Quantum entanglement in the 21 st century. John Preskill The Quantum Century: 100 Years of the Bohr Atom 3 October 2013

Size: px
Start display at page:

Download "Quantum entanglement in the 21 st century. John Preskill The Quantum Century: 100 Years of the Bohr Atom 3 October 2013"

Transcription

1 Quantum entanglement in the 21 st century John Preskill The Quantum Century: 100 Years of the Bohr Atom 3 October 2013

2 My well-worn copy, bought in 1966 when I was 13.

3 George Gamow, recalling Bohr s Theoretical Physics Institute : Bohr s Institute quickly became the world center of quantum physics, and to paraphrase the old Romans, all roads led to Blegdamsvej 17 The popularity of the institute was due both to the genius of its director and his kind, one might say fatherly, heart Almost every country in the world has physicists who proudly say: I used to work with Bohr. Thirty Years That Shook Physics, 1966, p. 51.

4 George Gamow, recalling Bohr s Theoretical Physics Institute : Bohr, Fru Bohr, Casimir, and I were returning home from the farewell dinner for Oscar Klein on the occasion of his election as a university professor in his native Sweden. At that late hour the streets of the city were empty. On the way home we passed a bank building with walls of large cement blocks. At the corner of the building the crevices between the courses of the blocks were deep enough to give a toehold to a good alpinist. Casimir, an expert climber, scrambled up almost to the third floor. When Cas came down, Bohr, inexperienced as he was, went up to match the deed. When he was hanging precariously on the second-floor level, and Fru Bohr, Casimir, and I were anxiously watching his progress, two Copenhagen policeman approached from behind with their hands on their gun holsters. One of them looked up and told the other, Oh, it is only Professor Bohr! and they went quietly off to hunt for more dangerous bank robbers. Thirty Years That Shook Physics, 1966, p. 57.

5 Werner Heisenberg on Schrödinger s 1926 visit to Coperhagen: Bohr s discussions with Schrödinger began at the railway station and continued daily from early morning until late at night. Schrödinger stayed at Bohr s house so that nothing would interrupt the conversations After a few days, Schrödinger fell ill, perhaps as a result of his enormous effort; in any case he was forced to keep to his bed with a feverish cold. While Mrs. Bohr nursed him and brought in tea and cake, Niels Bohr kept sitting on the edge of the bed talking at Schrödinger: But surely you must admit that No real understanding could be expected since, at that time, neither side was able to offer a complete and coherent interpretation of quantum mechanics. Physics and Beyond, 1971, p

6 Classical Correlations

7 Classical Correlations Quantum Correlations Aren t boxes like soxes?

8 Einstein s 1935 paper, with Podolsky and Rosen (EPR), launched the theory of quantum entanglement. To Einstein, quantum entanglement was so unsettling as to indicate that something is missing from our current understanding of the quantum description of Nature.

9 If, without in any way disturbing a system, we can predict with certainty the value of a physical quantity, then there exists an element of physical reality corresponding to this physical quantity.

10 there is no question of a mechanical disturbance of the system under investigation during the critical last stage of the measuring procedure. But even at this stage there is essentially the question of an influence on the very conditions which define the possible types of predictions regarding the future behavior of the system.

11 Quantum entanglement. This Page Blank This Page Blank This Page Blank This Page Blank This Page Blank. Nearly all the information in a typical entangled quantum book is encoded in the correlations among the pages. You can't access the information if you read the book one page at a time.

12 To describe 300 qubits, we would need more numbers than the number of atoms in the visible universe!

13 We can t even hope to describe the state of a few hundred qubits in terms of classical bits. Might a computer that operates on qubits rather than bits (a quantum computer) be able to perform tasks that are beyond the capability of any conceivable classical computer?

14 Peter Shor

15 Problems Quantumly Hard Quantumly Easy Classically Easy

16 Problems Quantumly Hard Quantumly Easy Classically Easy What s in here?

17 Three Questions About Quantum Computers 1. Why build one? How will we use it, and what will we learn from it? A quantum computer may be able to simulate efficiently any process that occurs in Nature! 2. Can we build one? Are there obstacles that will prevent us from building quantum computers as a matter of principle? Using quantum error correction, we can overcome the damaging effects of noise at a reasonable overhead cost. 3. How will we build one? What kind of quantum hardware is potentially scalable to large systems?

18 Quantum entanglement in the 21 st century Algorithms Error Correction Matter Spacetime

19 arxiv papers with entanglement in the title quant-ph

20 arxiv papers with entanglement in the title cond-mat hep-th gr-qc

21

22

23 Classical correlations are polygamous Betty Adam Charlie

24 Quantum correlations are monogamous Betty fully entangled unentangled Adam Charlie

25 Quantum correlations are monogamous Betty unentangled fully entangled Adam Charlie

26 Monogamy is frustrating! Betty fully entangled unentangled Adam cryptography quantum matter black holes Charlie

27 Information Puzzle: Is a black hole a quantum cloner? Suppose that the collapsing body s quantum information is encoded in the emitted Hawking radiation; the information is thermalized, not destroyed. The green time slice crosses both the collapsing body behind the horizon and nearly all of the radiation outside the horizon. Thus the same (quantum) information is in two places at the same time. A quantum cloning machine has operated, which is not allowed by the linearity of quantum mechanics. We re stuck: either information is destroyed or cloning occurs. Either way, quantum physics needs revision. outgoing radiation singularity time slice time (outside horizon) collapsing body event horizon

28 Black hole complementarity singularity Perhaps the lesson is that, for mysterious reasons that should be elucidated by a complete theory of quantum gravity, it is wrong to think of the outside and inside portions of the time slice as two separate subsystems of a composite system. H H in H out Rather, the inside and outside are merely complementary descriptions of the same system. Which description is appropriate depends on whether the observer enters the black hole or stays outside (Susskind, 1993). time slice outgoing radiation time (outside horizon) collapsing body event horizon

29 No-cloning lower bound on the information retention time Let s demand that verifiable cloning does not occur. Then the proper time during which Alice can send her qubits to Bob cannot be larger than O(1) in Planck units: singularity Bob τ r exp t / r O(1) r (Alice) proper and therefore ( ) S S S t O r log r ( ) S S S Planck Alice (where r S is measured in Planck units ). If Alice s quantum information were revealed in the Hawking radiation faster than this, then Alice and Bob would be able to verify that Alice s quantum information is in two places at once, in violation of the no-cloning principle.

