Diving into traversable wormholes

Size: px
Start display at page:

Download "Diving into traversable wormholes"

Transcription

1 Diving into traversable wormholes Douglas Stanford IAS July 5, 2017 Based on with Juan Maldacena and Zhenbin Yang, following up on by Ping Gao, Daniel Jafferis, and Aron Wall.

2 Wormholes can be made traversable by coupling the two sides. This provides a model for how information can escape BHs.

3 Wormholes can be made traversable by coupling the two sides. This provides a model for how information can escape BHs. Disclaimer: this is not useful for space travel.

4 Wormholes can be made traversable by coupling the two sides. This provides a model for how information can escape BHs. Disclaimer: this is not useful for space travel. Plan: The thermofield double Negative energy in QFT Making wormholes traversable A limited application to the BHIP

5 The thermofield double

6 L R

7 L R L R TFD = n e βen/2 E n L E n R [Israel,Maldacena] Non-traversability looks delicate from gravity side, robust from QM side...

8 L R L R φ R TFD = n e βen/2 E n L φ E n R

9 L R L R φ R TFD = n e βen/2 E n L φ E n R Non-traversability looks robust on QM side but delicate in gravity?

10 The perturbed thermofield double ΔX + ΔX + t w t w X + = G N P + = G N dx T > 0

11 The perturbed thermofield double ΔX + ΔX + t w t w X + = G N P + = G N dx T > 0 Averaged null energy condition (ANEC) makes non-traversability robust on gravity side too. [Morris,Thorne,Yurtsever] Recent ANEC proofs: [Faulkner,Leigh,Parrikar,Wang][Hartman,Kundu,Tajdini]

12 Correlations and chaos O L O R t w

13 Correlations and chaos O L O R t w O L O R TFD O L O R TFD = 1 G Ne 2π β tw +... Becomes small around the scrambling time t β 2π log 1 G N. [Hayden,Preskill][Sekino,Susskind][Shenker, DS][Kitaev][Maldacena,Shenker,DS]

14 Negative energy in QFT

15 S = 1 2 d 2 x( O) 2,

16 S = 1 2 d 2 x( O) 2, Ψ = e igo LO R 0. Ψ T 00 (x) Ψ = ig 0 [O L O R, T 00 (x)] Ψ + O(g 2 ). T dx = 0

17 S = 1 2 d 2 x( O) 2, Ψ = e igo LO R 0. Ψ T 00 (x) Ψ = ig 0 [O L O R, T 00 (x)] Ψ + O(g 2 ). T dx = 0

18 S = 1 2 d 2 x( O) 2, Ψ = e igo LO R 0. Ψ T 00 (x) Ψ = ig 0 [O L O R, T 00 (x)] Ψ + O(g 2 ). P + = T dx = 0

19 Can instead think of a history with time-dependent Hamiltonian: start with vacuum, then at t = 0 act with e igo LO R : P + = T dx < 0

20 Making wormholes traversable

21 Gao-Jafferis-Wall Start with TFD state where we have added a signal from R. Then at t = 0, apply e igo LO R ϕ L (t ) (more precise version: e i g K K j=1 O(j) L O(j) R ): OL(0) O R(0) ϕ R (t ) Wormhole becomes traversable.

22 Amplification by chaos Traversability happens when G N e 2π β t becomes order one, t t ϕ L (t ) t * OL(0) O R(0) t * ϕ R (t )

23 Is it surprising? ϕ L (t ) O OL(0) O R(0) ϕ R (t )

24 Teleportation interpretation

25 Teleportation interpretation Instead of applying e igo LO R, can measure O R, get result o R and then apply e igo Lo R on the L system. This has the same effect: ϕ L OL ΠOR ϕ R Comfortable quantum teleportation!

26 A limited application to the BHIP

27 Simplified gravity in AdS 2 Jackiw-Teitelboim gravity: S = 1 d 2 x g Φ (R + 2) + 2 G N G N bdry ΦK After integrating over Φ we set R + 2 = 0 so geometry is rigid AdS 2. Only degree of freedom is the location of the boundary. The dynamics for this is equivalent to a particle in an electric field in AdS 2.

28 The thermofield double TFD = uniformly accelerated R, L trajectories:

29 The thermofield double TFD = uniformly accelerated R, L trajectories:

30 The traversable wormhole protocol Acting with e igo LO R can be approximated by adding g O L O R to the potential energy. This is an attractive potential potential energy: separation between boundaries so turning it on briefly gives an impulsive force.

31 The traversable wormhole protocol

32 The traversable wormhole protocol

33 Review: Hayden-Preskill collapsing matter (1) A black hole forms from collapse. We wait until it evaporates halfway, becoming maximally entangled with its Hawking radiation.

34 Review: Hayden-Preskill Bob collapsing matter Alice (2) Alice throws a bit into the black hole.

35 Review: Hayden-Preskill Bob collapsing matter Alice (3) Bob grabs a couple more quanta after Alice s bit falls in. Feeding this plus the first half of the radiation into a quantum computer, he can decode Alice s bit!

