Aggregates: solid or liquid?

Size: px
Start display at page:

Download "Aggregates: solid or liquid?"

Transcription

1 Aggregates: solid or liquid? François Graner Polarity, Division and Morphogenesis team dir. Yohanns Bellaïche Génétique et Biologie du Développement UMR 3215, CNRS & Institut Curie, Paris, France 2011

2 Outline Mechanics of cellular patterns 1 Solid & liquid 2

3 Cellular materials solid & liquid Foams for fire fighting

4 Neighbour exchange T1" = 1st topological process cells tile the space no gap nor overlap to move, cells need to displace their neighbours pass through a 4-fold vertex 1

5 Neighbour exchange T1" = 1st topological process cells tile the space no gap nor overlap to move, cells need to displace their neighbours pass through a 4-fold vertex 2

6 Neighbour exchange T1" = 1st topological process cells tile the space no gap nor overlap to move, cells need to displace their neighbours pass through a 4-fold vertex 3

7 Viscous, elastic, plastic (VEP) behaviour Marmottant 2007 local energy minimum Small deformation elastic solid reversibly comes back to its initial shape

8 Viscous, elastic, plastic (VEP) behaviour Marmottant 2007 local energy minimum T1: neighbour change Small deformation elastic solid reversibly comes back to its initial shape Large deformation plastic solid irreversibly sculpted, new shape

9 Viscous, elastic, plastic (VEP) behaviour Marmottant 2007 local energy minimum T1: neighbour change relaxation other minimum Small deformation elastic solid reversibly comes back to its initial shape Large deformation plastic solid irreversibly sculpted, new shape Quick deformation rate viscous liquid irreversibly flows, stress increases with rate

10 Numerical methods Cellular Potts Model Similar to experiments a cell = a set of pixels same size as in experiments a movement = a pixel changes to another cell V. Grieneisen

11 Numerical methods Cellular Potts Model Similar to experiments a cell = a set of pixels same size as in experiments a movement = a pixel changes to another cell Energy Energy cost at cell boundaries Size conservation Energy minimisation Surface minimisation Differential adhesion Membrane fluctuations... and much more V. Grieneisen

12 Compression set-up dissociate cells, then aggregate them middle cross section (2-photon microscopy) Vial & van der Sanden simulations Käfer side view Mgharbel, Delanoë-Ayari, Rieu

13 Stress relaxation cells deform and rearrange energy barrier no gap nor overlap: T1 rearrangement Mgharbel, Delanoë-Ayari, Rieu Two regimes high stress: stress-induced rearrangements low stress: fluctuation-induced rearrangements

14 Fluctuations Marmottant Rate at which barriers are passed f + = f exp{( E T 1 + τv δε)/ξ} τv = work gained δε = deformation

15 Fluctuations Marmottant Rate at which barriers are passed f + = f exp{( E T 1 + τv δε)/ξ} τv = work gained δε = deformation f + δε f δε = τ η sinh ( ) τ τ characteristic stress τ = ξ/v δε effective viscosity η = ξ exp( E T 1 /ξ)/2fv (δε) 2

16 Fluctuations Marmottant Rate at which barriers are passed f + = f exp{( E T 1 + τv δε)/ξ} τv = work gained δε = deformation f + δε f δε = τ η sinh ( ) τ τ characteristic stress τ = ξ/v δε effective viscosity η = ξ exp( E T 1 /ξ)/2fv (δε) 2 Stress relaxation τ = 2τ tanh 1 [ tanh ( τ 0 2τ ) exp ( t t c )] time over which stress disappears: t c exp ET 1 ξ Relaxation after compression 12 x 106 model vs simulations Force time (MCS) x 10 5

17 Fluctuations Marmottant Rate at which barriers are passed f + = f exp{( E T 1 + τv δε)/ξ} τv = work gained δε = deformation f + δε f δε = τ η sinh ( ) τ τ characteristic stress τ = ξ/v δε effective viscosity η = ξ exp( E T 1 /ξ)/2fv (δε) 2 Stress relaxation τ = 2τ tanh 1 [ tanh ( τ 0 2τ ) exp ( t t c )] time over which stress disappears: t c exp ET 1 ξ Relaxation after compression 12 x 106 model vs simulations Residual plasticity after 400 s model vs experiments Force time (MCS) x 10 5

18 Characteristic time t c relaxation time: 5h for F9 cell lines confirmed by fusion experiments

19 Take home message individual cell mechanics cells deform cells rearrange : T1 - energy barrier internal degrees of freedom non-newtonian liquid fluctuation-driven regime: high viscosity stress-driven regime: decreasing viscosity time scales relaxation time(s) experiment duration residual solid-like stresses P. Marmottant et al., PNAS (2009)