30 Alice throws k qubits (maximally entangled with reference system N) into an old black hole. As radiation R escapes, the correlation of N with B decays. Eventually, N is nearly uncorrelated with B and nearly maximally entangled with a subsystem of ER --- at that stage, Bob can decode Alice s quantum message with high fidelity (Hayden-Preskill, 2007). Haar Black holes as mirrors Bob s decoder E R B' radiation black hole ( dv ) ρ V ρ ρmax 1 V B black hole maximal entanglement Alice s qubits reference system k N 2 ( ) = = 2 k + c R 2 B NB B N B c time Bob can decode with high fidelity after receiving only k+c qubits of Hawking radiation, where c is a constant, if the mixing unitary V B is Haar random, or even if it is a typical unitary realized by a small quantum circuit (depth ~log r s ). N

31 Black hole complementarity challenged Three reasonable beliefs, not all true! [Almheri, Marolf, Polchinski, Sully (AMPS) 2012]: (1) The black hole scrambles information, but does not destroy it. (2) An observer who falls through the black hole horizon sees nothing unusual (at least for a while). (3) An observer who stays outside the black hole sees nothing unusual. Conservative resolution: A firewall at the horizon.

32 Complementarity Challenged singularity (1) For an old black hole, recently emitted radiation (B) is highly entangled with radiation emitted earlier (R) by the time it reaches Robert. Robert R (2) If freely falling observer sees vacuum at the horizon, then the recently emitted radiation (B) is highly entangled with modes behind the horizon (A). (3) If B is entangled with R by the time it reaches Robert, it was already entangled with R at the time of emission from the black hole. Monogamy of entanglement violated! outgoing radiation time (outside horizon) B Betty A Adam event horizon

33

34 What s inside a black hole? black hole Bob Alice

35 A. An unlimited amount of stuff. singularity forward light cone There is all that stuff that fell in and it crashed into the singularity and that s it. Bye-bye. Bill Unruh But -- Why S = Area / 4? time -- What about AdS/CFT duality? collapsing matter

36 B. Nothing at all. singularity It is time to constrain and construct the dynamics of firewalls. Raphael Bousso time But -- Curtains for the equivalence principle? (Braunstein, 2009) collapsing matter

37 C. A huge but finite amount of stuff, which is also outside the black hole. A black hole wormhole-connected to the Hawking radiation it has emitted (Maldacena and Susskind). B (recent radiation) can be entangled with both A (behind the horizon) and R (early radiation), because A and R are two descriptions of the same system. Complementarity rescued, perhaps by identifying nontraversable wormholes with entanglement (ER = EPR). But -- R could be far, far away from the black hole.

38 What s inside a black hole? A. An unlimited amount of stuff. B. Nothing at all. C. A huge but finite amount of stuff, which is also outside the black hole. D. None of the above.

39 Holographic entanglement entropy minimal bulk surface bulk boundary To compute entropy of region A in the boundary field theory, find minimal area of the bulk surface with the same boundary: 1 S( A) = min m= A area(m ) + 4 G N Ryu and Takayanagi, 2006 Recover, for example, in 1+1 dimensional conformal field theory: c S( A( L)) = log( L / a) + 3

40 Strong subadditivity from holography minimal bulk surface S(A) + S(B) S(A»B) + S(A B) Headrick and Takayanagi, 2007 bulk bulk boundary boundary Tripartite Info: I(A;B) + I(A;C) I(A;BC) 0 ( extensivity of mutual information). True for holographic theories, not in general. Hayden, Headrick, Maloney, 2011

41 Building spacetime from quantum entanglement i e β E i /2 i β E e /2 i E E i i A connected geometry is constructed as a superposition of disconnected geometries. The entangled state becomes a product state as the neck pinches off and the geometry becomes disconnected. (Van Raamsdonk, 2010).

42

43 Love in a wormhole throat singularity Alice Bob time Alice and Bob are in different galaxies, but each lives near a black hole, and their black holes are connected by a wormhole. If both jump into their black holes, they can enjoy each other s company for a while before meeting a tragic end.

44 C. A huge but finite amount of stuff, which is also outside the black hole. A black hole wormhole-connected to the Hawking radiation it has emitted (Maldacena and Susskind). B (recent radiation) can be entangled with both A (behind the horizon) and R (early radiation), because A and R are two descriptions of the same system. Complementarity rescued, perhaps by identifying nontraversable wormholes with entanglement (ER = EPR). But -- R could be far, far away from the black hole.

45 Horowitz-Maldacena Proposal (2003) singularity singularity S in out out = M time M time Quantum information escapes from a black hole via postselected teleportation. The black hole S-matrix is unitary if the Unruh vacuum at the horizon is maximally entangled and the postselected final state at the horizon is also maximally entangled. Monogamy of entanglement and no-cloning are (temporarily) violated, allowing smoothness of the horizon to be reconciled with unitarity. (Lloyd and Preskill, 2013).

46 Horowitz-Maldacena Proposal (2003) out 2 out 1 singularity S in 2 out in 1 = M 1 M 2 M time Quantum information escapes from a black hole via postselected teleportation. The black hole S-matrix is unitary if the Unruh vacuum at the horizon is maximally entangled and the postselected final state at the horizon is also maximally entangled. Monogamy of entanglement and no-cloning are (temporarily) violated, allowing smoothness of the horizon to be reconciled with unitarity. (Lloyd and Preskill, 2013).