36 Review: Hayden-Preskill Bob collapsing matter Alice (4) If he then jumps in with his copy, it looks like there is quantum cloning. :(

37 1st half of Hawking radiation / quantum computer black hole (1) Half evaporated black hole (R) is maximally entangled with radiation, which our quantum computer is storing as a simulated black hole (L).

38 (2) Alice throws bit into BH.

39 (3) Bob waits a while, then collects a few more quanta from R and acts on L with them. Wormhole becomes traversable and the bit propagates to Bob s computer.

40 What about cloning?

41 Bob doesn t extract the bit from the quantum computer. It reflects off the boundary.

42 Bob disconnects form the quantum computer and jumps into the black hole.

43 He finds the bit behind the horizon.

44 Alternatively, Bob can extract the bit from the quantum computer...

45 ... carry it over to the black hole...

46 ... and dive in with it. Now he is carrying a copy but there is no second copy behind the horizon.

47 How to apply this to general black holes? Where is the wormhole connecting the Hawking radiation to the interior? Better understanding of ER = EPR is needed. [Maldacena,Susskind]

48 Summary By coupling the two sides of the TFD wormhole together, we can create negative energy that makes the wormhole traversable. This gives a geometrical realization of the Hayden-Preskill protocol. It makes it clear that cloning is avoided because the operation of recovering the information removes it from the region behind the horizon. We don t know how to apply this to evaporating black holes but ER = EPR might help.

49 Happy Birthday Stephen!

Black Holes: Complementarity vs. Firewalls

Black Holes: Complementarity vs. Firewalls Black Holes: Complementarity vs. Firewalls Raphael Bousso Center for Theoretical Physics University of California, Berkeley Strings 2012, Munich July 27, 2012 The Question Complementarity The AMPS Gedankenexperiment

More information

Newfound Wormhole Allows Information to Escape Black Holes

Newfound Wormhole Allows Information to Escape Black Holes Newfound Wormhole Allows Information to Escape Black Holes Physicists theorize that a new traversable kind of wormhole could resolve a baffling paradox and rescue information that falls into black holes.

More information

Out of Time Ordered. Beni Yoshida (Perimeter) [1] Chaos in quantum channel, Hosur, Qi, Roberts, BY

Out of Time Ordered. Beni Yoshida (Perimeter) [1] Chaos in quantum channel, Hosur, Qi, Roberts, BY Out of Time Ordered Beni Yoshida (Perimeter) [1] Chaos in quantum channel, Hosur, Qi, Roberts, BY 1511.04021 [2] Complexity by design, (in prep, with Daniel Roberts) Scrambling Out-of-time ordered correlation

More information

The Information Paradox

The Information Paradox The Information Paradox Quantum Mechanics and Black Holes FokionFest 22 December 2017, Athens Kyriakos Papadodimas CERN 1 Space-Time and Quantum Gravity Space-time at short scales/scattering at E & 1019

More information

NTU Physics Department Chih-Hung Wu 吳智弘

NTU Physics Department Chih-Hung Wu 吳智弘 NTU Physics Department Chih-Hung Wu 吳智弘 I. Spacetime Locality and ER=EPR Conjecture II. Construction of the Counter-example III. Debate with Professor J. Maldacena J. Maldacena and L.Susskind, Cool horizon

More information

Quantum Mechanics and the Black Hole Horizon

Quantum Mechanics and the Black Hole Horizon 1 Quantum Mechanics and the Black Hole Horizon Kyriakos Papadodimas CERN and University of Groningen 9th Aegean summer school: Einstein s theory of gravity and its modifications Space-time, gravity and

More information

17 Eternal Black Holes and Entanglement

17 Eternal Black Holes and Entanglement 17 Eternal Black Holes and Entanglement References: This section is based mostly on Maldacena hep-th/0106112; see also the relevant section of Harlow s review lectures, 1409.1231. An eternal black hole

More information

Black Holes, Holography, and Quantum Information

Black Holes, Holography, and Quantum Information Black Holes, Holography, and Quantum Information Daniel Harlow Massachusetts Institute of Technology August 31, 2017 1 Black Holes Black holes are the most extreme objects we see in nature! Classically

More information

Eternal traversable worm hole in 2D

Eternal traversable worm hole in 2D Eternal traversable worm hole in 2D Xiao-Liang Qi Stanford University Strings2018, OIST, 6/27/2018 Ref: J. Maldacena & XLQ, arxiv: 1804.00491 Goal: dual Coupled SYK Global AdS2 Outline: 1. Overview of

More information

arxiv: v1 [hep-th] 27 Apr 2018

arxiv: v1 [hep-th] 27 Apr 2018 On the interior geometry of a typical black hole microstate Jan de Boer, Sagar F. Lokhande, and Erik Verlinde Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam,

More information

Gauge/Gravity Duality and the Black Hole Interior

Gauge/Gravity Duality and the Black Hole Interior Gauge/Gravity Duality and the Black Hole Interior Joseph Polchinski Kavli Institute for Theoretical Physics University of California at Santa Barbara KIAS-YITP joint workshop String Theory, Black Holes

