Wave energy Extracting power from ocean waves Some basic principles

Size: px
Start display at page:

Download "Wave energy Extracting power from ocean waves Some basic principles"

Transcription

1 Wave energy Extracting power from ocean waves Some basic principles Finn Gunnar Nielsen, Geophysical Institute, University of Bergen

2 Issues to be discussed A reminder on the nature of (deep water) gravity waves The Global picture Examples on wave energy converters Extracting wave energy by an oscillating system To absorb wave energy is about generating waves Theoretical efficiencies Two simple numerical examples

3 Classification of ocean waves

4 Linear, deep water waves (Airy waves) Dispersion relation: c As g tanh kd k k g d, tanh( kd) 1, c, kg k Kinetic = potential energy (per unit surface area): Energy flux: 1 H Ep Ev g H 1 H g P cg Ep Ev g g k 4 k

5 Sf(f) (m sec) Energy flux in a wave spectrum Peak frequency 16= 1/ (7.47 sec) Jonswap spectrum Mean energy frequency =1/ (6.78 sec) Zero upcrossing frequency = 1/ (5.88 sec] Hs = sqrt(m) = 3.5m Frequency [1/sec] Spectral moments: n mn S d Significant wave height Average period Zero up-crossing period Energy mean period Hs T T T m m m 1 m m m m 1 Energy flux: P g m g T m g T H s

6 RESOURCES Waves (From World Energy Council) Average energy densities: 1 kw/m wave front 5 kw/m, 3% efficiency: 13 MWh/ym 1TWh/y: 76km

7 The potential exceeds the demands. Source: IPCC SRREN,

8 Main principles From: Babarit, Introduction to Ocean Wave Energy Conversion,

9 Illustration of main principles Source: Bedard(6)»overview: EPRI Ocean Energy Program» Presented to Duke Univerisity Global Change Centre

10 Key principles for extracting wave energy Remember: Waves are not only quasi-static change in surface elevation Energy absorption requires a force working together with a velocity Falnes and Budal (1978): In order for an oscillating system to be a good wave absorber it should be a good wave generator

11 The Tapchan project at Toftestallen, Øygarden (finished 1985) Principle. Test site

12 How is energy extracted? Key principles Linear considerations Linear oscillator interaction with waves Heaving buoy as example

13 Linear oscillator F(t) M X Dynamic equilibrium: Mx Bx Kx F() t x x x F( t) Harmonic oscillation, stationary solution. i t F t F cos t F Re[ e ] A A K M B = M K B Dynamic equation, frequency domain: M i B K x F

14 Linear oscillator - solution cos x xa t xare e F x M K ib i t abs(x/x ) 4 3 (Deg) / / At resonance: Response controlled by damping!

15 Estimating the energy absorption by a heaving buoy Assumptions: Heave motion only Linearized analysis No viscous effects

16 The heaving point absorber, a linearized approach (1:3) Equation of motion (1DOF): mx Fex FR FP In frequency domain: m A i B B B k K x F 33 r l wl ex Wave radiation force: F A x B x k x Force due to power off-take: Heave motion: x R 33 r wl F Bx Kx P F Aex cos( t) m A k K B B B 33 wl r l

17 The heaving point absorber, a linearized approach (:3) Instantaneous power: P P t F x Kx Bx x P Integrated over one wave period: P P F B 1 Aex 1 m A33 k wl K B Br Bx A Maximum power at resonance

18 The heaving point absorber, a linearized approach (3:3) Optimum damping in power off-take: dpp / db Obtained for B B r Maximum mean power: P p _ max FAex 8B r

19 Theoretical limits for power extraction 3D axisymmetric body (deep water) Invoke Haskind relation (relates wave excitation force to wave radiation damping.) 3 Fex3 3D symmetric, heaving buoy: Br 33 3 g H Falnes and Budal, 1978: In order for an oscillating system to be a good wave absorber it should be a good wave generator. I.e. max power: P 3 H g 3 F Aex g p _ max 3 3 8Br 4 18 H T 3 Capture width : L cap 3 g 3 HT max power extraction 3 18 g 1 g TH 3 power in wave per meter

20 Heaving point absorber Theoretical versus Budal limit. - Or the implication of limited physical size. 1 C = = 7.9 kws/m 4 4 g 3 g C = =.44 kw/(m s 3 ) 3 18 Capture width (P A ): L=λ/π (Heave only) L = 3λ/π (Heave & surge) Resonance Semisubmerged sphere From Falnes (7)

21 E4 /TU

22 The idea of latching (1:) A. Babarit, G. Duclos, A.H. Clément: Comparison of latching control strategies for a heaving wave energy device in random sea

23 The idea of latching (:) Tout = Twa Max. W/o control Tout = 3Twa Source: Clement and Babarit (1) DOF system. Power absorbed in harmonic and first sub-harmonic latching modes, compared with uncontrolled, and ideal modes. Solid line, without control; squares, latching, Tout=Twa; circles, latching, Tout=3 Tin; dashed dotted line, max power 3

24 Main principles From: Babarit, Introduction to Ocean Wave Energy Conversion,

25 Interaction between waves and body - D Energy flux in incident wave: 1 g J cge A 4 Net absorbed wave power per unit length: g P A A A 4 D R T A T : amplitude of transmitted wave A R : amplitude of reflected wave