47 Generic final state N out Considering dividing the infalling matter into a relatively small subsystem M 1 (matter that collapses quickly) and a larger subsystem M 2 (which collapses slowly). M 1 U M 2 0 in If M 2 is initially in a fixed (vacuum) state, then a generic final state boundary condition, will project onto a very nearly maximally entangled state of M 1 and the outgoing radiation; hence the black hole S- matrix will be very nearly unitary. H L1 norm deviation from unitarity: M1 3/2 exp ( SBH / 2 + O( m )) Hin Such a small violation of unitarity may be an artifact of the semiclassical framework used in the analysis, as nonperturbative quantum gravity corrections of that order are expected. 1/2

48 Entanglement Renormalization and Holography In AdS/CFT, the emergent dimension of space can be regarded as a renomalization scale. Entanglement renorm., run backwards, prepares a region of length L in circuit depth O(log L). View the bulk space as a prescription for building up the boundary state (Swingle, 2009). Think of a growing tensor network as a model of an evolving bulk spatial slice. The slice expands, corresponding to adding additional layers to the network.

49 Niels Bohr to Wolfgang Pauli, 1958: We are all agreed that your theory is crazy. The question that divides us is whether it is crazy enough to have a chance of being correct. All the proposed resolutions of the black hole firewall puzzle are crazy, but are any of them crazy enough? Bohr probably said something like this on multiple ocassions. Quoted by Freeman Dyson, Scientific American, September Another eyewitness account: Jeremy Bernstein, The life it brings, 1987, p. 139

50 Frontiers of Physics short distance long distance complexity Higgs boson Neutrino masses Supersymmetry Quantum gravity String theory Large scale structure Cosmic microwave background Dark matter Dark energy More is different Many-body entanglement Phases of quantum matter Quantum computing

51

52 Freeman Dyson on discussion with Bohr in San Diego, It was his habit to walk and talk. All his life he had been walking and talking, usually with a single listener who could concentrate his full attention upon Bohr s convoluted sentences and indistinct voice. That evening he wanted to talk about the future of atomic energy. He signaled for me to come with him, and we walked together up and down the beach. I was delighted to be so honored I clutched at every word as best I could. But Bohr s voice was at the best of times barely audible. There on the beach, each time he came to a particularly crucial point of his confrontations with Churchill and Roosevelt, his voice seemed to sink lower and lower until it was utterly lost in the ebb and flow of the waves. Disturbing the Universe, 1979, p. 102.

53 Niels Theoretical Physicist Tweets Stop telling God what to do! Niels If quantum mechanics hasn't profoundly shocked you, you haven't understood it yet.

Black Holes: Complementarity vs. Firewalls

Black Holes: Complementarity vs. Firewalls Black Holes: Complementarity vs. Firewalls Raphael Bousso Center for Theoretical Physics University of California, Berkeley Strings 2012, Munich July 27, 2012 The Question Complementarity The AMPS Gedankenexperiment

More information

Quantum entanglement in the 21 st century

Quantum entanglement in the 21 st century Quantum entanglement in the 21 st century Algorithms Error Correction Matter Spacetime Three Questions About Quantum Computers 1. Why build one? How will we use it, and what will we learn from it? A quantum

More information

Spacetime versus the Quantum

Spacetime versus the Quantum Spacetime versus the Quantum Joseph Polchinski UCSB Faculty Research Lecture, Dec. 12, 2014 God does not play dice with the world (Albert Einstein, 1926) vs. God does not play dice with the world (Albert

More information

Black Holes, Quantum Mechanics, and Firewalls

Black Holes, Quantum Mechanics, and Firewalls Black Holes, Quantum Mechanics, and Firewalls Joseph Polchinski Simons Symposium, NYC 11/18/13 A Brief History of the Black Hole Information Paradox: A Brief History of the Black Hole Information Paradox:

More information

Alice in the black hole wonderland. Wen-Yu Wen (CYCU)

Alice in the black hole wonderland. Wen-Yu Wen (CYCU) Alice in the black hole wonderland Wen-Yu Wen (CYCU) outline Black holes ABC s Information Loss Paradox Complementarity Firewall? Once upon a time Alice and Bob are engaged (entangled) couple. Alice went

More information

Black Holes, Holography, and Quantum Information

Black Holes, Holography, and Quantum Information Black Holes, Holography, and Quantum Information Daniel Harlow Massachusetts Institute of Technology August 31, 2017 1 Black Holes Black holes are the most extreme objects we see in nature! Classically

More information

Black Holes, Complementarity or Firewalls Joseph Polchinski

Black Holes, Complementarity or Firewalls Joseph Polchinski Black Holes, Complementarity or Firewalls Joseph Polchinski Introduction Thought experiments have played a large role in figuring out the laws of physics. Even for electromagnetism, where most of the laws

More information

The Information Paradox

The Information Paradox The Information Paradox Quantum Mechanics and Black Holes FokionFest 22 December 2017, Athens Kyriakos Papadodimas CERN 1 Space-Time and Quantum Gravity Space-time at short scales/scattering at E & 1019

More information

Bit Threads and Holographic Entanglement

Bit Threads and Holographic Entanglement it Threads and Holographic Entanglement Matthew Headrick randeis University Strings 2016, eijing ased on arxiv:1604.00354 [hep-th], with Michael Freedman Contents 1 How should one think about the minimal

More information

Gauge/Gravity Duality and the Black Hole Interior

Gauge/Gravity Duality and the Black Hole Interior Gauge/Gravity Duality and the Black Hole Interior Joseph Polchinski Kavli Institute for Theoretical Physics University of California at Santa Barbara KIAS-YITP joint workshop String Theory, Black Holes

More information

Yasunori Nomura. UC Berkeley; LBNL; Kavli IPMU

Yasunori Nomura. UC Berkeley; LBNL; Kavli IPMU Yasunori Nomura UC Berkeley; LBNL; Kavli IPMU Why black holes? Testing grounds for theories of quantum gravity Even most basic questions remain debatable Do black holes evolve unitarily? Does an infalling