More information

BOUNDING NEGATIVE ENERGY WITH QUANTUM INFORMATION, CAUSALITY AND A LITTLE BIT OF CHAOS

BOUNDING NEGATIVE ENERGY WITH QUANTUM INFORMATION, CAUSALITY AND A LITTLE BIT OF CHAOS BOUNDING NEGATIVE ENERGY WITH QUANTUM INFORMATION, CAUSALITY AND A LITTLE BIT OF CHAOS based on arxiv: 1706.09432 with: Srivatsan Balakrishnan, Zuhair Khandker, Huajia Wang Tom Faulkner University of Illinois

More information

Don Marolf 7/17/14 UCSB

Don Marolf 7/17/14 UCSB Don Marolf 7/17/14 UCSB D=4: F = GM 2 /r 2, dimensionless coupling GE 2 /ħc 5 grows with E. Quantum fluctuations are a problem, growing at short distances. Growth must(?) stop somewhere (non trivial fixed

More information

Quantum mechanics and the geometry of spacetime

Quantum mechanics and the geometry of spacetime Quantum mechanics and the geometry of spacetime Juan Maldacena PPCM Conference May 2014 Outline Brief review of the gauge/gravity duality Role of strong coupling in the emergence of the interior Role of

More information

arxiv: v2 [hep-th] 25 Feb 2014

arxiv: v2 [hep-th] 25 Feb 2014 arxiv:1402.5674v2 [hep-th] 25 Feb 2014 Computational Complexity and Black Hole Horizons Leonard Susskind Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford,

More information

Black Holes, Quantum Mechanics, and Firewalls

Black Holes, Quantum Mechanics, and Firewalls Black Holes, Quantum Mechanics, and Firewalls Joseph Polchinski Simons Symposium, NYC 11/18/13 A Brief History of the Black Hole Information Paradox: A Brief History of the Black Hole Information Paradox:

More information

Focus of Week 5 The information loss paradox in black holes, an example of scientific controversy

Focus of Week 5 The information loss paradox in black holes, an example of scientific controversy Focus of Week 5 The information loss paradox in black holes, an example of scientific controversy Our Focus of this week 5 allows you to better understand elements of a controversy which has agitated quite

More information

Black Holes, Complementarity or Firewalls Joseph Polchinski

Black Holes, Complementarity or Firewalls Joseph Polchinski Black Holes, Complementarity or Firewalls Joseph Polchinski Introduction Thought experiments have played a large role in figuring out the laws of physics. Even for electromagnetism, where most of the laws

More information

arxiv: v1 [hep-th] 13 Jul 2017

arxiv: v1 [hep-th] 13 Jul 2017 Teleportation Through the Wormhole arxiv:1707.04354v1 [hep-th] 13 Jul 2017 Leonard Susskind and Ying Zhao Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford,

More information

Lecture notes 1. Standard physics vs. new physics. 1.1 The final state boundary condition

Lecture notes 1. Standard physics vs. new physics. 1.1 The final state boundary condition Lecture notes 1 Standard physics vs. new physics The black hole information paradox has challenged our fundamental beliefs about spacetime and quantum theory. Which belief will have to change to resolve

More information

Holographic Entanglement and Interaction

Holographic Entanglement and Interaction Holographic Entanglement and Interaction Shigenori Seki RINS, Hanyang University and Institut des Hautes Études Scientifiques Intrication holographique et interaction à l IHES le 30 janvier 2014 1 Contents

More information

Yasunori Nomura. UC Berkeley; LBNL; Kavli IPMU

Yasunori Nomura. UC Berkeley; LBNL; Kavli IPMU Yasunori Nomura UC Berkeley; LBNL; Kavli IPMU Why black holes? Testing grounds for theories of quantum gravity Even most basic questions remain debatable Do black holes evolve unitarily? Does an infalling

More information

Alice in the black hole wonderland. Wen-Yu Wen (CYCU)

Alice in the black hole wonderland. Wen-Yu Wen (CYCU) Alice in the black hole wonderland Wen-Yu Wen (CYCU) outline Black holes ABC s Information Loss Paradox Complementarity Firewall? Once upon a time Alice and Bob are engaged (entangled) couple. Alice went

More information

Black Holes and Quantum Mechanics

Black Holes and Quantum Mechanics Black Holes and Quantum Mechanics Juan Maldacena Institute for Advanced Study Karl Schwarzschild Meeting Frankfurt Institute for Advanced Study, 2017 Letter from Schwarzschild to Einstein. 22 December

More information

Quantum mechanics and the geometry of space4me

Quantum mechanics and the geometry of space4me Quantum mechanics and the geometry of space4me Juan Maldacena PPCM Conference May 2014 Outline Brief review of the gauge/gravity duality Role of strong coupling in the emergence of the interior Role of