Mechanical modeling of a developing tissue as both continuous and cellular

Mechanical modeling of a developing tissue as both continuous and cellular Mechanical modeling of a developing tissue as both continuous and cellular Modélisation mécanique d'un tissu en développement : en quoi un matériau cellulaire diffère d'un matériau continu Cyprien Gay

More information

1. The Properties of Fluids

1. The Properties of Fluids 1. The Properties of Fluids [This material relates predominantly to modules ELP034, ELP035] 1.1 Fluids 1.1 Fluids 1.2 Newton s Law of Viscosity 1.3 Fluids Vs Solids 1.4 Liquids Vs Gases 1.5 Causes of viscosity

More information

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior Viscoelasticity Basic Notions & Examples Formalism for Linear Viscoelasticity Simple Models & Mechanical Analogies Non-linear behavior Viscoelastic Behavior Generic Viscoelasticity: exhibition of both

More information

Using soft to build living matter : mechanical modeling of a developing tissue Cyprien Gay (MSC UMR 7057 Paris-Diderot)

Using soft to build living matter : mechanical modeling of a developing tissue Cyprien Gay (MSC UMR 7057 Paris-Diderot) Using soft to build living matter : mechanical modeling of a developing tissue Cyprien Gay (MSC UMR 7057 Paris-Diderot) biochemistry mechanically active molecules mechanics V. Fleury SOFT V. Fleury LIVING

More information

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Physics of disordered materials Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Course plan Familiarity with the basic description of disordered structures

More information

Rheometer: Procedure: Part A: Viscosity v Time

Rheometer: Procedure: Part A: Viscosity v Time Rheometer A fluid is defined as a substance that deforms continuously under the action of a shear stress, no matter how small the shear stress may be. Without shear stress, there will be no deformation.

More information

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation S. Bordère a and J.-P. Caltagirone b a. CNRS, Univ. Bordeaux, ICMCB,

More information

Understanding and predicting viscous, elastic, plastic flows

Understanding and predicting viscous, elastic, plastic flows EPJ manuscript No. (will be inserted by the editor) 1 Understanding and predicting viscous, elastic, plastic flows Ibrahim Cheddadi 1,, Pierre Saramito 1, Benjamin Dollet,3, Christophe Raufaste,a, & François

More information

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland Agricultural Science 1B Principles & Processes in Agriculture Mike Wheatland (m.wheatland@physics.usyd.edu.au) Outline - Lectures weeks 9-12 Chapter 6: Balance in nature - description of energy balance

More information

Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali

Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali University of Sulaimani School of Pharmacy Dept. of Pharmaceutics Pharmaceutical Compounding Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali

More information

Lecture 7: Rheology and milli microfluidic

Lecture 7: Rheology and milli microfluidic 1 and milli microfluidic Introduction In this chapter, we come back to the notion of viscosity, introduced in its simplest form in the chapter 2. We saw that the deformation of a Newtonian fluid under

More information

Understanding and predicting viscous, elastic, plastic

Understanding and predicting viscous, elastic, plastic Understanding and predicting viscous, elastic, plastic flows Ibrahim Cheddadi, Pierre Saramito, Benjamin Dollet, Christophe Raufaste, François Graner To cite this version: Ibrahim Cheddadi, Pierre Saramito,

More information

Single cells spreading on a protein lattice adopt an energy minimizing shape.

Single cells spreading on a protein lattice adopt an energy minimizing shape. Single cells spreading on a protein lattice adopt an energy minimizing shape. Benoit Vianay, Jos Käfer, Emmanuelle Planus, Marc Block, François Graner, Hervé Guillou To cite this version: Benoit Vianay,

More information

RHEOLASER LAB MICRORHEOLOGY & END USE PROPERTIES ANALYSIS. MICRORHEOLOGY

RHEOLASER LAB MICRORHEOLOGY & END USE PROPERTIES ANALYSIS.  MICRORHEOLOGY RHEOLASER LAB & END USE PROPERTIES ANALYSIS A NEW RHEOLOGY APPROACH TO CHARACTERISE END-USE PROPERTIES THE FIRST READY TO USE & END-USE PROPERTIES ANALYSER Rheolaser Rheolaser is the first Lab ready-to-use

More information

THE PHYSICS OF FOAM. Boulder School for Condensed Matter and Materials Physics. July 1-26, 2002: Physics of Soft Condensed Matter. 1.

THE PHYSICS OF FOAM. Boulder School for Condensed Matter and Materials Physics. July 1-26, 2002: Physics of Soft Condensed Matter. 1. THE PHYSICS OF FOAM Boulder School for Condensed Matter and Materials Physics July 1-26, 2002: Physics of Soft Condensed Matter 1. Introduction Formation Microscopics 2. Structure Experiment Simulation

More information

Part III. Polymer Dynamics molecular models

Part III. Polymer Dynamics molecular models Part III. Polymer Dynamics molecular models I. Unentangled polymer dynamics I.1 Diffusion of a small colloidal particle I.2 Diffusion of an unentangled polymer chain II. Entangled polymer dynamics II.1.