26 Interaction between waves and body D Incident wave plus heaving and surging body. 3 Radiated waves from a heaving D source 3 Radiated waves from a heaving plus surging source Incident waves moving in positive x-direction wave elevation Wave due to heave -3-4 Heave + surge 1 wave elevation x 3 Radiated waves from a surging D source Incident plus radiated waves from a heaving and surging source x Incident wave wave elevation Wave due to surge wave elevation Incident + heave + surge x x Note importance of phasing

27 Example heaving buoy, motions INPUT Radius 1 m Draft 5 m Wave amplitude 1 m Mass kg Water line stiffness, kn/m Power offtake stiffness kn/m Natural period sec 8 Radiation damping at T N/(m/s) 7 Theoretical maximum energy absorbtion, at resonance (kw) Gam = B_ powerofftake / B_ radiation (T ) B_ powerofftake independent of frequency (not optimum) 6 5 Amplitude of motion gam =.1 gam =.5 gam = 1 gam = gam = 5 gam = 1 abs(x 3 )/A 4 3 x 3 1 x Wave period (sec)

28 Heaving buoy - Power production Average power (kw) Power production, wave amplitude 1 m gam =.1 gam =.5 gam = 1 gam = gam = 5 gam = 1 rage power (kw) Budal limit with A= 1m Theoretical maximum versus "Budal limit" Theoretical max "Budal limit" Wave period (sec) Wave period (sec)

29 Power production off resonance - passive system INPUT Radius.5 m Draft 5 m Wave amplitude 1 m Mass kg Water line stiffness, kn/m Power offtake stiffness kn/m Natural period sec Radiation damping at T N/(m/s) Theoretical maximum energy absorbtion, at resonance (kw) Gam = B_powerofftake / B_radiation (T) High damping in power off-take important to extract energy at periods above resonance Average power (kw) Power production, wave amplitude 1 m gam =.1 gam =.5 gam = 1 gam = gam = 5 gam = Wave period (sec)

30 Example: Gabriell Figure. Illustration of the buoy with a horizontal plate attached underneath

31 Toftestallen In the 198 ies..and in

32 Wave power converters - Examples on installations in full / reduced scale (:) Bostrøm et al. (Sweden, 6-) Heaving buoy. Linear generator Fred Olsen, Buldra. (Norway 4-) Array of heaving buoys. Semisubmersible

33 Oscillating water column (OWC) LIMPET LIMPET

34 Relative motion device attenuator Pelamis (75 kw device)

35 Overtopping Wave Dragon (prototype kw, 4-7MW demonstrator)

36 New ideas - floating hose The ANACONDA concept. Ill. EPSRC Water inside the tubes are propagating in longitudinal direction

37 Summary - Vaste amount of wave energy available. Technical availability uncertain. - No convergence on technical solutions - For an oscillating system to extract energy, it has to generate waves - Advanced control needed to enhance power offtake. - Survivability has shown up to be a critical issue

OCEAN WAVES AND OSCILLATING SYSTEMS

OCEAN WAVES AND OSCILLATING SYSTEMS OCEAN WAVES AND OSCILLATING SYSTEMS LINEAR INTERACTIONS INCLUDING WAVE-ENERGY EXTRACTION JOHANNES FALNES Department of Physics Norwegian University of Science and Technology NTNU CAMBRIDGE UNIVERSITY PRESS

More information

Renewable Energy: Ocean Wave-Energy Conversion

Renewable Energy: Ocean Wave-Energy Conversion Renewable Energy: Ocean Wave-Energy Conversion India Institute of Science Bangalore, India 17 June 2011 David R. B. Kraemer, Ph.D. University of Wisconsin Platteville USA B.S.: My background Mechanical

More information

Control strategies in OWC plants

Control strategies in OWC plants Control strategies in OWC plants 27/03/2017 TECNALIA By François-Xavier Faÿ Contents Generalities in OWC systems Numerical modelling of the overall system Adaptive control for OWC Rotational speed control

More information

Effect of nonlinear Froude-Krylov and restoring forces on a hinged

Effect of nonlinear Froude-Krylov and restoring forces on a hinged Effect of nonlinear Froude-Krylov and restoring forces on a hinged multibody WEC Øyvind Y. Rogne (Aker Solutions & CeSOS) Torgeir Moan (CeSOS) Svein Ersdal (Aker Solutions) How the WEC works N buoys hinged

More information

Investigation on the energy absorption performance of a fixed-bottom pressure-differential wave energy converter

Investigation on the energy absorption performance of a fixed-bottom pressure-differential wave energy converter Investigation on the energy absorption performance of a fixed-bottom pressure-differential wave energy converter Aurélien Babarit, Fabian Wendt, Yi-Hsiang Yu, Jochem Weber To cite this version: Aurélien

More information

Numerical benchmarking study of a selection of Wave Energy Converters

Numerical benchmarking study of a selection of Wave Energy Converters Numerical benchmarking study of a selection of Wave Energy Converters Aurélien Babarit Ecole Centrale de Nantes, France Jorgen Hals, Adi Kurniawan, Made J. Muliawan, Torgeir Moan NTNU, Norway Jorgen Krokstad

More information

A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion

A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion 1. Simple harmonic motion and the greenhouse effect (a) A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion. 1. 2. (b) In a simple model