More information

Quantum Entanglement and the Geometry of Spacetime

Quantum Entanglement and the Geometry of Spacetime Quantum Entanglement and the Geometry of Spacetime Matthew Headrick Brandeis University UMass-Boston Physics Colloquium October 26, 2017 It from Qubit Simons Foundation Entropy and area Bekenstein-Hawking

More information

Excluding Black Hole Firewalls with Extreme Cosmic Censorship

Excluding Black Hole Firewalls with Extreme Cosmic Censorship Excluding Black Hole Firewalls with Extreme Cosmic Censorship arxiv:1306.0562 Don N. Page University of Alberta February 14, 2014 Introduction A goal of theoretical cosmology is to find a quantum state

More information

Is spacetime a quantum errorcorrecting

Is spacetime a quantum errorcorrecting Is spacetime a quantum errorcorrecting code? Fernando Pastawski, Beni Yoshida, Daniel Harlow, John Preskill = HaPPY J. of High Energy Physics 06 (2015) 149 John Preskill STOC in Montreal 20 June 2017 Frontiers

More information

Quantum mechanics and the geometry of spacetime

Quantum mechanics and the geometry of spacetime Quantum mechanics and the geometry of spacetime Juan Maldacena PPCM Conference May 2014 Outline Brief review of the gauge/gravity duality Role of strong coupling in the emergence of the interior Role of

More information

NTU Physics Department Chih-Hung Wu 吳智弘

NTU Physics Department Chih-Hung Wu 吳智弘 NTU Physics Department Chih-Hung Wu 吳智弘 I. Spacetime Locality and ER=EPR Conjecture II. Construction of the Counter-example III. Debate with Professor J. Maldacena J. Maldacena and L.Susskind, Cool horizon

More information

Focus of Week 5 The information loss paradox in black holes, an example of scientific controversy

Focus of Week 5 The information loss paradox in black holes, an example of scientific controversy Focus of Week 5 The information loss paradox in black holes, an example of scientific controversy Our Focus of this week 5 allows you to better understand elements of a controversy which has agitated quite

More information

Quantum computing and the entanglement frontier. John Preskill NAS Annual Meeting 29 April 2018

Quantum computing and the entanglement frontier. John Preskill NAS Annual Meeting 29 April 2018 Quantum computing and the entanglement frontier John Preskill NAS Annual Meeting 29 April 2018 Quantum Information Science Planck quantum theory + computer science + information theory Turing quantum information

More information

Diving into traversable wormholes

Diving into traversable wormholes Diving into traversable wormholes Douglas Stanford IAS July 5, 2017 Based on 1704.05333 with Juan Maldacena and Zhenbin Yang, following up on 1608.05687 by Ping Gao, Daniel Jafferis, and Aron Wall. Wormholes

More information

17 Eternal Black Holes and Entanglement

17 Eternal Black Holes and Entanglement 17 Eternal Black Holes and Entanglement References: This section is based mostly on Maldacena hep-th/0106112; see also the relevant section of Harlow s review lectures, 1409.1231. An eternal black hole

More information

Soft-Hair Enhanced Entanglement Beyond Page Curves in Black-Hole Evaporation Qubit Models

Soft-Hair Enhanced Entanglement Beyond Page Curves in Black-Hole Evaporation Qubit Models Soft-Hair Enhanced Entanglement Beyond Page Curves in Black-Hole Evaporation Qubit Models Masahiro Hotta Tohoku University Based on M. Hotta, Y. Nambu and K. Yamaguchi, arxiv:1706.07520. Introduction Large

More information

Questions for Black Hole evaporation from Quantum Statistical Mechanics

Questions for Black Hole evaporation from Quantum Statistical Mechanics Questions for Black Hole evaporation from Quantum Statistical Mechanics David Wallace Philosophy Department, University of Southern California Black Hole Initiative, May 9 th 2017 Thermally Typical Black

More information

Lecture notes 1. Standard physics vs. new physics. 1.1 The final state boundary condition

Lecture notes 1. Standard physics vs. new physics. 1.1 The final state boundary condition Lecture notes 1 Standard physics vs. new physics The black hole information paradox has challenged our fundamental beliefs about spacetime and quantum theory. Which belief will have to change to resolve

More information

From Black holes to Qubits through String Theoretic Microscopes

From Black holes to Qubits through String Theoretic Microscopes ICHEP Formal Theory Development, July 10 th, 2018 @ Seoul From Black holes to Qubits through String Theoretic Microscopes Tadashi Takayanagi Yukawa Institute for Theoretical Physics Kyoto University 1

More information

Durham Research Online

Durham Research Online Durham Research Online Deposited in DRO: 14 October 2014 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Rangamani, Mukund and Rota,

More information

ISSN Short Communication. Musings on Firewalls and the Information Paradox

ISSN Short Communication. Musings on Firewalls and the Information Paradox Galaxies 2014, 2, 189-198; doi:10.3390/galaxies2020189 OPEN ACCESS galaxies ISSN 2075-4434 www.mdpi.com/journal/galaxies Short Communication Musings on Firewalls and the Information Paradox Michael Devin

More information

arxiv: v1 [hep-th] 28 Oct 2013

arxiv: v1 [hep-th] 28 Oct 2013 Measurements without Probabilities in the Final State Proposal arxiv:30.7457v [hep-th] 28 Oct 203 Raphael Bousso,2 and Douglas Stanford 3 Center for Theoretical Physics and Department of Physics, University

More information

6.896 Quantum Complexity Theory September 9, Lecture 2

6.896 Quantum Complexity Theory September 9, Lecture 2 6.96 Quantum Complexity Theory September 9, 00 Lecturer: Scott Aaronson Lecture Quick Recap The central object of study in our class is BQP, which stands for Bounded error, Quantum, Polynomial time. Informally

More information

Return to cosmology. Is inflation in trouble? Are we cycling back to cycles? And then what happens to the 2 nd law?