More information

The steady shear of three-dimensional wet polydisperse foams

The steady shear of three-dimensional wet polydisperse foams J. Non-Newtonian Fluid Mech. 92 (2000) 151 166 The steady shear of three-dimensional wet polydisperse foams B.S. Gardiner, B.Z. Dlugogorski, G.J. Jameson Department of Chemical Engineering, The University

More information

Flow of Glasses. Peter Schall University of Amsterdam

Flow of Glasses. Peter Schall University of Amsterdam Flow of Glasses Peter Schall University of Amsterdam Liquid or Solid? Liquid or Solid? Example: Pitch Solid! 1 day 1 year Menkind 10-2 10 0 10 2 10 4 10 6 10 8 10 10 10 12 10 14 sec Time scale Liquid!

More information

Polymer Dynamics and Rheology

Polymer Dynamics and Rheology Polymer Dynamics and Rheology 1 Polymer Dynamics and Rheology Brownian motion Harmonic Oscillator Damped harmonic oscillator Elastic dumbbell model Boltzmann superposition principle Rubber elasticity and

More information

Understanding and predicting viscous, elastic, plastic flows

Understanding and predicting viscous, elastic, plastic flows Eur. Phys. J. E (11) 3: 1 DOI 1.11/epje/i11-111 Regular Article THE EUROPEAN PHYSICAL JOURNAL E Understanding and predicting viscous, elastic, plastic flows I. Cheddadi 1,,a, P. Saramito 1,b, B. Dollet,3,C.Raufaste,,c,

More information

Centre for High Performance Computing (ZIH) Technical University Dresden. Glazier-Graner-Hogeweg model; Potts model, cellular / extended; CPM

Centre for High Performance Computing (ZIH) Technical University Dresden. Glazier-Graner-Hogeweg model; Potts model, cellular / extended; CPM Title: Cellular Potts Model Name: Anja Voß-Böhme 1, Jörn Starruß 1, Walter de Back 1 Affil./Addr.: Centre for High Performance Computing (ZIH) Technical University Dresden 01062 Dresden Germany Cellular

More information

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like:

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like: 11/01/2017 Lecture 3 Properties of Fluids There are thermodynamic properties of fluids like: Pressure, p (N/m 2 ) or [ML -1 T -2 ], Density, ρ (kg/m 3 ) or [ML -3 ], Specific weight, γ = ρg (N/m 3 ) or

More information

Reply to the 'Comment on Intracellular stresses in patterned cell assemblies ' by D. Tambe et al., Soft Matter, 2014, 10, DOI: 10.

Reply to the 'Comment on Intracellular stresses in patterned cell assemblies ' by D. Tambe et al., Soft Matter, 2014, 10, DOI: 10. Reply to the 'Comment on Intracellular stresses in patterned cell assemblies ' by D. Tambe et al., Soft Matter, 2014, 10, DOI: 10.1039/C4SM00597J Journal: Soft Matter Manuscript ID: SM-CMT-05-2014-001066.R2

More information

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore Mechanical properties of polymers: an overview Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore UGC-NRCM Summer School on Mechanical Property Characterization- June 2012 Overview of polymer

More information

Quiz 1. Introduction to Polymers

Quiz 1. Introduction to Polymers 100406 Quiz 1. Introduction to Polymers 1) Polymers are different than low-molecular weight oligomers. For example an oligomeric polyethylene is wax, oligomeric polystyrene is similar to naphthalene (moth

More information

Structural Analysis of Truss Structures using Stiffness Matrix. Dr. Nasrellah Hassan Ahmed

Structural Analysis of Truss Structures using Stiffness Matrix. Dr. Nasrellah Hassan Ahmed Structural Analysis of Truss Structures using Stiffness Matrix Dr. Nasrellah Hassan Ahmed FUNDAMENTAL RELATIONSHIPS FOR STRUCTURAL ANALYSIS In general, there are three types of relationships: Equilibrium

More information

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers Abvanced Lab Course Dynamical-Mechanical Analysis (DMA) of Polymers M211 As od: 9.4.213 Aim: Determination of the mechanical properties of a typical polymer under alternating load in the elastic range

More information

Contents. Preface XIII. 1 General Introduction 1 References 6

Contents. Preface XIII. 1 General Introduction 1 References 6 VII Contents Preface XIII 1 General Introduction 1 References 6 2 Interparticle Interactions and Their Combination 7 2.1 Hard-Sphere Interaction 7 2.2 Soft or Electrostatic Interaction 7 2.3 Steric Interaction