More information

Feasibility study of the three-tether axisymmetric wave energy converter

Feasibility study of the three-tether axisymmetric wave energy converter Feasibility study of the three-tether axisymmetric wave energy converter 3 N.Y. Sergiienko a,, A. Rafiee b, B.S. Cazzolato a, B. Ding a, M. Arjomandi a a The University of Adelaide, School of Mechanical

More information

Hydrodynamic Modeling of Heaving Systems for Wave Energy Conversion Pedro Tomás Pestana Mendonça

Hydrodynamic Modeling of Heaving Systems for Wave Energy Conversion Pedro Tomás Pestana Mendonça Hydrodynamic Modeling of Heaving Systems for Wave Energy Conversion Pedro Tomás Pestana Mendonça Abstract: This work presents a detailed study of the hydrodynamics modeling of a set of three distinct wave

More information

Dynamics and Control of the GyroPTO Wave Energy Point Absorber under Sea Waves

Dynamics and Control of the GyroPTO Wave Energy Point Absorber under Sea Waves Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 99 (7) 88 8 X International Conference on Structural Dynamics, EURODYN 7 Dynamics and Control of the GyroPTO Wave Energy Point

More information

Published in: Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference

Published in: Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference Aalborg Universitet Performance Evaluation of an Axysimmetric Floating OWC Alves, M. A.; Costa, I. R.; Sarmento, A. J.; Chozas, Julia Fernandez Published in: Proceedings of the Twentieth (010) International

More information

Effect of Tethers Tension Force in the Behavior of a Tension Leg Platform Subjected to Hydrodynamic Force Amr R. El-Gamal, Ashraf Essa, Ayman Ismail

Effect of Tethers Tension Force in the Behavior of a Tension Leg Platform Subjected to Hydrodynamic Force Amr R. El-Gamal, Ashraf Essa, Ayman Ismail Vol:7, No:1, 13 Effect of Tethers Tension Force in the Behavior of a Tension Leg Platform Subjected to Hydrodynamic Force Amr R. El-Gamal, Ashraf Essa, Ayman Ismail International Science Index, Bioengineering

More information

OPTIMIZING WAVE FARM LAYOUTS UNDER UNCERTAINTY

OPTIMIZING WAVE FARM LAYOUTS UNDER UNCERTAINTY Proceedings of the 3 rd Marine Energy Technology Symposium METS April 7-9,, Washington, D.C. OPTIMIZING WAVE FARM LAYOUTS UNDER UNCERTAINTY Lawrence V. Snyder Dept. of Industrial and Systems Engr. Lehigh

More information

Strategies for active tuning of Wave Energy Converter hydraulic power take-off mechanisms

Strategies for active tuning of Wave Energy Converter hydraulic power take-off mechanisms Strategies for active tuning of Wave Energy Converter hydraulic power take-off mechanisms C.J. Cargo, A.J. Hillis, A.R. Plummer Department of Mechanical Engineering, University of Bath, Bath BA27AY Abstract

More information

DYNAMIC CHARACTERISTICS OF OFFSHORE TENSION LEG PLATFORMS UNDER HYDRODYNAMIC FORCES

DYNAMIC CHARACTERISTICS OF OFFSHORE TENSION LEG PLATFORMS UNDER HYDRODYNAMIC FORCES International Journal of Civil Engineering (IJCE) ISSN(P): 2278-9987; ISSN(E): 2278-9995 Vol. 3, Issue 1, Jan 214, 7-16 IASET DYNAMIC CHARACTERISTICS OF OFFSHORE TENSION LEG PLATFORMS UNDER HYDRODYNAMIC

More information

Simulation of the SEAREV Wave Energy Converter with a by-pass control of its hydraulic Power Take Off.

Simulation of the SEAREV Wave Energy Converter with a by-pass control of its hydraulic Power Take Off. Simulation of the SEAREV Wave Energy Converter with a by-ass control of its hydraulic Power Take Off. Aurélien Babarit, Hakim Mouslim, Michel Guglielmi & Alain Clément Ecole Centrale de Nantes, France

More information

Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes.

Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes. 13.012 Marine Hydrodynamics for Ocean Engineers Fall 2004 Quiz #2 Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes. For the problems in Section A, fill

More information

Wave energy conversion based on multi-mode line absorbing systems

Wave energy conversion based on multi-mode line absorbing systems Wave energy conversion based on multi-mode line absorbing systems A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences

More information

Performance of closely spaced point absorbers with constrained floater motion

Performance of closely spaced point absorbers with constrained floater motion Performance of closely spaced point absorbers with constrained floater motion G. De Backer 1, M. Vantorre 1, C. Beels 1, J. De Rouck 1 and P. Frigaard 2 1 Department of Civil Engineering, Ghent University,

More information

Chapter 5 Design. D. J. Inman 1/51 Mechanical Engineering at Virginia Tech

Chapter 5 Design. D. J. Inman 1/51 Mechanical Engineering at Virginia Tech Chapter 5 Design Acceptable vibration levels (ISO) Vibration isolation Vibration absorbers Effects of damping in absorbers Optimization Viscoelastic damping treatments Critical Speeds Design for vibration

More information

Wave energy conversion by controlled floating and submerged cylindrical buoys

Wave energy conversion by controlled floating and submerged cylindrical buoys J. Ocean Eng. Mar. Energy (5) :55 7 DOI.7/s7-5--7 RESEARCH ARTICLE Wave energy conversion by controlled floating and submerged cylindrical buoys Umesh A. Korde R. Cengiz Ertekin Received: 8 August / Accepted:

More information

Case study: Anaconda

Case study: Anaconda Case study: Anaconda Dr Valentin Heller Fluid Mechanics Section, Department of Civil and Environmental Engineering 4 th CoastLab Teaching School, Wave and Tidal Energy, Porto, 17-20 th January 2012 Content

More information

PNEUMATIC PERFORMANCE OF A NON-AXISYMMETRIC FLOATING OSCILLATING WATER COLUMN WAVE ENERGY CONVERSION DEVICE IN RANDOM WAVES

PNEUMATIC PERFORMANCE OF A NON-AXISYMMETRIC FLOATING OSCILLATING WATER COLUMN WAVE ENERGY CONVERSION DEVICE IN RANDOM WAVES Proceedings of the 2 nd Marine Energy Technology Symposium METS214 April 1-18, 214, Seattle, WA PNEUMATIC PERFORMANCE OF A NON-AXISYMMETRIC FLOATING OSCILLATING WATER COLUMN WAVE ENERGY CONVERSION DEVICE

More information

SECOND ORDER DRIFT FORCES ON "OFFSHORE" WAVE ENERGY CONVERTERS. Luca Martinelli, Alberto Lamberti, Piero Ruol DISTART Università di Bologna

SECOND ORDER DRIFT FORCES ON OFFSHORE WAVE ENERGY CONVERTERS. Luca Martinelli, Alberto Lamberti, Piero Ruol DISTART Università di Bologna 2nd order Presented drift at forces the COMSOL on Off-shore Conference 2009 Milan Wave Energy Converters L. Martinelli et al. SECOND ORDER DRIFT FORCES ON "OFFSHORE" WAVE ENERGY CONVERTERS Luca Martinelli,

More information

(Total 1 mark) IB Questionbank Physics 1

(Total 1 mark) IB Questionbank Physics 1 1. A transverse wave travels from left to right. The diagram below shows how, at a particular instant of time, the displacement of particles in the medium varies with position. Which arrow represents the

More information

8.5 GREENHOUSE EFFECT 8.6 GLOBAL WARMING HW/Study Packet

8.5 GREENHOUSE EFFECT 8.6 GLOBAL WARMING HW/Study Packet 8.5 GREENHOUSE EFFECT 8.6 GLOBAL WARMING HW/Study Packet Required: READ Tsokos, pp 434-450 Hamper pp 294-307 SL/HL Supplemental: none REMEMBER TO. Work through all of the example problems in the texts

More information

HEAVE DAMPING EFFECTS DUE TO CIRCULAR PLATES ATTACHED AT KEEL TO SPAR HULL

HEAVE DAMPING EFFECTS DUE TO CIRCULAR PLATES ATTACHED AT KEEL TO SPAR HULL HEAVE DAMPING EFFECTS DUE TO CIRCULAR PLATES ATTACHED AT KEEL TO SPAR HULL P.Uma 1 1 M.TECH Civil Engineering Dadi Institute of Engineering and Technology College Abstract Single point Anchor Reservoir

More information

Characteristics of a pitching wave absorber with rotatable flap

Characteristics of a pitching wave absorber with rotatable flap Available online at www.sciencedirect.com Energy Procedia 2 (22 ) 34 47 Technoport RERC Research 22 Characteristics of a pitching wave absorber with rotatable flap Adi Kurniawan, Torgeir Moan Centre for

More information

On The Dynamics and Design of a Two-body Wave Energy Converter

On The Dynamics and Design of a Two-body Wave Energy Converter Journal of Physics: Conference Series PAPER OPEN ACCESS On The Dynamics and Design of a Two-body Wave Energy Converter To cite this article: Changwei Liang and Lei Zuo 16 J. Phys.: Conf. Ser. 744 174 View

More information

SEMI-ANALYTICAL SOLUTION OF OPTIMIZATION ON MOON-POOL SHAPED WEC

SEMI-ANALYTICAL SOLUTION OF OPTIMIZATION ON MOON-POOL SHAPED WEC POLISH MARITIME RESEARCH Special Issue 2016 S1 (91) 2016 Vol 23; pp 25-31 101515/pomr-2016-0042 SEMI-ANALYTICAL SOLUTION OF OPTIMIZATION ON MOON-POOL SHAPED WEC WC ZHANG, HX Liu, XW ZHANG, L ZHANG College

More information

Oscillations and Waves

Oscillations and Waves Oscillations and Waves Oscillation: Wave: Examples of oscillations: 1. mass on spring (eg. bungee jumping) 2. pendulum (eg. swing) 3. object bobbing in water (eg. buoy, boat) 4. vibrating cantilever (eg.