More information

Nonlocal Effects in Quantum Gravity

Nonlocal Effects in Quantum Gravity Nonlocal Effects in Quantum Gravity Suvrat Raju International Centre for Theoretical Sciences 29th Meeting of the IAGRG IIT Guwahati 20 May 2017 Collaborators Based on work with 1 Kyriakos Papadodimas

More information

Emergence of Causality. Brian Swingle University of Maryland Physics Next, Long Island Aug, 2017

Emergence of Causality. Brian Swingle University of Maryland Physics Next, Long Island Aug, 2017 Emergence of Causality Brian Swingle University of Maryland Physics Next, Long Island Aug, 2017 Bounds on quantum dynamics Quantum dynamics is a large subject, but one natural anchor point is to ask

More information

Spacetime versus the Quantum

Spacetime versus the Quantum Spacetime versus the Quantum Joseph Polchinski UCSB Faculty Research Lecture, Dec. 12, 2014 God does not play dice with the world (Albert Einstein, 1926) vs. God does not play dice with the world (Albert

More information

Black Holes are Alpha-Bit Sup

Black Holes are Alpha-Bit Sup Black Holes are Alpha-Bit Sup arxiv:1706.09434, arxiv:1805.????? Patrick Hayden and Geoffrey Penington, Stanford University Preview Qubits are composite resources Another resource (that you have never

More information

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36 QUANTUM INFORMATION - THE NO-HIDING THEOREM Arun K Pati akpati@iopb.res.in Instititute of Physics, Bhubaneswar-751005, Orissa, INDIA and Th. P. D, BARC, Mumbai-400085, India QUANTUM INFORMATION -THE NO-HIDING

More information

Is spacetime a quantum errorcorrecting

Is spacetime a quantum errorcorrecting Is spacetime a quantum errorcorrecting code? Fernando Pastawski, Beni Yoshida, Daniel Harlow, John Preskill = HaPPY J. of High Energy Physics 06 (2015) 149 John Preskill STOC in Montreal 20 June 2017 Frontiers

More information

Outline. Hawking radiation and the LHC. Black Hole Firewall. Singularities. Wormholes

Outline. Hawking radiation and the LHC. Black Hole Firewall. Singularities. Wormholes Outline Hawking radiation and the LHC Black Hole Firewall Singularities Wormholes What happens at the end of evaporation? Eventually, energy of photon emitted would be larger than mass-energy of black

More information

21 Holographic Entanglement Entropy

21 Holographic Entanglement Entropy 21 Holographic Entanglement Entropy 21.1 The formula We now turn to entanglement entropy in CFTs with a semiclassical holographic dual. That is, we assume the CFT has a large number of degrees of freedom

More information

Quantum Gates, Circuits & Teleportation

Quantum Gates, Circuits & Teleportation Chapter 3 Quantum Gates, Circuits & Teleportation Unitary Operators The third postulate of quantum physics states that the evolution of a quantum system is necessarily unitary. Geometrically, a unitary

More information

From Black holes to Qubits through String Theoretic Microscopes

From Black holes to Qubits through String Theoretic Microscopes ICHEP Formal Theory Development, July 10 th, 2018 @ Seoul From Black holes to Qubits through String Theoretic Microscopes Tadashi Takayanagi Yukawa Institute for Theoretical Physics Kyoto University 1

More information

EPR Pairs, Local Projection and Quantum Teleportation in Holography

EPR Pairs, Local Projection and Quantum Teleportation in Holography Strings and Fields 2016, 2016/08/10 @ YITP, Kyoto EPR Pairs, Local Projection and Quantum Teleportation in Holography Kento Watanabe (YITP, Kyoto) arxiv: 1604.01772 [hep-th] (will appear in JHEP) with

More information

Bit Threads and Holographic Entanglement

Bit Threads and Holographic Entanglement it Threads and Holographic Entanglement Matthew Headrick randeis University Strings 2016, eijing ased on arxiv:1604.00354 [hep-th], with Michael Freedman Contents 1 How should one think about the minimal

More information

TOPIC X ALTERNATIVE PROPOSALS TO RESOLVE THE INFORMATION PARADOX

TOPIC X ALTERNATIVE PROPOSALS TO RESOLVE THE INFORMATION PARADOX TOPIC X ALTENATIVE POPOSALS TO ESOLVE THE INFOMATION PAADOX 1 Lecture notes 1 Wormholes 1.1 The fabric of spacetime What is spacetime made of? One might answer: spacetime is made of points. But points

More information

strings, symmetries and holography

strings, symmetries and holography strings, symmetries and holography Discrete 08 VALENCIA J.L.F. Barbon IFT UAM/CSIC (Madrid) 1 THE ROLE OF SYMMETRY PRINCIPLES IN THE CONSTRUCTION OF STRING THEORY WAS NEVER UNDERESTIMATED 2 Examples of

More information

Entanglement Entropy and AdS/CFT

Entanglement Entropy and AdS/CFT Entanglement Entropy and AdS/CFT Christian Ecker 2 nd DK Colloquium January 19, 2015 The main messages of this talk Entanglement entropy is a measure for entanglement in quantum systems. (Other measures