More information

The effect of plasticity in crumpling of thin sheets: Supplementary Information

The effect of plasticity in crumpling of thin sheets: Supplementary Information The effect of plasticity in crumpling of thin sheets: Supplementary Information T. Tallinen, J. A. Åström and J. Timonen Video S1. The video shows crumpling of an elastic sheet with a width to thickness

More information

Chapter 7. Highlights:

Chapter 7. Highlights: Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

More information

A unified flow theory for viscous fluids

A unified flow theory for viscous fluids Laboratoire Jacques-Louis Lions, Paris 27/10/2015 A unified flow theory for viscous fluids ILYA PESHKOV CHLOE, University of Pau, France joint work with EVGENIY ROMENSKI Sobolev Institute of Mathematics,

More information

Steady Couette flows of elastoviscoplastic fluids are non-unique

Steady Couette flows of elastoviscoplastic fluids are non-unique Steady Couette flows of elastoviscoplastic fluids are non-unique I. Cheddadi, P. Saramito, and F. Graner 3,4 INRIA Paris - Rocquencourt, BANG team, Domaine de Voluceau, Rocquencourt, B.P. 5, 7853 Le Chesnay,

More information

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004 Elements of Polymer Structure and Viscoelasticity David M. Parks Mechanics and Materials II 2.002 February 18, 2004 Outline Elements of polymer structure Linear vs. branched; Vinyl polymers and substitutions

More information

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum By F. Rouyer, S. Cohen-Addad, R. Höhler, P. Sollich, and S.M. Fielding The European

More information

SIMULATING FRESH CONCRETE BEHAVIOUR ESTABLISHING A LINK BETWEEN THE BINGHAM MODEL AND PARAMETERS OF A DEM-BASED NUMERICAL MODEL

SIMULATING FRESH CONCRETE BEHAVIOUR ESTABLISHING A LINK BETWEEN THE BINGHAM MODEL AND PARAMETERS OF A DEM-BASED NUMERICAL MODEL International RILEM Conference on Material Science MATSCI, Aachen 2010 Vol. II, HetMat 211 SIMULATING FRESH CONCRETE BEHAVIOUR ESTABLISHING A LINK BETWEEN THE BINGHAM MODEL AND PARAMETERS OF A DEM-BASED

More information

We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from

We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from Chapter 1. Introduction 1.1 Some Characteristics of Fluids We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from scientific or engineering point of view. In

More information

Polymerization Technology Laboratory Course

Polymerization Technology Laboratory Course Polymerization Technology Laboratory Course Viscometry/Rheometry Tasks 1. Comparison of the flow behavior of polystyrene- solution and dispersion systems 2. Determination of the flow behaviour of polyvinylalcohol

More information

A Basic Primer on the Finite Element Method

A Basic Primer on the Finite Element Method A Basic Primer on the Finite Element Method C. Berdin A. Rossoll March 1st 2002 1 Purpose Complex geometry and/or boundary conditions Local solution Non-linearities: geometric (large deformations/displacements)

More information

Supplements to : Isotropic stress reduces cell proliferation in tumor spheroids

Supplements to : Isotropic stress reduces cell proliferation in tumor spheroids Supplements to : Isotropic stress reduces cell proliferation in tumor spheroids Fabien Montel 1, Morgan Delarue 1,4, Jens Elgeti 1, Danijela Vignjevic 2, Giovanni Cappello 1, Jacques Prost 1,3 1 UMR 168,

More information

Introduction to Marine Hydrodynamics

Introduction to Marine Hydrodynamics 1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering First Assignment The first

More information

Fluid Mechanics Introduction

Fluid Mechanics Introduction Fluid Mechanics Introduction Fluid mechanics study the fluid under all conditions of rest and motion. Its approach is analytical, mathematical, and empirical (experimental and observation). Fluid can be

More information

Chapter 1 Fluid Characteristics

Chapter 1 Fluid Characteristics Chapter 1 Fluid Characteristics 1.1 Introduction 1.1.1 Phases Solid increasing increasing spacing and intermolecular liquid latitude of cohesive Fluid gas (vapor) molecular force plasma motion 1.1.2 Fluidity

More information

Effective Temperatures in Driven Systems near Jamming

Effective Temperatures in Driven Systems near Jamming Effective Temperatures in Driven Systems near Jamming Andrea J. Liu Department of Physics & Astronomy University of Pennsylvania Tom Haxton Yair Shokef Tal Danino Ian Ono Corey S. O Hern Douglas Durian

More information

DECRIRE LA TRANSITION VITREUSE: Simulations moléculaires et approches topologiques. Matthieu Micoulaut, LPTMC, Paris Sorbonne Universités UPMC

DECRIRE LA TRANSITION VITREUSE: Simulations moléculaires et approches topologiques. Matthieu Micoulaut, LPTMC, Paris Sorbonne Universités UPMC DECRIRE LA TRANSITION VITREUSE: Simulations moléculaires et approches topologiques Matthieu Micoulaut, LPTMC, Paris Sorbonne Universités UPMC C. Yildrim, O. Laurent, B. Mantisi, M. Bauchy «Chasseurs d