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Kinetic Energy and Work Conservation of Energy is one of Nature s fundamental laws that is not violated. Energy can take on different forms in a given system. This chapter we will discuss work

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY ANSWERS TO FOCUS ON CONCEPTS QUESTIONS (e) When the force is perpendicular to the displacement, as in C, there is no work When the force points in the same direction as the displacement,

More information

Experimental Validation of Numerical Models for Wave Energy Absorbers

Experimental Validation of Numerical Models for Wave Energy Absorbers Experimental Validation of Numerical Models for Wave Energy Absorbers Morten Kramer, Francesco Ferri, Andrew Zurkinden, Enrique Vidal, Jens P. Kofoed 2 nd SDWED Advances in Modelling of Wave Energy Devices

More information

Design Procedures For Dynamically Loaded Foundations

Design Procedures For Dynamically Loaded Foundations Design Procedures For Dynamically Loaded Foundations 1/11 Choice of parameters for equivalent lumped systems Lumped mass : the mass of the foundation and supported machinery Damping : 1 Geometrical(or

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 Outline of the chapter *One degree of freedom systems in real life Hypothesis Examples *Response

More information

Sound radiation and transmission. Professor Phil Joseph. Departamento de Engenharia Mecânica

Sound radiation and transmission. Professor Phil Joseph. Departamento de Engenharia Mecânica Sound radiation and transmission Professor Phil Joseph Departamento de Engenharia Mecânica SOUND RADIATION BY A PISTON The piston generates plane waves in the tube with particle velocity equal to its own.

More information

INFLUENCE OF TETHER LENGTH IN THE RESPONSE BEHAVIOR OF SQUARE TENSION LEG PLATFORM IN REGULAR WAVES

INFLUENCE OF TETHER LENGTH IN THE RESPONSE BEHAVIOR OF SQUARE TENSION LEG PLATFORM IN REGULAR WAVES INFLUENCE OF TETHER LENGTH IN THE RESPONSE BEHAVIOR OF SQUARE TENSION LEG PLATFOR IN REGULAR WAVES 1 Amr R. El-gamal, 2 Ashraf Essa, 1 Faculty of Engineering, Benha Univ., Egypt, 2 Associated prof., National

More information

Wave Energy Converter Modeling in the Time Domain: A Design Guide

Wave Energy Converter Modeling in the Time Domain: A Design Guide Wave Energy Converter Modeling in the Time Domain: A Design Guide Bret Bosma, Ted K.A. Brekken, H. Tuba Özkan-Haller, Solomon C. Yim Oregon State University Corvallis, OR USA Abstract As the ocean wave

More information

KEY SOLUTION. 05/07/01 PHYSICS 223 Exam #1 NAME M 1 M 1. Fig. 1a Fig. 1b Fig. 1c

KEY SOLUTION. 05/07/01 PHYSICS 223 Exam #1 NAME M 1 M 1. Fig. 1a Fig. 1b Fig. 1c KEY SOLUTION 05/07/01 PHYSICS 223 Exam #1 NAME Use g = 10 m/s 2 in your calculations. Wherever appropriate answers must include units. 1. Fig. 1a shows a spring, 20 cm long. The spring gets compressed

More information

SEISMIC HAZARD AND DESIGN BY USING ENERGY FLUX

SEISMIC HAZARD AND DESIGN BY USING ENERGY FLUX SEISMIC HAZARD AND DESIGN BY USING ENERGY FLUX Erdal SAFAK 1 And Steve HARMSEN SUMMARY Energy flux provides a dynamic measure of seismic energy, and can be used to characterize the intensity of ground

More information

VIOLENT WAVE TRAPPING - SOME RESULTS ON WATER PROJECTION AROUND SEMI-SUBs AND TLPs

VIOLENT WAVE TRAPPING - SOME RESULTS ON WATER PROJECTION AROUND SEMI-SUBs AND TLPs VIOLENT WAVE TRAPPING - SOME RESULTS ON WATER PROJECTION AROUND SEMI-SUBs AND TLPs Paul H. Taylor James Grice Rodney Eatock Taylor Department of Engineering Science University of Oxford Contents Introduction

More information

The Oscillating Water Column Wave-energy Device

The Oscillating Water Column Wave-energy Device J. Inst. Maths Applies (1978) 22, 423-433 The Oscillating Water Column Wave-energy Device D. V. EVANS Department of Mathematics, University of Bristol, Bristol [Received 19 September 1977 in revised form

More information

NYS STANDARD/KEY IDEA/PERFORMANCE INDICATOR 5.1 a-e. 5.1a Measured quantities can be classified as either vector or scalar.

NYS STANDARD/KEY IDEA/PERFORMANCE INDICATOR 5.1 a-e. 5.1a Measured quantities can be classified as either vector or scalar. INDICATOR 5.1 a-e September Unit 1 Units and Scientific Notation SI System of Units Unit Conversion Scientific Notation Significant Figures Graphical Analysis Unit Kinematics Scalar vs. vector Displacement/dis

More information

Common Exam Department of Physics University of Utah August 28, 2004

Common Exam Department of Physics University of Utah August 28, 2004 Common Exam - 2004 Department of Physics University of Utah August 28, 2004 Examination booklets have been provided for recording your work and your solutions. Please note that there is a separate booklet

More information

ME 328 Machine Design Vibration handout (vibrations is not covered in text)

ME 328 Machine Design Vibration handout (vibrations is not covered in text) ME 38 Machine Design Vibration handout (vibrations is not covered in text) The ollowing are two good textbooks or vibrations (any edition). There are numerous other texts o equal quality. M. L. James,

More information

Numerical Modeling of a Wave Energy Point Absorber Hernandez, Lorenzo Banos; Frigaard, Peter Bak; Kirkegaard, Poul Henning

Numerical Modeling of a Wave Energy Point Absorber Hernandez, Lorenzo Banos; Frigaard, Peter Bak; Kirkegaard, Poul Henning Aalborg Universitet Numerical Modeling of a Wave Energy Point Absorber Hernandez, Lorenzo Banos; Frigaard, Peter Bak; Kirkegaard, Poul Henning Published in: Proceedings of the Twenty Second Nordic Seminar

More information

Chapter 15. Oscillatory Motion

Chapter 15. Oscillatory Motion Chapter 15 Oscillatory Motion Part 2 Oscillations and Mechanical Waves Periodic motion is the repeating motion of an object in which it continues to return to a given position after a fixed time interval.