Return to cosmology. Is inflation in trouble? Are we cycling back to cycles? And then what happens to the 2 nd law? Return to cosmology Is inflation in trouble? Are we cycling back to cycles? And then what happens to the 2 nd law? We saw inflation correctly predict: 1. Flatness of universe 2. Homogeneity of universe

More information

The fuzzball paradigm

The fuzzball paradigm The fuzzball paradigm Samir D. Mathur The Ohio State University (1) The fuzzball construction (shows how the horizon can be removed in string theory states) (2) The small corrections theorem (proves one

More information

The Relativistic Quantum World

The Relativistic Quantum World The Relativistic Quantum World A lecture series on Relativity Theory and Quantum Mechanics Marcel Merk University of Maastricht, Sept 24 Oct 15, 2014 Relativity Quantum Mechanics The Relativistic Quantum

More information

arxiv: v1 [hep-th] 6 Feb 2018

arxiv: v1 [hep-th] 6 Feb 2018 Black Holes and Complexity Classes arxiv:1802.02175v1 [hep-th] 6 Feb 2018 Leonard Susskind Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305-4060,

More information

Quantum Computation and the Future of Physics

Quantum Computation and the Future of Physics Quantum Computation and the Future of Physics Q Quantum Computer John Preskill, Caltech 10 May 2002 http://www.iqi.caltech.edu/ THEORY OF COMPUTATION & THE SCIENCES where can the`lens provided by theoretical

More information

Entanglement Entropy and AdS/CFT

Entanglement Entropy and AdS/CFT Entanglement Entropy and AdS/CFT Christian Ecker 2 nd DK Colloquium January 19, 2015 The main messages of this talk Entanglement entropy is a measure for entanglement in quantum systems. (Other measures

More information

10 - February, 2010 Jordan Myronuk

10 - February, 2010 Jordan Myronuk 10 - February, 2010 Jordan Myronuk Classical Cryptography EPR Paradox] The need for QKD Quantum Bits and Entanglement No Cloning Theorem Polarization of Photons BB84 Protocol Probability of Qubit States

More information

Outline. Hawking radiation and the LHC. Black Hole Firewall. Singularities. Wormholes

Outline. Hawking radiation and the LHC. Black Hole Firewall. Singularities. Wormholes Outline Hawking radiation and the LHC Black Hole Firewall Singularities Wormholes What happens at the end of evaporation? Eventually, energy of photon emitted would be larger than mass-energy of black

More information

Black Holes are Alpha-Bit Sup

Black Holes are Alpha-Bit Sup Black Holes are Alpha-Bit Sup arxiv:1706.09434, arxiv:1805.????? Patrick Hayden and Geoffrey Penington, Stanford University Preview Qubits are composite resources Another resource (that you have never

More information

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139 Quantum Error Correcting Codes and Quantum Cryptography Peter Shor M.I.T. Cambridge, MA 02139 1 We start out with two processes which are fundamentally quantum: superdense coding and teleportation. Superdense

More information

Transmitting and Hiding Quantum Information

Transmitting and Hiding Quantum Information 2018/12/20 @ 4th KIAS WORKSHOP on Quantum Information and Thermodynamics Transmitting and Hiding Quantum Information Seung-Woo Lee Quantum Universe Center Korea Institute for Advanced Study (KIAS) Contents

More information

Holographic Entanglement Entropy. (with H. Casini, M. Huerta, J. Hung, M. Smolkin & A. Yale) (arxiv: , arxiv: )

Holographic Entanglement Entropy. (with H. Casini, M. Huerta, J. Hung, M. Smolkin & A. Yale) (arxiv: , arxiv: ) v Holographic Entanglement Entropy (with H. Casini, M. Huerta, J. Hung, M. Smolkin & A. Yale) (arxiv:1102.0440, arxiv:1110.1084) Entanglement Entropy what is entanglement entropy? general tool; divide

More information

226 My God, He Plays Dice! Entanglement. Chapter This chapter on the web informationphilosopher.com/problems/entanglement

226 My God, He Plays Dice! Entanglement. Chapter This chapter on the web informationphilosopher.com/problems/entanglement 226 My God, He Plays Dice! Entanglement Chapter 29 20 This chapter on the web informationphilosopher.com/problems/entanglement Entanglement 227 Entanglement Entanglement is a mysterious quantum phenomenon

More information

In the case of a nonrotating, uncharged black hole, the event horizon is a sphere; its radius R is related to its mass M according to

In the case of a nonrotating, uncharged black hole, the event horizon is a sphere; its radius R is related to its mass M according to Black hole General relativity predicts that when a massive body is compressed to sufficiently high density, it becomes a black hole, an object whose gravitational pull is so powerful that nothing can escape

More information

SUPERDENSE CODING AND QUANTUM TELEPORTATION

SUPERDENSE CODING AND QUANTUM TELEPORTATION SUPERDENSE CODING AND QUANTUM TELEPORTATION YAQIAO LI This note tries to rephrase mathematically superdense coding and quantum teleportation explained in [] Section.3 and.3.7, respectively (as if I understood

More information

HILBERT SPACE NETWORKS AND UNITARY MODELS FOR BLACK HOLE EVOLUTION

HILBERT SPACE NETWORKS AND UNITARY MODELS FOR BLACK HOLE EVOLUTION HILBERT SPACE NETWORKS AND UNITARY MODELS FOR BLACK HOLE EVOLUTION S.B. Giddings UCSB KITP April 25, 2012 Refs: SBG 1108.2015, 1201.1037; SBG and Y. Shi, work in progress The black hole information paradox,

More information

Bit Threads & Holographic Monogamy

Bit Threads & Holographic Monogamy Bit Threads & Holographic Monogamy Matthew Headrick Brandeis University Entanglement in Quantum Systems GGI Florence, June 2018 Based on arxiv:1604.00354 [hep-th] with M. Freedman & forthcoming work with

More information

Quantum mechanics and the geometry of space4me

Quantum mechanics and the geometry of space4me Quantum mechanics and the geometry of space4me Juan Maldacena PPCM Conference May 2014 Outline Brief review of the gauge/gravity duality Role of strong coupling in the emergence of the interior Role of