More information

Rheology. What is rheology? From the root work rheo- Current: flow. Greek: rhein, to flow (river) Like rheostat flow of current

Rheology. What is rheology? From the root work rheo- Current: flow. Greek: rhein, to flow (river) Like rheostat flow of current Rheology What is rheology? From the root work rheo- Current: flow Greek: rhein, to flow (river) Like rheostat flow of current Rheology What physical properties control deformation? - Rock type - Temperature

More information

Non contact measurement of viscoelastic properties of biopolymers

Non contact measurement of viscoelastic properties of biopolymers Non contact measurement of viscoelastic properties of biopolymers Christelle Tisserand, Anton Kotzev, Mathias Fleury, Laurent Brunel, Pascal Bru, Gérard Meunier Formulaction, 10 impasse Borde Basse, 31240

More information

Interfacial dynamics

Interfacial dynamics Interfacial dynamics Interfacial dynamics = dynamic processes at fluid interfaces upon their deformation Interfacial rheological properties: elasticity, viscosity, yield stress, Relation between macroscopic

More information

TORQUE CAPACITY ENHANCEMENT OF A MAGNETORHEOLOGICAL FLUID CLUTCH USING THE SQUEEZE-STRENGTHEN EFFECT

TORQUE CAPACITY ENHANCEMENT OF A MAGNETORHEOLOGICAL FLUID CLUTCH USING THE SQUEEZE-STRENGTHEN EFFECT International Workshop SMART MATERIALS, STRUCTURES & NDT in AEROSPACE Conference NDT in Canada 2011 2-4 November 2011, Montreal, Quebec, Canada TORQUE CAPACITY ENHANCEMENT OF A MAGNETORHEOLOGICAL FLUID

More information

SUPPLEMENTARY INFORMATION 1

SUPPLEMENTARY INFORMATION 1 1 Supplementary information Effect of the viscoelasticity of substrate: In the main text, we indicated the role of the viscoelasticity of substrate. In all problems involving a coupling of a viscous medium

More information

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) 1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid

More information

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry Planetary Surfaces Gravity & Rotation Polar flattening caused by rotation is the largest deviation from a sphere for a planet sized object (as

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

The Polymers Tug Back

The Polymers Tug Back Tugging at Polymers in Turbulent Flow The Polymers Tug Back Jean-Luc Thiffeault http://plasma.ap.columbia.edu/ jeanluc Department of Applied Physics and Applied Mathematics Columbia University Tugging

More information

Creep. Creep behavior of viscoelastic polymeric materials

Creep. Creep behavior of viscoelastic polymeric materials B1 Version: 2.2_EN Date: 15. March 2018. BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF POLYMER ENGINEERING Creep Creep behavior of viscoelastic polymeric

More information

First Law CML 100, IIT Delhi SS. The total energy of the system. Contribution from translation + rotation + vibrations.

First Law CML 100, IIT Delhi SS. The total energy of the system. Contribution from translation + rotation + vibrations. Internal Energy he total energy of the system. Contribution from translation + rotation + vibrations. Equipartition theorem for the translation and rotational degrees of freedom. 1/ k B Work Path function,

More information

Suspension Stability; Why Particle Size, Zeta Potential and Rheology are Important

Suspension Stability; Why Particle Size, Zeta Potential and Rheology are Important ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 20, 2012 Suspension Stability; Why Particle Size, Zeta Potential and Rheology are Important Mats Larsson 1, Adrian Hill 2, and John Duffy 2 1 Malvern

More information

An elasto-visco-plastic model for immortal foams or emulsions Accepted version - Eur. Phys. J. E 2008

An elasto-visco-plastic model for immortal foams or emulsions Accepted version - Eur. Phys. J. E 2008 An elasto-visco-plastic model for immortal foams or emulsions Accepted version - Eur. Phys. J. E 8 Sylvain BÉNITO, Charles-Henri BRUNEAU, and Thierry COLIN Université Bordeaux, INRIA Futurs projet MC et

More information

Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 4: Non-Newtonian fluids and rheometry (PART 1)

Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 4: Non-Newtonian fluids and rheometry (PART 1) Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 4: Non-Newtonian fluids and rheometry (PART 1) Globex Julmester 2017 Lecture #3 05 July 2017 Agenda Lecture #3 Section

More information

Local friction of rough contact interfaces with rubbers using contact imaging approaches mm

Local friction of rough contact interfaces with rubbers using contact imaging approaches mm mm 2.5 2.0 1.5 - - -1.5-2.0-2.5 Local friction of rough contact interfaces with rubbers using contact imaging approaches mm -2.5-2.0-1.5 - - 1.5 2.0 2.5 0.30 0 0 0 MPa (c) D.T. Nguyen, M.C. Audry, M. Trejo,