More information

a) Find the equation of motion of the system and write it in matrix form.

a) Find the equation of motion of the system and write it in matrix form. .003 Engineering Dynamics Problem Set Problem : Torsional Oscillator Two disks of radius r and r and mass m and m are mounted in series with steel shafts. The shaft between the base and m has length L

More information

STRUCTURE OF MATTER, VIBRATIONS AND WAVES, AND QUANTUM PHYSICS

STRUCTURE OF MATTER, VIBRATIONS AND WAVES, AND QUANTUM PHYSICS Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship STRUCTURE OF MATTER, VIBRATIONS AND WAVES, AND QUANTUM PHYSICS For 1st-Year

More information

SEAKEEPING AND MANEUVERING Prof. Dr. S. Beji 2

SEAKEEPING AND MANEUVERING Prof. Dr. S. Beji 2 SEAKEEPING AND MANEUVERING Prof. Dr. S. Beji 2 Ship Motions Ship motions in a seaway are very complicated but can be broken down into 6-degrees of freedom motions relative to 3 mutually perpendicular axes

More information

An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter Ning, De-Zhi; Wang, Rong-Quan; Zou, Qing-Ping; Teng, Bin

An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter Ning, De-Zhi; Wang, Rong-Quan; Zou, Qing-Ping; Teng, Bin Heriot-Watt University Heriot-Watt University Research Gateway An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter Ning, De-Zhi; Wang, Rong-Quan; Zou, Qing-Ping; Teng, Bin

More information

Journal of Marine Science and Engineering ISSN

Journal of Marine Science and Engineering ISSN J. Mar. Sci. Eng. 2014, 2, 477-492; doi:10.3390/jmse2020477 Article On the Optimization of Point Absorber Buoys OPEN ACCESS Journal of Marine Science and Engineering ISSN 2077-1312 www.mdpi.com/journal/jmse

More information

(Total 1 mark) IB Questionbank Physics 1

(Total 1 mark) IB Questionbank Physics 1 1. A transverse wave travels from left to right. The diagram below shows how, at a particular instant of time, the displacement of particles in the medium varies with position. Which arrow represents the

More information

Dynamic Analysis Contents - 1

Dynamic Analysis Contents - 1 Dynamic Analysis Contents - 1 TABLE OF CONTENTS 1 DYNAMIC ANALYSIS 1.1 Overview... 1-1 1.2 Relation to Equivalent-Linear Methods... 1-2 1.2.1 Characteristics of the Equivalent-Linear Method... 1-2 1.2.2

More information

WAMIT-MOSES Hydrodynamic Analysis Comparison Study. JRME, July 2000

WAMIT-MOSES Hydrodynamic Analysis Comparison Study. JRME, July 2000 - Hydrodynamic Analysis Comparison Study - Hydrodynamic Analysis Comparison Study JRME, Prepared by Hull Engineering Department J. Ray McDermott Engineering, LLC 1 - Hydrodynamic Analysis Comparison Study

More information

Lecture 1 Notes: 06 / 27. The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves).

Lecture 1 Notes: 06 / 27. The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves). Lecture 1 Notes: 06 / 27 The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves). These systems are very common in nature - a system displaced from equilibrium

More information

A RANS Simulation of the Heave Response of a Two-Body Floating Point Wave Absorber

A RANS Simulation of the Heave Response of a Two-Body Floating Point Wave Absorber A RANS Simulation of the Heave Response of a Two-Body Floating Point Wave Absorber Preprint Y. Yu and Y. Li To be presented at ISOPE 2011 Maui, Hawaii June 19-24, 2011 NREL is a national laboratory of

More information

PHYSICS 221 Fall 2007 EXAM 2: November 14, :00pm 10:00pm

PHYSICS 221 Fall 2007 EXAM 2: November 14, :00pm 10:00pm PHYSICS 221 Fall 2007 EXAM 2: November 14, 2007 8:00pm 10:00pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit questions,

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator Simple Harmonic Motion Related to Uniform Circular Motion The Simple Pendulum The Physical

More information

The... of a particle is defined as its change in position in some time interval.

The... of a particle is defined as its change in position in some time interval. Distance is the. of a path followed by a particle. Distance is a quantity. The... of a particle is defined as its change in position in some time interval. Displacement is a.. quantity. The... of a particle

More information

Lectures Chapter 10 (Cutnell & Johnson, Physics 7 th edition)

Lectures Chapter 10 (Cutnell & Johnson, Physics 7 th edition) PH 201-4A spring 2007 Simple Harmonic Motion Lectures 24-25 Chapter 10 (Cutnell & Johnson, Physics 7 th edition) 1 The Ideal Spring Springs are objects that exhibit elastic behavior. It will return back

More information

(1) (3)

(1) (3) 1. This question is about momentum, energy and power. (a) In his Principia Mathematica Newton expressed his third law of motion as to every action there is always opposed an equal reaction. State what

More information

Massachusetts Institute of Technology Physics 8.03 Fall 2004 Final Exam Thursday, December 16, 2004