More information

Quantum Entanglement and the Geometry of Spacetime

Quantum Entanglement and the Geometry of Spacetime Quantum Entanglement and the Geometry of Spacetime Matthew Headrick Brandeis University UMass-Boston Physics Colloquium October 26, 2017 It from Qubit Simons Foundation Entropy and area Bekenstein-Hawking

More information

Herman Verlinde. Simons Symposium. February, Quantum Entanglement: From Quantum Matter to String Theory PCTS. Princeton University

Herman Verlinde. Simons Symposium. February, Quantum Entanglement: From Quantum Matter to String Theory PCTS. Princeton University How to Fall into a Black Hole Princeton University Herman Verlinde Simons Symposium Quantum Entanglement: From Quantum Matter to String Theory Feruary, 2013 PCTS The AdS/CFT correspondence has convinced

More information

The Role of Black Holes in the AdS/CFT Correspondence

The Role of Black Holes in the AdS/CFT Correspondence The Role of Black Holes in the AdS/CFT Correspondence Mario Flory 23.07.2013 Mario Flory BHs in AdS/CFT 1 / 30 GR and BHs Part I: General Relativity and Black Holes Einstein Field Equations Lightcones

More information

Horizontal Charge Excitation of Supertranslation and Superrotation

Horizontal Charge Excitation of Supertranslation and Superrotation Horizontal Charge Excitation of Supertranslation and Superrotation Masahiro Hotta Tohoku University Based on M. Hotta, J. Trevison and K. Yamaguchi arxiv:1606.02443. M. Hotta, K. Sasaki and T. Sasaki,

More information

D. Bouwmeester et. al. Nature (1997) Joep Jongen. 21th june 2007

D. Bouwmeester et. al. Nature (1997) Joep Jongen. 21th june 2007 al D. Bouwmeester et. al. Nature 390 575 (1997) Universiteit Utrecht 1th june 007 Outline 1 3 4 5 EPR Paradox 1935: Einstein, Podolsky & Rosen Decay of a π meson: π 0 e + e + Entangled state: ψ = 1 ( +

More information

Durham Research Online

Durham Research Online Durham Research Online Deposited in DRO: 14 October 2014 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Rangamani, Mukund and Rota,

More information

Entanglement and the Bekenstein-Hawking entropy

Entanglement and the Bekenstein-Hawking entropy Entanglement and the Bekenstein-Hawking entropy Eugenio Bianchi relativity.phys.lsu.edu/ilqgs International Loop Quantum Gravity Seminar Black hole entropy Bekenstein-Hawking 1974 Process: matter falling

More information

Time Evolution of Holographic Complexity

Time Evolution of Holographic Complexity Time Evolution of Holographic Complexity Sotaro Sugishita (Osaka Univ.) based on arxiv:1709.10184 [JHEP 1711, 188 (2017)] with Dean Carmi, Shira Chapman, Hugo Marrochio, Robert Myers RIKEN-Osaka-OIST Joint

More information

Quantum Operations in CFTs and Holography

Quantum Operations in CFTs and Holography Strings2016 @ Beijing, Tsinghua, 2016, ug.1-5 Quantum Operations in CFTs and Holography Tadashi Takayanagi ( 高柳匡 ) Yukawa Institute for Theoretical Physics (YITP), Kyoto University Based on arxiv:1604.01772

More information

Considering information-theoretic and analogical reasoning in black-hole physics

Considering information-theoretic and analogical reasoning in black-hole physics Considering information-theoretic and analogical reasoning in black-hole physics Seven Pines Symposium XXI Black Holes in the Spotlight 20 May 2017 An unusual consensus radical divergence about goals,

More information

arxiv: v1 [hep-th] 6 Feb 2018

arxiv: v1 [hep-th] 6 Feb 2018 Black Holes and Complexity Classes arxiv:1802.02175v1 [hep-th] 6 Feb 2018 Leonard Susskind Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305-4060,

More information

Holography and (Lorentzian) black holes

Holography and (Lorentzian) black holes Holography and (Lorentzian) black holes Simon Ross Centre for Particle Theory The State of the Universe, Cambridge, January 2012 Simon Ross (Durham) Holography and black holes Cambridge 7 January 2012

More information

The fuzzball paradigm

The fuzzball paradigm The fuzzball paradigm Samir D. Mathur The Ohio State University (1) The fuzzball construction (shows how the horizon can be removed in string theory states) (2) The small corrections theorem (proves one

More information

arxiv: v1 [hep-th] 18 Dec 2018

arxiv: v1 [hep-th] 18 Dec 2018 Soft mode and interior operator in Hayden-Preskill thought experiment Beni Yoshida Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, anada arxiv:1812.07353v1 [hep-th] 18 Dec 2018

More information

Entanglement and Quantum Teleportation

Entanglement and Quantum Teleportation Entanglement and Quantum Teleportation Stephen Bartlett Centre for Advanced Computing Algorithms and Cryptography Australian Centre of Excellence in Quantum Computer Technology Macquarie University, Sydney,