More information

Colloidal Suspension Rheology Chapter 1 Study Questions

Colloidal Suspension Rheology Chapter 1 Study Questions Colloidal Suspension Rheology Chapter 1 Study Questions 1. What forces act on a single colloidal particle suspended in a flowing fluid? Discuss the dependence of these forces on particle radius. 2. What

More information

Section 2.2 : Electromechanical. analogies PHILIPE HERZOG AND GUILLAUME PENELET

Section 2.2 : Electromechanical. analogies PHILIPE HERZOG AND GUILLAUME PENELET Section 2.2 : Electromechanical analogies PHILIPE HERZOG AND GUILLAUME PENELET Paternité - Pas d'utilisation Commerciale - Partage des Conditions Initiales à l'identique : http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

More information

Checkerboard instabilities in topological shape optimization algorithms

Checkerboard instabilities in topological shape optimization algorithms Checkerboard instabilities in topological shape optimization algorithms Eric Bonnetier, François Jouve Abstract Checkerboards instabilities for an algorithm of topological design are studied on a simple

More information

Learning the collective dynamics of complex biological systems. from neurons to animal groups. Thierry Mora

Learning the collective dynamics of complex biological systems. from neurons to animal groups. Thierry Mora Learning the collective dynamics of complex biological systems from neurons to animal groups Thierry Mora Università Sapienza Rome A. Cavagna I. Giardina O. Pohl E. Silvestri M. Viale Aberdeen University

More information

Even if you're not burning books, destroying information generates heat.

Even if you're not burning books, destroying information generates heat. Even if you're not burning books, destroying information generates heat. Information and Thermodynamics: Experimental verification of Landauer's erasure principle with a colloidal particle Antoine Bérut,

More information

In-depth analysis of viscoelastic properties thanks to Microrheology: non-contact rheology

In-depth analysis of viscoelastic properties thanks to Microrheology: non-contact rheology In-depth analysis of viscoelastic properties thanks to Microrheology: non-contact rheology Application All domains dealing with soft materials (emulsions, suspensions, gels, foams, polymers, etc ) Objective

More information

Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth

Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth References: Turcotte and Schubert, Geodynamics, Sections 2.1,-2.4, 2.7, 3.1-3.8, 6.1, 6.2, 6.8, 7.1-7.4. Jaeger and Cook, Fundamentals of

More information

contact line dynamics

contact line dynamics contact line dynamics Jacco Snoeijer Physics of Fluids - University of Twente sliding drops flow near contact line static contact line Ingbrigtsen & Toxvaerd (2007) γ γ sv θ e γ sl molecular scales macroscopic

More information

Rheology The relationship between rheological response and material structure

Rheology The relationship between rheological response and material structure Rheology The relationship between rheological response and material structure Márta Berka University of Debrecen Dept of Colloid and Environmental Chemistry http://dragon.unideb.hu/~kolloid/ Introduction

More information

MECHANICAL PROPERTIES

MECHANICAL PROPERTIES MECHANICAL PROPERTIES Rheology S.C. BAYNE, 1 J.Y. Thompson 2 1 University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078 sbayne@umich.edu 2 Nova Southeastern College of Dental Medicine, Ft.

More information

AMME2261: Fluid Mechanics 1 Course Notes

AMME2261: Fluid Mechanics 1 Course Notes Module 1 Introduction and Fluid Properties Introduction Matter can be one of two states: solid or fluid. A fluid is a substance that deforms continuously under the application of a shear stress, no matter

More information

The principals of rheology In pharmaceutical technology

The principals of rheology In pharmaceutical technology The principals of rheology In pharmaceutical technology Dr. Aleksandar Széchenyi University of Pécs Gyógyszertechnológiai és Biofarmáciai Intézet Institute of Pharmaceutical Technology and Biopharmacy

More information

Acoustic study of nano-crystal embedded PbO P 2 O 5 glass

Acoustic study of nano-crystal embedded PbO P 2 O 5 glass Bull. Mater. Sci., Vol. 9, No. 4, August 6, pp. 357 363. Indian Academy of Sciences. Acoustic study of nano-crystal embedded PbO P O 5 glass SUDIP K BATABYAL, A PAUL, P ROYCHOUDHURY and C BASU* Department

More information

Stress, Strain, and Viscosity. San Andreas Fault Palmdale

Stress, Strain, and Viscosity. San Andreas Fault Palmdale Stress, Strain, and Viscosity San Andreas Fault Palmdale Solids and Liquids Solid Behavior: Liquid Behavior: - elastic - fluid - rebound - no rebound - retain original shape - shape changes - small deformations

More information

Modeling Random Wet 2D Foams with Controlled Polydispersity. Back to the Future?