Massachusetts Institute of Technology Physics 8.03 Fall 2004 Final Exam Thursday, December 16, 2004 You have 3 hours Do all eight problems You may use calculators Massachusetts Institute of Technology Physics 8.03 Fall 004 Final Exam Thursday, December 16, 004 This is a closed-book exam; no notes are

More information

(Total 1 mark) IB Questionbank Physics 1

(Total 1 mark) IB Questionbank Physics 1 1. A transverse wave travels from left to right. The diagram below shows how, at a particular instant of time, the displacement of particles in the medium varies with position. Which arrow represents the

More information

Nonlinear effects on the rotor driven by a motor with limited power

Nonlinear effects on the rotor driven by a motor with limited power Applied and Computational Mechanics 1 (007) 603-61 Nonlinear effects on the rotor driven by a motor with limited power L. Pst Institute of Thermomechanics, Academy of Sciences of CR, Dolejškova 5,18 00

More information

Constrained optimal control of a point absorber wave energy converter with linear generator

Constrained optimal control of a point absorber wave energy converter with linear generator Constrained optimal control of a point absorber wave energy converter with linear generator Liguo Wang, Jens Engström, Malin Göteman, and Jan Isberg Citation: Journal of Renewable and Sustainable Energy

More information

Answers to questions in each section should be tied together and handed in separately.

Answers to questions in each section should be tied together and handed in separately. EGT0 ENGINEERING TRIPOS PART IA Wednesday 4 June 014 9 to 1 Paper 1 MECHANICAL ENGINEERING Answer all questions. The approximate number of marks allocated to each part of a question is indicated in the

More information

Research Article Analytical Study on an Oscillating Buoy Wave Energy Converter Integrated into a Fixed Box-Type Breakwater

Research Article Analytical Study on an Oscillating Buoy Wave Energy Converter Integrated into a Fixed Box-Type Breakwater Hindawi Mathematical Problems in Engineering Volume 217, Article ID 39641, 9 pages https://doi.org/1.1155/217/39641 Research Article Analytical Study on an Oscillating Buoy Wave Energy Converter Integrated

More information

PHYSICS 1 Simple Harmonic Motion

PHYSICS 1 Simple Harmonic Motion Advanced Placement PHYSICS 1 Simple Harmonic Motion Student 014-015 What I Absolutely Have to Know to Survive the AP* Exam Whenever the acceleration of an object is proportional to its displacement and

More information

D6.4 - Validated numerical simulation of hydrodynamic interaction between devices for different compact array layouts

D6.4 - Validated numerical simulation of hydrodynamic interaction between devices for different compact array layouts Ref. Ares(2018)1189372-02/03/2018 D6.4 - Validated numerical simulation of hydrodynamic interaction between devices for different compact array layouts DATE: March 2018 PROJECT COORDINATOR: WavEC Offshore

More information

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces Plasmonics Plasmon: Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam

More information

Effect of Tethers Tension Force on the Behavior of Triangular Tension Leg Platform

Effect of Tethers Tension Force on the Behavior of Triangular Tension Leg Platform American Journal of Civil Engineering and Architecture,, Vol., No. 3, 7- Available online at http://pubs.sciepub.com/ajcea//3/3 Science and Education Publishing DOI:.9/ajcea--3-3 Effect of Tethers Tension

More information

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.)

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.) Outline of Single-Degree-of-Freedom Systems (cont.) Linear Viscous Damped Eigenvibrations. Logarithmic decrement. Response to Harmonic and Periodic Loads. 1 Single-Degreee-of-Freedom Systems (cont.). Linear

More information

Downloaded on T02:40:41Z

Downloaded on T02:40:41Z Title Author(s) Hydrodynamics of oscillating water column wave energy converters Sheng, Wanan; Alcorn, Raymond; Lewis, Anthony Publication date 4- Original citation Type of publication Link to publisher's

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations 14-1 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The

More information

Classification of offshore structures

Classification of offshore structures Classification: Internal Status: Draft Classification of offshore structures A classification in degree of non-linearities and importance of dynamics. Sverre Haver, StatoilHydro, January 8 A first classification

More information

Dynamic response and fluid structure interaction of submerged floating tunnels

Dynamic response and fluid structure interaction of submerged floating tunnels Fluid Structure Interaction and Moving Boundary Problems 247 Dynamic response and fluid structure interaction of submerged floating tunnels S. Remseth 1, B. J. Leira 2, A. Rönnquist 1 & G. Udahl 1 1 Department

More information

Questions from April 2003 Physics Final Exam

Questions from April 2003 Physics Final Exam Questions from April 003 Physics 111.6 Final Exam A1. Which one of the following statements concerning scalars and vectors is FALSE? (A) A vector quantity deals with magnitude and direction. (B) The direction

More information

Coupled Heave-Pitch Motions and Froude Krylov Excitation Forces

Coupled Heave-Pitch Motions and Froude Krylov Excitation Forces Coupled Heave-Pitch Motions and Froude Krylov Excitation Forces 13.42 Lecture Notes; Spring 2004; c A.H. Techet 1. Coupled Equation of Motion in Heave and Pitch Once we have set up the simple equation

More information

Physics General Physics. Lecture 24 Oscillating Systems. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 24 Oscillating Systems. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 24 Oscillating Systems Fall 2016 Semester Prof. Matthew Jones 1 2 Oscillating Motion We have studied linear motion objects moving in straight lines at either constant

