04 ITERESTIG FIITE AD IFIITE PRODUCTS FROM SIMPLE ALGEBRAIC IDETITIES Thomas J Osler Mathematcs Departmet Rowa Uversty Glassboro J 0808 Osler@rowaedu Itroducto The dfferece of two squares, y = + y

More information

Chapter 8. Inferences about More Than Two Population Central Values

Chapter 8. Inferences about More Than Two Population Central Values Chapter 8. Ifereces about More Tha Two Populato Cetral Values Case tudy: Effect of Tmg of the Treatmet of Port-We tas wth Lasers ) To vestgate whether treatmet at a youg age would yeld better results tha

More information

CHAPTER 5 ENTROPY GENERATION Instructor: Prof. Dr. Uğur Atikol

CHAPTER 5 ENTROPY GENERATION Instructor: Prof. Dr. Uğur Atikol CAPER 5 ENROPY GENERAION Istructr: Pr. Dr. Uğur Atkl Chapter 5 Etrpy Geerat (Exergy Destruct Outle st Avalable rk Cycles eat ege cycles Rergerat cycles eat pump cycles Nlw Prcesses teady-flw Prcesses Exergy

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

Lecture 5: Interpolation. Polynomial interpolation Rational approximation

Lecture 5: Interpolation. Polynomial interpolation Rational approximation Lecture 5: Iterpolato olyomal terpolato Ratoal appromato Coeffcets of the polyomal Iterpolato: Sometme we kow the values of a fucto f for a fte set of pots. Yet we wat to evaluate f for other values perhaps

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

Chapter 8: Statistical Analysis of Simulated Data

Chapter 8: Statistical Analysis of Simulated Data Marquette Uversty MSCS600 Chapter 8: Statstcal Aalyss of Smulated Data Dael B. Rowe, Ph.D. Departmet of Mathematcs, Statstcs, ad Computer Scece Copyrght 08 by Marquette Uversty MSCS600 Ageda 8. The Sample

More information

Department of Agricultural Economics. PhD Qualifier Examination. August 2011

Department of Agricultural Economics. PhD Qualifier Examination. August 2011 Departmet of Agrcultural Ecoomcs PhD Qualfer Examato August 0 Istructos: The exam cossts of sx questos You must aswer all questos If you eed a assumpto to complete a questo, state the assumpto clearly

More information

New Trade Theory (1979)

New Trade Theory (1979) Ne Trade Theory 979 Ne Trade Theory Krugma, 979: - Ecoomes of scale as reaso for trade - Elas trade betee smlar coutres Ituto of model: There s a trade-off betee ecoomes of scale the roducto of good tyes

More information

Francis Galton ( ) The Inventor of Modern Regression Analysis

Francis Galton ( ) The Inventor of Modern Regression Analysis Decrptve Stattc The Cure S Far: Prbablty Thery Prbablty Dtrbut Samplg Dtrbut Smple Radm Samplg Symbl f Caual Aaly: Crcle repreetg theretcal (r latet) varable that may be caue r effect (r bth) ur thery.

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

Multiple Linear Regression Analysis

Multiple Linear Regression Analysis LINEA EGESSION ANALYSIS MODULE III Lecture - 4 Multple Lear egresso Aalyss Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur Cofdece terval estmato The cofdece tervals multple

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

VOL. 3, NO. 11, November 2013 ISSN ARPN Journal of Science and Technology All rights reserved.

VOL. 3, NO. 11, November 2013 ISSN ARPN Journal of Science and Technology All rights reserved. VOL., NO., November 0 ISSN 5-77 ARPN Joural of Scece ad Techology 0-0. All rghts reserved. http://www.ejouralofscece.org Usg Square-Root Iverted Gamma Dstrbuto as Pror to Draw Iferece o the Raylegh Dstrbuto

More information

MAX-MIN AND MIN-MAX VALUES OF VARIOUS MEASURES OF FUZZY DIVERGENCE

MAX-MIN AND MIN-MAX VALUES OF VARIOUS MEASURES OF FUZZY DIVERGENCE merca Jr of Mathematcs ad Sceces Vol, No,(Jauary 0) Copyrght Md Reader Publcatos wwwjouralshubcom MX-MIN ND MIN-MX VLUES OF VRIOUS MESURES OF FUZZY DIVERGENCE RKTul Departmet of Mathematcs SSM College

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

Chapter Business Statistics: A First Course Fifth Edition. Learning Objectives. Correlation vs. Regression. In this chapter, you learn:

Chapter Business Statistics: A First Course Fifth Edition. Learning Objectives. Correlation vs. Regression. In this chapter, you learn: Chapter 3 3- Busess Statstcs: A Frst Course Ffth Edto Chapter 2 Correlato ad Smple Lear Regresso Busess Statstcs: A Frst Course, 5e 29 Pretce-Hall, Ic. Chap 2- Learg Objectves I ths chapter, you lear:

More information

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity ECONOMETRIC THEORY MODULE VIII Lecture - 6 Heteroskedastcty Dr. Shalabh Departmet of Mathematcs ad Statstcs Ida Isttute of Techology Kapur . Breusch Paga test Ths test ca be appled whe the replcated data

More information