More information

Hawking radiation and universal horizons

Hawking radiation and universal horizons LPT Orsay, France June 23, 2015 Florent Michel and Renaud Parentani. Black hole radiation in the presence of a universal horizon. In: Phys. Rev. D 91 (12 2015), p. 124049 Hawking radiation in Lorentz-invariant

More information

CS/Ph120 Homework 1 Solutions

CS/Ph120 Homework 1 Solutions CS/Ph0 Homework Solutions October, 06 Problem : State discrimination Suppose you are given two distinct states of a single qubit, ψ and ψ. a) Argue that if there is a ϕ such that ψ = e iϕ ψ then no measurement

More information

Cosmic acceleration from fuzzball evolution. Great Lakes 2012

Cosmic acceleration from fuzzball evolution. Great Lakes 2012 Cosmic acceleration from fuzzball evolution Great Lakes 2012 Outline (A) Black hole information paradox tells us something new about quantum gravity (B) Early Universe had a high density, so these new

More information

arxiv: v1 [hep-th] 15 Aug 2008

arxiv: v1 [hep-th] 15 Aug 2008 SU-ITP-08/18 OIQP-08-08 Fast Scramblers arxiv:0808.2096v1 [hep-th] 15 Aug 2008 Yasuhiro Sekino 1,2, L. Susskind 2 1 Okayama Institute for Quantum Physics, Okayama 700-0015, Japan 2 Physics Department,

More information

A Superluminal communication solution based on Four-photon entanglement

A Superluminal communication solution based on Four-photon entanglement A Superluminal communication solution based on Four-photon entanglement Jia-Run Deng cmos001@163.com Abstract : Based on the improved design of Four-photon entanglement device and the definition of Encoding

More information

arxiv: v2 [hep-th] 22 Apr 2018

arxiv: v2 [hep-th] 22 Apr 2018 Why do Things Fall? arxiv:1802.01198v2 [hep-th] 22 Apr 2018 Leonard Susskind Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305-4060, USA Abstract

More information

arxiv: v1 [hep-th] 3 Nov 2014

arxiv: v1 [hep-th] 3 Nov 2014 Entanglement is not Enough arxiv:1411.0690v1 [hep-th] 3 Nov 2014 Leonard Susskind Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305-4060, USA

More information

arxiv: v2 [hep-th] 7 Dec 2013

arxiv: v2 [hep-th] 7 Dec 2013 New Concepts for Old Black Holes arxiv:1311.3335v2 [hep-th] 7 Dec 2013 Leonard Susskind Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305-4060,

More information

Quantum Computing: Foundations to Frontier Fall Lecture 3

Quantum Computing: Foundations to Frontier Fall Lecture 3 Quantum Computing: Foundations to Frontier Fall 018 Lecturer: Henry Yuen Lecture 3 Scribes: Seyed Sajjad Nezhadi, Angad Kalra Nora Hahn, David Wandler 1 Overview In Lecture 3, we started off talking about

More information

Quantum Entanglement of locally perturbed thermal states

Quantum Entanglement of locally perturbed thermal states Quantum Entanglement of locally perturbed thermal states Joan Simón University of Edinburgh and Maxwell Institute of Mathematical Sciences Holography, strings and higher spins Swansea, March 20, 2015 Based

More information

Quantum Black Holes and Global Symmetries

Quantum Black Holes and Global Symmetries Quantum Black Holes and Global Symmetries Daniel Klaewer Max-Planck-Institute for Physics, Munich Young Scientist Workshop 217, Schloss Ringberg Outline 1) Quantum fields in curved spacetime 2) The Unruh

More information

Lecture 3: Superdense coding, quantum circuits, and partial measurements

Lecture 3: Superdense coding, quantum circuits, and partial measurements CPSC 59/69: Quantum Computation John Watrous, University of Calgary Lecture 3: Superdense coding, quantum circuits, and partial measurements Superdense Coding January 4, 006 Imagine a situation where two

More information

The Black Hole Information Paradox

The Black Hole Information Paradox University of Groningen Faculty of science and engineering Bachelor thesis The Black Hole Information Paradox Author: Alex Pel Supervisor: Kyriakos Papadodimas Second assessor: Eric Bergshoeff July 6,

More information

Spacetime Locality and Quantum Information

Spacetime Locality and Quantum Information Spacetime Locality and Quantum Information Daniel Harlow Princeton University - PCTS March 11, 2015 1 Introduction Quantum Gravity in Perspective Creating a theory of quantum gravity has been a long-standing

More information

Revealing the interior of black holes out of equilibrium in the SYK model

Revealing the interior of black holes out of equilibrium in the SYK model Revealing the interior of black holes out of equilibrium in the SYK model Ram Brustein, Yoav Zigdon arxiv:1804.09017v1 [hep-th] 24 Apr 2018 Department of Physics, Ben-Gurion University, Beer-Sheva 84105,