More information

strings, symmetries and holography

strings, symmetries and holography strings, symmetries and holography Discrete 08 VALENCIA J.L.F. Barbon IFT UAM/CSIC (Madrid) 1 THE ROLE OF SYMMETRY PRINCIPLES IN THE CONSTRUCTION OF STRING THEORY WAS NEVER UNDERESTIMATED 2 Examples of

More information

Quantum Mechanics and the Black Hole Horizon

Quantum Mechanics and the Black Hole Horizon 1 Quantum Mechanics and the Black Hole Horizon Kyriakos Papadodimas CERN and University of Groningen 9th Aegean summer school: Einstein s theory of gravity and its modifications Space-time, gravity and

More information

Comments on Black Hole Interiors

Comments on Black Hole Interiors Comments on Black Hole Interiors Juan Maldacena Ins6tute for Advanced Study Conserva6ve point of view Expansion parameter = geff 2 ld 2 p r D 2 h 1 S Informa6on seems to be lost perturba6vely. n point

More information

Spacetime Locality and Quantum Information

Spacetime Locality and Quantum Information Spacetime Locality and Quantum Information Daniel Harlow Princeton University - PCTS March 11, 2015 1 Introduction Quantum Gravity in Perspective Creating a theory of quantum gravity has been a long-standing

More information

Introduction to Quantum Computing for Folks

Introduction to Quantum Computing for Folks Introduction to Quantum Computing for Folks Joint Advanced Student School 2009 Ing. Javier Enciso encisomo@in.tum.de Technische Universität München April 2, 2009 Table of Contents 1 Introduction 2 Quantum

More information

Newfound Wormhole Allows Information to Escape Black Holes

Newfound Wormhole Allows Information to Escape Black Holes Newfound Wormhole Allows Information to Escape Black Holes Physicists theorize that a new traversable kind of wormhole could resolve a baffling paradox and rescue information that falls into black holes.

More information

The Physics of Impossible Things Benjamin Schumacher Kenyon College

The Physics of Impossible Things Benjamin Schumacher Kenyon College The Physics of Impossible Things Benjamin Schumacher Kenyon College "I can't believe that!" said Alice. "Can't you?" the Queen said in a pitying tone. "Try again: draw a long breath, and shut your eyes."

More information

arxiv: v4 [hep-th] 2 Feb 2014

arxiv: v4 [hep-th] 2 Feb 2014 IMSc/2012/11/18 arxiv:1211.5645v4 [hep-th] 2 Feb 2014 Remarks on Black Hole Evolution a la Firewalls and Fuzzballs S. Kalyana Rama Institute of Mathematical Sciences, C. I. T. Campus, Tharamani, CHENNAI

More information

BLACK HOLES, QUANTUM INFORMATION TRANSFER, AND HILBERT-SPACE NETWORKS

BLACK HOLES, QUANTUM INFORMATION TRANSFER, AND HILBERT-SPACE NETWORKS BLACK HOLES, QUANTUM INFORMATION TRANSFER, AND HILBERT-SPACE NETWORKS S.B. Giddings UCSB Black Holes and Information KITP May 21, 2012 Refs: SBG 1108.2015, 1201.1037; SBG and Y. Shi, 1205.xxxx The information

More information

AdS/CFT Correspondence and Entanglement Entropy

AdS/CFT Correspondence and Entanglement Entropy AdS/CFT Correspondence and Entanglement Entropy Tadashi Takayanagi (Kyoto U.) Based on hep-th/0603001 [Phys.Rev.Lett.96(2006)181602] hep-th/0605073 [JHEP 0608(2006)045] with Shinsei Ryu (KITP) hep-th/0608213

More information

Cosmology Lecture 2 Mr. Kiledjian

Cosmology Lecture 2 Mr. Kiledjian Cosmology Lecture 2 Mr. Kiledjian Lecture 2: Quantum Mechanics & Its Different Views and Interpretations a) The story of quantum mechanics begins in the 19 th century as the physicists of that day were

More information

Don Marolf 7/17/14 UCSB

Don Marolf 7/17/14 UCSB Don Marolf 7/17/14 UCSB D=4: F = GM 2 /r 2, dimensionless coupling GE 2 /ħc 5 grows with E. Quantum fluctuations are a problem, growing at short distances. Growth must(?) stop somewhere (non trivial fixed

More information

arxiv: v2 [hep-th] 1 Aug 2018

arxiv: v2 [hep-th] 1 Aug 2018 Prepared for submission to JHEP Learning the Alpha-bits of Black Holes arxiv:1807.06041v2 [hep-th] 1 Aug 2018 Patrick Hayden and Geoffrey Penington Stanford Institute for Theoretical Physics, Stanford

More information

Introduction to Quantum Mechanics

Introduction to Quantum Mechanics Introduction to Quantum Mechanics R. J. Renka Department of Computer Science & Engineering University of North Texas 03/19/2018 Postulates of Quantum Mechanics The postulates (axioms) of quantum mechanics

More information

Properties of entropy in holographic theories

Properties of entropy in holographic theories Properties of entropy in holographic theories Matthew Headrick randeis University Contents 0 Definitions 1 Properties of entropy Entanglement entropy in QFT 3 Ryu-Takayanagi formula 6 Monogamy 8 5 SS of

More information

Why we need quantum gravity and why we don t have it

Why we need quantum gravity and why we don t have it Why we need quantum gravity and why we don t have it Steve Carlip UC Davis Quantum Gravity: Physics and Philosophy IHES, Bures-sur-Yvette October 2017 The first appearance of quantum gravity Einstein 1916:

More information

21 Holographic Entanglement Entropy

21 Holographic Entanglement Entropy 21 Holographic Entanglement Entropy 21.1 The formula We now turn to entanglement entropy in CFTs with a semiclassical holographic dual. That is, we assume the CFT has a large number of degrees of freedom

More information

A single quantum cannot be teleported

A single quantum cannot be teleported 1 quant-ph/010060 A single quantum cannot be teleported Daniele Tommasini Departamento de Física Aplicada, Universidad de Vigo, 3004 Ourense, Spain Due to the Heisemberg uncertainty principle, it is impossible

More information

Cryptography in a quantum world

Cryptography in a quantum world T School of Informatics, University of Edinburgh 25th October 2016 E H U N I V E R S I T Y O H F R G E D I N B U Outline What is quantum computation Why should we care if quantum computers are constructed?