Modeling Random Wet 2D Foams with Controlled Polydispersity. Back to the Future? Modeling Random Wet 2D Foams with Controlled Polydispersity Back to the Future? Andy Kraynik Sandia National Labs (retired) CEAS, University of Manchester University of Erlangen-Nuremberg Simon Cox Aberystwyth

More information

(Refer Slide Time: 2:14)

(Refer Slide Time: 2:14) Fluid Dynamics And Turbo Machines. Professor Dr Shamit Bakshi. Department Of Mechanical Engineering. Indian Institute Of Technology Madras. Part A. Module-1. Lecture-3. Introduction To Fluid Flow. (Refer

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

Linear viscoelastic behavior

Linear viscoelastic behavior Harvard-MIT Division of Health Sciences and Technology HST.523J: Cell-Matrix Mechanics Prof. Ioannis Yannas Linear viscoelastic behavior 1. The constitutive equation depends on load history. 2. Diagnostic

More information

Untangling the Mechanics of Entangled Biopolymers

Untangling the Mechanics of Entangled Biopolymers Untangling the Mechanics of Entangled Biopolymers Rae M. Robertson-Anderson Physics Department University of San Diego students/postdocs: Cole Chapman, PhD Tobias Falzone, PhD Stephanie Gorczyca, USD 16

More information

How the TRMM 3b42 v7 product reproduces the seasonal cycles of precipitation in the different regions of the Amazon Basin?

How the TRMM 3b42 v7 product reproduces the seasonal cycles of precipitation in the different regions of the Amazon Basin? How the TRMM 3b42 v7 product reproduces the seasonal cycles of precipitation in the different regions of the Amazon Basin? J.Ronchail LOCEAN UMR7617 CNRS PARIS 7 FRANCE Véronique MICHOT V.Dubreuil, B.Funatsu,

More information

Lecture 3: Fundamentals of Fluid Flow: fluid properties and types; Boundary layer structure; unidirectional flows

Lecture 3: Fundamentals of Fluid Flow: fluid properties and types; Boundary layer structure; unidirectional flows GEOL 440 Sedimentology and stratigraphy: processes, environments and deposits Lecture 3: Fundamentals of Fluid Flow: fluid properties and types; Boundary layer structure; unidirectional flows Why study

More information

CHAPTER 1 Fluids and their Properties

CHAPTER 1 Fluids and their Properties FLUID MECHANICS Gaza CHAPTER 1 Fluids and their Properties Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Define the nature of a fluid. Show where fluid mechanics concepts are common with those

More information

arxiv:cond-mat/ v1 [cond-mat.soft] 2 Jan 2003

arxiv:cond-mat/ v1 [cond-mat.soft] 2 Jan 2003 A texture tensor to quantify deformations: the example of two-dimensional flowing foams Marius Asipauskas 1, Miguel Aubouy 2, James A. Glazier 1, François Graner 3, and Yi Jiang 4 1 Dept. of Physics, 316

More information

ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4. (Buoyancy and Viscosity of water)

ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4. (Buoyancy and Viscosity of water) ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4 (Buoyancy and Viscosity of water) 16. BUOYANCY Whenever an object is floating in a fluid or when it is completely submerged in

More information

PROCESS SYSTEMS ENGINEERING Dr.-Ing. Richard Hanke-Rauschenbach

PROCESS SYSTEMS ENGINEERING Dr.-Ing. Richard Hanke-Rauschenbach Otto-von-Guerice University Magdeburg PROCESS SYSTEMS ENGINEERING Dr.-Ing. Richard Hane-Rauschenbach Project wor No. 1, Winter term 2011/2012 Sample Solution Delivery of the project handout: Wednesday,

More information

Thermodynamics of nuclei in thermal contact

Thermodynamics of nuclei in thermal contact Thermodynamics of nuclei in thermal contact Karl-Heinz Schmidt, Beatriz Jurado CENBG, CNRS/IN2P3, Chemin du Solarium B.P. 120, 33175 Gradignan, France Abstract: The behaviour of a di-nuclear system in

More information

Residual Stresses Near Holes In Tempered Glass Plates

Residual Stresses Near Holes In Tempered Glass Plates Citation & Copyright (to be inserted by the publisher ) Residual Stresses Near Holes In Tempered Glass Plates Laurent Daudeville 1, Fabrice Bernard 2 and René Gy 3 1 Laboratoire Sols, Solides, Structures,

More information

Revision Guide for Chapter 14

Revision Guide for Chapter 14 Revision Guide for Chapter 14 Contents Revision Checklist Revision Notes Values of the energy kt...4 The Boltzmann factor...4 Thermal activation processes...5 Summary Diagrams Climbing a ladder by chance...7

More information

An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction

An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction 1 An-Najah National University Civil Engineering Department Fluid Mechanics Chapter 1 General Introduction 2 What is Fluid Mechanics? Mechanics deals with the behavior of both stationary and moving bodies