More information

Lecture 4: Postulates of quantum mechanics

Lecture 4: Postulates of quantum mechanics Lecture 4: Postulates of quantum mechanics Rajat Mittal IIT Kanpur The postulates of quantum mechanics provide us the mathematical formalism over which the physical theory is developed. For people studying

More information

Single qubit + CNOT gates

Single qubit + CNOT gates Lecture 6 Universal quantum gates Single qubit + CNOT gates Single qubit and CNOT gates together can be used to implement an arbitrary twolevel unitary operation on the state space of n qubits. Suppose

More information

Black holes and random matrices

Black holes and random matrices Black holes and random matrices Stephen Shenker Stanford University Strings 2017 Stephen Shenker (Stanford University) Black holes and random matrices Strings 2017 1 / 17 A question What accounts for the

More information

SPACETIME FROM ENTANGLEMENT - journal club notes -

SPACETIME FROM ENTANGLEMENT - journal club notes - SPACETIME FROM ENTANGLEMENT - journal club notes - Chris Heinrich 1 Outline 1. Introduction Big picture: Want a quantum theory of gravity Best understanding of quantum gravity so far arises through AdS/CFT

More information

EPR Pairs, Local Projection and Quantum Teleportation in Holography

EPR Pairs, Local Projection and Quantum Teleportation in Holography YITP long term workshop 2016, One Day Conference, 2016/06/08 @ YITP, Kyoto EPR Pairs, Local Projection and Quantum Teleportation in Holography Kento Watanabe (YITP, Kyoto) arxiv: 1604.01772 [hep-th] with

More information

Duality and Holography

Duality and Holography Duality and Holography? Joseph Polchinski UC Davis, 5/16/11 Which of these interactions doesn t belong? a) Electromagnetism b) Weak nuclear c) Strong nuclear d) a) Electromagnetism b) Weak nuclear c) Strong

More information

How quantization of gravity leads to a discrete space-time

How quantization of gravity leads to a discrete space-time How quantization of gravity leads to a discrete space-time Gerard t Hooft October 25, 2015 1 / 29 The Planck Units: h/2π = = 1.0546 10 34 kg m 2 sec 1 G N = 6.674 10 11 m 3 kg 1 sec 2 c = 2.99792458 10

More information

Experimental quantum teleportation. Dirk Bouwmeester, Jian Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter & Anton Zeilinger

Experimental quantum teleportation. Dirk Bouwmeester, Jian Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter & Anton Zeilinger Experimental quantum teleportation Dirk Bouwmeester, Jian Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter & Anton Zeilinger NATURE VOL 390 11 DECEMBER 1997 Overview Motivation General theory behind

More information

A100 Exploring the Universe: Black holes. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: Black holes. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: Black holes Martin D. Weinberg UMass Astronomy weinberg@astro.umass.edu October 30, 2014 Read: S2, S3, Chap 18 10/30/14 slide 1 Sizes of s The solar neighborhood visualized!

More information

TOPIC VII ADS/CFT DUALITY

TOPIC VII ADS/CFT DUALITY TOPIC VII ADS/CFT DUALITY The conjecture of AdS/CFT duality marked an important step in the development of string theory. Quantum gravity is expected to be a very complicated theory. String theory provides

More information

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139 Quantum Error Correcting Codes and Quantum Cryptography Peter Shor M.I.T. Cambridge, MA 02139 1 We start out with two processes which are fundamentally quantum: superdense coding and teleportation. Superdense

More information

The Black Hole Information Paradox

The Black Hole Information Paradox The Black Hole Information Paradox Stefano Antonini, John Martyn, Gautam Nambiar December 14, 2018 1 Introduction and motivation The 1970 s saw the emergence of many revolutionary ideas in black hole physics.

More information

arxiv: v2 [hep-th] 1 Aug 2018

arxiv: v2 [hep-th] 1 Aug 2018 Prepared for submission to JHEP Learning the Alpha-bits of Black Holes arxiv:1807.06041v2 [hep-th] 1 Aug 2018 Patrick Hayden and Geoffrey Penington Stanford Institute for Theoretical Physics, Stanford

More information

Quantum Teleportation Pt. 3

Quantum Teleportation Pt. 3 Quantum Teleportation Pt. 3 PHYS 500 - Southern Illinois University March 7, 2017 PHYS 500 - Southern Illinois University Quantum Teleportation Pt. 3 March 7, 2017 1 / 9 A Bit of History on Teleportation

More information

Black holes as open quantum systems

Black holes as open quantum systems Black holes as open quantum systems Claus Kiefer Institut für Theoretische Physik Universität zu Köln Hawking radiation 1 1 singularity II γ H γ γ H collapsing 111 star 1 1 I - future event horizon + i

More information

Quantum entanglement in the 21 st century. John Preskill The Quantum Century: 100 Years of the Bohr Atom 3 October 2013

Quantum entanglement in the 21 st century. John Preskill The Quantum Century: 100 Years of the Bohr Atom 3 October 2013 Quantum entanglement in the 21 st century John Preskill The Quantum Century: 100 Years of the Bohr Atom 3 October 2013 My well-worn copy, bought in 1966 when I was 13. George Gamow, recalling Bohr s Theoretical