More information

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves Raymond A. Serway Chris Vuille Chapter Thirteen Vibrations and Waves Periodic Motion and Waves Periodic motion is one of the most important kinds of physical behavior Will include a closer look at Hooke

More information

Chapter 14 Oscillations

Chapter 14 Oscillations Chapter 14 Oscillations If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system is a

More information

Compressible degree of freedom (CDOF): A potential strategy for improving wave energy capture

Compressible degree of freedom (CDOF): A potential strategy for improving wave energy capture SANDIA REPORT 2015-11134 Unlimited Release Printed December 2015 Compressible degree of freedom (CDOF): A potential strategy for improving wave energy capture Giorgio Bacelli, Vincent S. Neary and Andrew

More information

SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION SIMPLE HARMONIC MOTION PURPOSE The purpose of this experiment is to investigate simple harmonic motion. We will determine the elastic spring constant of a spring first and then study small vertical oscillations

More information

Physics 7Em Midterm Exam 1

Physics 7Em Midterm Exam 1 Physics 7Em Midterm Exam 1 MULTIPLE CHOICE PROBLEMS. There are 10 multiple choice problems. Each is worth 2 points. There is no penalty for wrong answers. In each, choose the best answer; only one answer

More information

From Blue to Green. Q. I m really interested in green energy, but I also thought my controls

From Blue to Green. Q. I m really interested in green energy, but I also thought my controls » ASK THE EXPERTS From Blue to Green I n this issue of IEEE Control Systems Magazine we ask Ted Brekken, Belinda Batten, and Ean Amon to respond to a query on the uses of systems and control technology

More information

CHAPTER 4 TEST REVIEW

CHAPTER 4 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 74 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 4 TEST REVIEW 1. In which of the following regions of the electromagnetic spectrum is radiation

More information

Wave-free motions of isolated bodies and the existence of motion trapped modes

Wave-free motions of isolated bodies and the existence of motion trapped modes Under consideration for publication in J. Fluid Mech. 1 Wave-free motions of isolated bodies and the existence of motion trapped modes By D. V. E V A N S A N D R. P O R T E R School of Mathematics, University

More information

EFFECT OF FLAP TYPE WAVE ENERGY CONVERTERS ON THE RESPONSE OF A SEMI-SUBMERSIBLE WIND TURBINE IN OPERATIONAL CONDITIONS

EFFECT OF FLAP TYPE WAVE ENERGY CONVERTERS ON THE RESPONSE OF A SEMI-SUBMERSIBLE WIND TURBINE IN OPERATIONAL CONDITIONS Proceedings of the ASME 214 33rd International Conference on Ocean, Offshore and Arctic Engineering OMAE214 June 8-13, 214, San Francisco, California, USA OMAE214-2465 EFFECT OF FLAP TYPE WAVE ENERGY CONVERTERS

More information

Oscillatory Motion SHM

Oscillatory Motion SHM Chapter 15 Oscillatory Motion SHM Dr. Armen Kocharian Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A

More information

Nonlinear Passive Control of a Wave Energy Converter Subject to Constraints in Irregular Waves

Nonlinear Passive Control of a Wave Energy Converter Subject to Constraints in Irregular Waves Energies 2015, 8, 6528-6542; doi:10.3390/en8076528 Article OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Nonlinear Passive Control of a Wave Energy Converter Subject to Constraints

More information

Doppler echocardiography & Magnetic Resonance Imaging. Doppler echocardiography. History: - Langevin developed sonar.

Doppler echocardiography & Magnetic Resonance Imaging. Doppler echocardiography. History: - Langevin developed sonar. 1 Doppler echocardiography & Magnetic Resonance Imaging History: - Langevin developed sonar. - 1940s development of pulse-echo. - 1950s development of mode A and B. - 1957 development of continuous wave

More information

ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS

ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS Transactions, SMiRT-24 ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS 1 Principal Engineer, MTR & Associates, USA INTRODUCTION Mansour Tabatabaie 1 Dynamic response

More information

Chapter a. Spring constant, k : The change in the force per unit length change of the spring. b. Coefficient of subgrade reaction, k:

Chapter a. Spring constant, k : The change in the force per unit length change of the spring. b. Coefficient of subgrade reaction, k: Principles of Soil Dynamics 3rd Edition Das SOLUTIONS MANUAL Full clear download (no formatting errors) at: https://testbankreal.com/download/principles-soil-dynamics-3rd-editiondas-solutions-manual/ Chapter

More information

Spectroscopy in frequency and time domains

Spectroscopy in frequency and time domains 5.35 Module 1 Lecture Summary Fall 1 Spectroscopy in frequency and time domains Last time we introduced spectroscopy and spectroscopic measurement. I. Emphasized that both quantum and classical views of

More information

Mirko Previsic, Kourosh Shoele, Jeff Epler, Re Vision Consulting, Sacramento, CA, USA

Mirko Previsic, Kourosh Shoele, Jeff Epler, Re Vision Consulting, Sacramento, CA, USA Validation of Theoretical Performance Results using Wave Tank Testing of Heaving Point Absorber Wave Energy Conversion Device working against a Subsea Reaction Plate Mirko Previsic, mirko@re-vision.net

More information

AP Physics C Mechanics Objectives

AP Physics C Mechanics Objectives AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph

More information