More information

Macromolecular Hydrodynamics Quiz Solutions. (i) To start, we recognize the following relationships on the stress and strain

Macromolecular Hydrodynamics Quiz Solutions. (i) To start, we recognize the following relationships on the stress and strain Question 1 i To start, we recognize the following relationships on the stress and strain γ = γ k + γ 2 1 τ = G k γ k + μ k γ k = μ 2 γ 2 Therefore, the following relationships are also true γ = γ k + γ

More information

COMPLEX EFFECTS OF MOLECULAR TOPOLOGY, LENGTH AND CONCENTRATION ON MOLECULAR DYNAMICS IN ENTANGLED DNA BLENDS

COMPLEX EFFECTS OF MOLECULAR TOPOLOGY, LENGTH AND CONCENTRATION ON MOLECULAR DYNAMICS IN ENTANGLED DNA BLENDS COMPLEX EFFECTS OF MOLECULAR TOPOLOGY, LENGTH AND CONCENTRATION ON MOLECULAR DYNAMICS IN ENTANGLED DNA BLENDS Students Cole E. Chapman Kent Lee Dean Henze Collaborators Doug Smith (UCSD) Sachin Shanbhag

More information

CE MECHANICS OF FLUIDS UNIT I

CE MECHANICS OF FLUIDS UNIT I CE 6303- MECHANICS OF FLUIDS UNIT I 1. Define specific volume of a fluid and write its unit [N/D-14][M/J-11] Volume per unit mass of a fluid is called specific volume. Unit: m3 / kg. 2. Name the devices

More information

Railroad Concrete Tie Failure Analysis

Railroad Concrete Tie Failure Analysis Railroad Concrete Tie Failure Analysis Hailing Yu, David Jeong, Brian Marquis, and Michael Coltman 2014 International Crosstie & Fastening System Symposium June 3-5, 2014 The National Transportation Systems

More information

Diffraction and rapidity gap measurements with ATLAS

Diffraction and rapidity gap measurements with ATLAS Diffraction and rapidity gap measurements with On behalf of the Collaboration Institute of Physics, Academy of Sciences of the CR E-mail: vlastimil.kus@cern.ch ATL-PHYS-PROC-04-004 08/0/04 Two diffraction

More information

Athermal, Quasi-static Deformation of Amorphous Materials

Athermal, Quasi-static Deformation of Amorphous Materials Athermal, Quasi-static Deformation of Amorphous Materials Anaël Lemaître 1 and Craig Maloney 2 1 Institut Navier France 2 Department of Physics UC Santa Barbara Phys. Rev. Lett. 93, 016001 (2004) Phys.

More information

Introduction The gramicidin A (ga) channel forms by head-to-head association of two monomers at their amino termini, one from each bilayer leaflet. Th

Introduction The gramicidin A (ga) channel forms by head-to-head association of two monomers at their amino termini, one from each bilayer leaflet. Th Abstract When conductive, gramicidin monomers are linked by six hydrogen bonds. To understand the details of dissociation and how the channel transits from a state with 6H bonds to ones with 4H bonds or

More information

On the effects of Non-Newtonian fluids above the ribbing instability

On the effects of Non-Newtonian fluids above the ribbing instability On the effects of Non-Newtonian fluids above the ribbing instability L. Pauchard, F. Varela LÓpez*, M. Rosen*, C. Allain, P. Perrot** and M. Rabaud Laboratoire FAST, Bât. 502, Campus Universitaire, 91405

More information

University Graz / Austria Institut für Chemie Volker Ribitsch

University Graz / Austria Institut für Chemie Volker Ribitsch University Graz / Austria Institut für Chemie Volker Ribitsch 1 Rheology Oscillatory experiments Dynamic experiments Deformation of materials under non-steady conditions in the linear viscoelastic range

More information

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 14: Amorphous State February 14, 2001 Chemical Engineering 160/260 Polymer Science and Engineering Lecture 14: Amorphous State February 14, 2001 Objectives! To provide guidance toward understanding why an amorphous polymer glass may be considered

More information

An Overview of Fluid Animation. Christopher Batty March 11, 2014

An Overview of Fluid Animation. Christopher Batty March 11, 2014 An Overview of Fluid Animation Christopher Batty March 11, 2014 What distinguishes fluids? What distinguishes fluids? No preferred shape. Always flows when force is applied. Deforms to fit its container.

More information

Maximal deformation of an impacting drop

Maximal deformation of an impacting drop J. Fluid Mech. (24), vol. 57, pp. 99 28. c 24 Cambridge University Press DOI:.7/S222494 Printed in the United Kingdom 99 Maximal deformation of an impacting drop By CHRISTOPHE CLANET, CÉDRIC BÉGUIN, DENIS

More information