More information

Modern Physics for Frommies V Gravitation Lecture 8

Modern Physics for Frommies V Gravitation Lecture 8 /6/017 Fromm Institute for Lifelong Learning University of San Francisco Modern Physics for Frommies V Gravitation Lecture 8 Administrative Matters Suggested reading Agenda What do we mean by Quantum Gravity

More information

arxiv: v1 [hep-th] 2 Oct 2018

arxiv: v1 [hep-th] 2 Oct 2018 MIT-CTP/5067 October 4, 2018 Regenesis and quantum traversable wormholes Ping Gao 1 and Hong Liu 2 1 Center for the Fundamental Laws of Nature, arxiv:1810.01444v1 [hep-th] 2 Oct 2018 Harvard University,

More information

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University

Quantum Entanglement, Strange metals, and black holes. Subir Sachdev, Harvard University Quantum Entanglement, Strange metals, and black holes Subir Sachdev, Harvard University Quantum entanglement Quantum Entanglement: quantum superposition with more than one particle Hydrogen atom: Hydrogen

More information

Comments on Black Hole Interiors

Comments on Black Hole Interiors Comments on Black Hole Interiors Juan Maldacena Ins6tute for Advanced Study Conserva6ve point of view Expansion parameter = geff 2 ld 2 p r D 2 h 1 S Informa6on seems to be lost perturba6vely. n point

More information

15 Skepticism of quantum computing

15 Skepticism of quantum computing 15 Skepticism of quantum computing Last chapter, we talked about whether quantum states should be thought of as exponentially long vectors, and I brought up class BQP/qpoly and concepts like quantum advice.

More information

ACOUSTIC BLACK HOLES. MASSIMILIANO RINALDI Université de Genève

ACOUSTIC BLACK HOLES. MASSIMILIANO RINALDI Université de Genève ACOUSTIC BLACK HOLES MASSIMILIANO RINALDI Université de Genève OUTLINE Prelude: GR vs QM Hawking Radiation: a primer Acoustic Black Holes Hawking Radiation in Acoustic Black Holes Acoustic Black Holes

More information

Black Holes. Jan Gutowski. King s College London

Black Holes. Jan Gutowski. King s College London Black Holes Jan Gutowski King s College London A Very Brief History John Michell and Pierre Simon de Laplace calculated (1784, 1796) that light emitted radially from a sphere of radius R and mass M would

More information

Talk by Johannes Vrana

Talk by Johannes Vrana Decoherence and Quantum Error Correction Talk by Johannes Vrana Seminar on Quantum Computing - WS 2002/2003 Page 1 Content I Introduction...3 II Decoherence and Errors...4 1. Decoherence...4 2. Errors...6

More information

Soft-Hair Enhanced Entanglement Beyond Page Curves in Black-Hole Evaporation Qubit Models

Soft-Hair Enhanced Entanglement Beyond Page Curves in Black-Hole Evaporation Qubit Models Soft-Hair Enhanced Entanglement Beyond Page Curves in Black-Hole Evaporation Qubit Models Masahiro Hotta Tohoku University Based on M. Hotta, Y. Nambu and K. Yamaguchi, arxiv:1706.07520. Introduction Large

More information

The Black Hole Information Paradox, and its resolution in string theory

The Black Hole Information Paradox, and its resolution in string theory The Black Hole Information Paradox, and its resolution in string theory Samir D. Mathur The Ohio State University NASA Hawking 1974: General relativity predicts black holes Quantum mechanics around black

More information

arxiv: v1 [hep-th] 31 May 2018

arxiv: v1 [hep-th] 31 May 2018 Bulk View of Teleportation and Traversable Wormholes Dongsu Bak, a Chanju Kim, b Sang-Heon Yi a a) Physics Department, University of Seoul, Seoul 0504 KOREA b) Department of Physics, Ewha Womans University,

More information

The SYK model, AdS 2 and conformal symmetry

The SYK model, AdS 2 and conformal symmetry The SYK model, AdS 2 and conformal symmetry Juan Maldacena Na;Fest September 2016 Ins;tute for Advanced Study Na; and I collaborated on 8 papers. Five were on aspects of two dimensional String theory and

More information

In the case of a nonrotating, uncharged black hole, the event horizon is a sphere; its radius R is related to its mass M according to

In the case of a nonrotating, uncharged black hole, the event horizon is a sphere; its radius R is related to its mass M according to Black hole General relativity predicts that when a massive body is compressed to sufficiently high density, it becomes a black hole, an object whose gravitational pull is so powerful that nothing can escape

More information

Physics Bets, and Conversations with John

Physics Bets, and Conversations with John Physics Bets, and Conversations with John Kip Preskill Fest Caltech, 15 March 2013 2 3 4 1971 Bet : Yakov Borisovich Zel dovich A Spinning Black Hole will radiate all types of particles 5 What Zel dovich

More information