More information

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36 QUANTUM INFORMATION - THE NO-HIDING THEOREM Arun K Pati akpati@iopb.res.in Instititute of Physics, Bhubaneswar-751005, Orissa, INDIA and Th. P. D, BARC, Mumbai-400085, India QUANTUM INFORMATION -THE NO-HIDING

More information

BLACK HOLE ENTROPY ENTANGLEMENT AND HOLOGRAPHIC SPACETIME. Ted Jacobson University of Maryland

BLACK HOLE ENTROPY ENTANGLEMENT AND HOLOGRAPHIC SPACETIME. Ted Jacobson University of Maryland BLACK HOLE ENTROPY ENTANGLEMENT AND HOLOGRAPHIC SPACETIME Ted Jacobson University of Maryland Goddard Scientific Colloquium, Feb. 7, 2018 Holographic principle Information paradox geometry from entanglement

More information

Bit Threads and Holographic Entanglement

Bit Threads and Holographic Entanglement it Threads and Holographic Entanglement Matthew Headrick randeis Uniersity ased on arxi:60400354 [hep-th], with Michael Freedman Entropy and area In semiclassical graity, entropies are related to surface

More information

arxiv: v2 [hep-th] 7 Dec 2013

arxiv: v2 [hep-th] 7 Dec 2013 New Concepts for Old Black Holes arxiv:1311.3335v2 [hep-th] 7 Dec 2013 Leonard Susskind Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305-4060,

More information

Introductory Course on Black Hole Physics and AdS/CFT Duality Lecturer: M.M. Sheikh-Jabbari

Introductory Course on Black Hole Physics and AdS/CFT Duality Lecturer: M.M. Sheikh-Jabbari Introductory Course on Black Hole Physics and AdS/CFT Duality Lecturer: M.M. Sheikh-Jabbari This is a PhD level course, designed for second year PhD students in Theoretical High Energy Physics (HEP-TH)

More information

The Black Hole Information Paradox, and its resolution in string theory

The Black Hole Information Paradox, and its resolution in string theory The Black Hole Information Paradox, and its resolution in string theory Samir D. Mathur The Ohio State University NASA Hawking 1974: General relativity predicts black holes Quantum mechanics around black

More information

Time Evolution of Holographic Complexity

Time Evolution of Holographic Complexity Time Evolution of Holographic Complexity Sotaro Sugishita (Osaka Univ.) based on arxiv:1709.10184 [JHEP 1711, 188 (2017)] with Dean Carmi, Shira Chapman, Hugo Marrochio, Robert Myers RIKEN-Osaka-OIST Joint

More information

Preface to Presentation

Preface to Presentation Preface to Presentation I gave a presentation last October about time travel, warp drive, travel to a Goldilocks Planet etc. to provide some possible place to escape a possible dying world I mentioned

More information

The Black Hole Information Paradox

The Black Hole Information Paradox University of Groningen Faculty of science and engineering Bachelor thesis The Black Hole Information Paradox Author: Alex Pel Supervisor: Kyriakos Papadodimas Second assessor: Eric Bergshoeff July 6,

More information

15 Skepticism of quantum computing

15 Skepticism of quantum computing 15 Skepticism of quantum computing Last chapter, we talked about whether quantum states should be thought of as exponentially long vectors, and I brought up class BQP/qpoly and concepts like quantum advice.

More information

Basics on quantum information

Basics on quantum information Basics on quantum information Mika Hirvensalo Department of Mathematics and Statistics University of Turku mikhirve@utu.fi Thessaloniki, May 2016 Mika Hirvensalo Basics on quantum information 1 of 52 Brief

More information

Quantum Computation vs. Firewalls arxiv: v4 [hep-th] 6 Apr 2013

Quantum Computation vs. Firewalls arxiv: v4 [hep-th] 6 Apr 2013 Prepared for submission to JHEP DEDICATED TO JOHN PRESKILL ON THE OCCASION OF HIS 60TH BIRTHDAY Quantum Computation vs. Firewalls arxiv:1301.4504v4 [hep-th] 6 Apr 2013 Daniel Harlow a Patrick Hayden b

More information

Quantum Computing. Vraj Parikh B.E.-G.H.Patel College of Engineering & Technology, Anand (Affiliated with GTU) Abstract HISTORY OF QUANTUM COMPUTING-

Quantum Computing. Vraj Parikh B.E.-G.H.Patel College of Engineering & Technology, Anand (Affiliated with GTU) Abstract HISTORY OF QUANTUM COMPUTING- Quantum Computing Vraj Parikh B.E.-G.H.Patel College of Engineering & Technology, Anand (Affiliated with GTU) Abstract Formerly, Turing Machines were the exemplar by which computability and efficiency

More information

Tensor Networks, Renormalization and Holography (overview)

Tensor Networks, Renormalization and Holography (overview) KITP Conference Closing the entanglement gap: Quantum information, quantum matter, and quantum fields June 1 st -5 th 2015 Tensor Networks, Renormalization and Holography (overview) Guifre Vidal KITP Conference

More information

A Hypothesis Connecting Dark Energy, Virtual Gravitons, and the Holographic Entropy Bound. Claia Bryja City College of San Francisco

A Hypothesis Connecting Dark Energy, Virtual Gravitons, and the Holographic Entropy Bound. Claia Bryja City College of San Francisco A Hypothesis Connecting Dark Energy, Virtual Gravitons, and the Holographic Entropy Bound Claia Bryja City College of San Francisco The Holographic Principle Idea proposed by t Hooft and Susskind (mid-

More information

Quantum reality. Syksy Räsänen University of Helsinki, Department of Physics and Helsinki Institute of Physics

Quantum reality. Syksy Räsänen University of Helsinki, Department of Physics and Helsinki Institute of Physics Quantum reality Syksy Räsänen University of Helsinki, Department of Physics and Helsinki Institute of Physics www.helsinki.fi/yliopisto 1 Quantum century Quantum mechanics (and quantum field theory) is

More information

TOPIC X ALTERNATIVE PROPOSALS TO RESOLVE THE INFORMATION PARADOX

TOPIC X ALTERNATIVE PROPOSALS TO RESOLVE THE INFORMATION PARADOX TOPIC X ALTENATIVE POPOSALS TO ESOLVE THE INFOMATION PAADOX 1 Lecture notes 1 Wormholes 1.1 The fabric of spacetime What is spacetime made of? One might answer: spacetime is made of points. But points

More information

Information Metric and Holography

Information Metric and Holography 11 th Vienna Central European Seminar Quantum and Gravity @ Univ. of Vienna, Nov.7-8, 015 Information Metric and Holography Tadashi Takayanagi Yukawa Institute for Theoretical Physics (YITP), Kyoto University

More information

Entanglement, geometry and the Ryu Takayanagi formula

Entanglement, geometry and the Ryu Takayanagi formula Entanglement, geometry and the Ryu Takayanagi formula Juan Maldacena Kyoto, 2013 Aitor Lewkowycz Lewkowycz, JM ArXiv:1304.4926 & Faulkner, Lewkowycz, JM, to appear Tom Faulkner Previously argued by Fursaev

More information

Emergent Gravity. Chih-Chieh Chen. December 13, 2010

Emergent Gravity. Chih-Chieh Chen. December 13, 2010 Emergent Gravity Chih-Chieh Chen December 13, 2010 Abstract The idea of the emergent gravity came from the study of black hole thermodynamics. Basically by inversion the logic in the derivation of the

More information

Emergence of Causality. Brian Swingle University of Maryland Physics Next, Long Island Aug, 2017

Emergence of Causality. Brian Swingle University of Maryland Physics Next, Long Island Aug, 2017 Emergence of Causality Brian Swingle University of Maryland Physics Next, Long Island Aug, 2017 Bounds on quantum dynamics Quantum dynamics is a large subject, but one natural anchor point is to ask

More information

Reconstructing Bulk from Boundary: clues and challenges

Reconstructing Bulk from Boundary: clues and challenges Reconstructing Bulk from Boundary: clues and challenges Ben Freivogel GRAPPA and ITFA Universiteit van Amsterdam Ben Freivogel () Reconstructing Bulk from Boundary May 24, 2013 1 / 28 Need quantum gravity

More information

Nonlocal Effects in Quantum Gravity

Nonlocal Effects in Quantum Gravity Nonlocal Effects in Quantum Gravity Suvrat Raju International Centre for Theoretical Sciences 29th Meeting of the IAGRG IIT Guwahati 20 May 2017 Collaborators Based on work with 1 Kyriakos Papadodimas

More information

Entanglement and information

Entanglement and information Ph95a lecture notes for 0/29/0 Entanglement and information Lately we ve spent a lot of time examining properties of entangled states such as ab è 2 0 a b è Ý a 0 b è. We have learned that they exhibit

More information

People can't travel to the past, but scientists not so sure about quarks

People can't travel to the past, but scientists not so sure about quarks People can't travel to the past, but scientists not so sure about quarks By Scientific American, adapted by Newsela staff on 10.14.14 Word Count 1,446 Visitors explore an imaginary time machine, part of

More information

viii My God, He Plays Dice! Preface Preface

viii My God, He Plays Dice! Preface Preface viii The primary goal of this book is to revise and correct the history of Albert Einstein s contributions to quantum mechanics, which have been distorted for decades by the unfortunately biased accounts

More information

5. Communication resources

5. Communication resources 5. Communication resources Classical channel Quantum channel Entanglement How does the state evolve under LOCC? Properties of maximally entangled states Bell basis Quantum dense coding Quantum teleportation

More information

A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels

A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels JOURNAL OF CHEMISTRY 57 VOLUME NUMBER DECEMBER 8 005 A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels Miri Shlomi

More information

Precursors see inside black holes

Precursors see inside black holes SU-ITP-2/32 hep-th/0208047 Precursors see inside black holes Veronika E. Hubeny Department of Physics, Stanford University, Stanford, CA 94305, USA Abstract We argue that, given the nonlocal nature of

More information

Basics on quantum information

Basics on quantum information Basics on quantum information Mika Hirvensalo Department of Mathematics and Statistics University of Turku mikhirve@utu.fi Thessaloniki, May 2014 Mika Hirvensalo Basics on quantum information 1 of 49 Brief

More information

From Quantum Mechanics to String Theory

From Quantum Mechanics to String Theory From Quantum Mechanics to String Theory Relativity (why it makes sense) Quantum mechanics: measurements and uncertainty Smashing things together: from Rutherford to the LHC Particle Interactions Quarks

More information

arxiv: v2 [hep-th] 25 Feb 2014

arxiv: v2 [hep-th] 25 Feb 2014 arxiv:1402.5674v2 [hep-th] 25 Feb 2014 Computational Complexity and Black Hole Horizons Leonard Susskind Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford,

More information

arxiv: v1 [hep-th] 13 Jul 2017

arxiv: v1 [hep-th] 13 Jul 2017 Teleportation Through the Wormhole arxiv:1707.04354v1 [hep-th] 13 Jul 2017 Leonard Susskind and Ying Zhao Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford,

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.821 String Theory Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.821 F2008 Lecture 03: The decoupling

More information

Private quantum subsystems and error correction

Private quantum subsystems and error correction Private quantum subsystems and error correction Sarah Plosker Department of Mathematics and Computer Science Brandon University September 26, 2014 Outline 1 Classical Versus Quantum Setting Classical Setting

More information